
446.201A (Solid Mechanics) Professor Youn, Byeng Dong 

Ch. 7 Stresses due to bending 1 / 16 

 

 

 

 

 

 

 

CH. 7 

STRESSES DUE TO BENDING 

  



446.201A (Solid Mechanics) Professor Youn, Byeng Dong 

Ch. 7 Stresses due to bending 2 / 16 

 

7.1 Introduction 
à Our aim in this chapter is to determine the distributions of stresses 

which have the shear force V and the bending moment M as 
their resultant. 

▶ Beam 

  When a slender member is subjected to transverse loading, we say it 
acts as a beam. 

▶ Pure bending 

  When there is no shear force, and a constant bending moment is 
transmitted, we say it is a state of pure bending ∵ − =  

 Our method of approach will be similar to that followed in the 
investigation of torsion in Chap. 6, and to a certain extent our 
results will be similar.  

 In this chapter we shall also obtain an exact solution within the 
theory of elasticity of the special case of a beam subjected to pure 
bending. For more general cases we shall obtain approximate 
distributions of stresses on the basis of equilibrium considerations. 
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7.2 Geometry of deformation of a symmetrical beam 
subjected to pure bending 

 

▶ Assumptions (See Fig. 7.2) 

i) We consider an originally straight beam which is uniform along its 
length, whose cross sections is symmetrical. 

ii) Its material properties are constant along the length of the beam. 

iii) It is subjected to pure bending. 
 

∴ The deformation pattern can be fixed by symmetry arguments 
alone. 

 The result derived from these assumptions is valid to any types of 
beams whose materials are linear or nonlinear, elastic or plastic. 
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▶ Curvature 

à The curvature of a plane curve is defined as the rate of the slope 
angle change of the curve with respect to distance along the curve. ∴ for	∆s → 0	(see	fig. 7.3)   =  = ∆→ ∆∆ = ∆→  = 	 	 (7.1)	

  where  =  is the radius of curvature at point B. 
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▶ Deformation behavior under pure bending 

i) The surface A, , 	  must be plane surfaces 
perpendicular to the plane of symmetry.  

∴ In pure bending in a plane of symmetry plane cross sections 
remain plane. 

ii) The fact that each element deforms identically means that the 
initially parallel plane sections now must have a common 
intersection, as illustrated by point O in Fig. 7.4b, and that the beam 
bends into the arc of a circle centered on this intersection. 
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▶ Neutral Axis 

  Neutral axis is one line in the plane of symmetry which has not 
changed in length. 
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▶ Distribution of strain (See Fig. 7.5)  =  =  	(∵ 		 = )	 (7.2)	
  where  = ∆,									 = ( − )∆		 	 (7.3)	∴ 			  = −  = −   = − 	 (7.4)	

 

▷ Brief on Eq.(7.4) 

i) Longitudinal strain of the beam   is proportional to curvature 	(= bending deformation rate) and varies linearly with the distance 
from the neutral surface . 

ii) The derivation of (7.4) applies strictly only to the plane of symmetry, 
but we shall assume that (7.4) describes the longitudinal strain at all 
points in the cross section of the beam. 

iii) This equation is irrelevant to the stress-strain relation of material. 
 

 

▷ Other strain components of strain  =  = 0	 	 (7.5)	
 We can make no quantitative statements about the strains  , 	 	 beyond the remark that they must be symmetrical 
with respect to the xy plane. 

 
7.3 Stresses obtained from stress-strain relations 

à In this section we shall restrict ourselves to beams made of linear 
isotropic elastic material, i.e., to materials which follow Hooke’s 
law. 
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▶ Strain components  =   −  +  = − 	 	 =  = 0	 	 (7.6)	 =  = 0  
à In pure bending,  =  = 0 

 

7.4 Equilibrium requirements 

 

▶ Considering equilibrium (fig. 7.6) ∑ = ∫ 	 = 0  ∑ = ∫ 	 = 0  (7.7) ∑ = −∫  	 =   

 We make the fundamental assumption that the deformation of the 
cross section is sufficiently small so that we can use the 
undeformed coordinates to locate points in the deformed cross 
section. 
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7.5 Stress and deformation in symmetrical elastic beams 
subjected to pure bending 

▶ Aim of this section  

à We shall find the solution satisfying strain requirements, eqs (7.6), 
(7.7) 

▶ Assumption 

à Considering that there is no normal or shear stress on the external 
surface of Δx and that the beam is slender, we can assume as 
follow. 

  =  =  = 0	 	 (7.8)	
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▶Analysis of stresses 
Given above assumption, at the beam under pure bending which is 
following Hooke’s low, the only stress component is  = −  = − = −  	 	 (7.9)	

▷ Equilibrium 
i) ∑ = ∫  	 = −  ∫ 	 = 0	 	 (7.10)	

à ∴ Since ∫  	 = 0, the neutral surface must pass through 
the centroid of the cross-sectional area. 

 In case of a composite or nonlinear beam, it’s possible to apply ∑ = 0  but the neutral surface doesn’t pass through the 
centroid. 

ii) ∑ = ∫  	 = −  ∫  	 = 0	 	 (7.11)	
à As the cross section is symmetrical with respect to xy plane, ∫  	 = 0 

iii) ∑ = −∫  	 =  ∫ 	 =		 	 (7.12)	
  where	  = ∫ 	 	 (7.13)	

 

à ∴ Eq. (7.12) is;  =  =  =  	 	 (7.14)	
 Similar with  =  =  (6.7) 

 ∴ 	 =  = −  				→ 			  = − 	 	 (7.15)	∴  =  = − 	 	 (7.16)	
 Similar with  = 	  (6.9) 
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▶Analysis of strains 
  =   − ( + ) =  0 −  0 −  	 	=  = −	 	 =   −  +  =  0 −  − + 0	 	 (7.17)	=  = −	 	 	 =  = 0	 	
 

▷ Brief on lateral strain 
 

i) Since the axial normal strain is compressive at the top of the beam 
and tensile at the bottom, the top of the cross section expands while 
the bottom of the cross section contracts. 

ii) The trace of the neutral surface on the cross section has become an 
arc with curvature −(1/).  ∴ The deformed neutral surface is a surface of double curvature 
(1/	and	 − /). A further result of the anticlastic curvature is 
that the neutral axis is the only line in the deformed neutral surface 
whose curvature is in a plane parallel to the original plane of 
symmetry of the beam	  

 
à This transverse curvature of the beam is called anticlastic 

curvature. 
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▷ Validity of the assumption 
i) The strains (7.5), (7.15), and (7.17) are geometrically compatible; 

the stresses (7.6), (7.8), and (7.16) satisfy the differential equations 
of equilibrium; and at every point the stresses and strains satisfy 
Hooke’s law. 

ii) Our solution is still very accurate in the central portion of the beam 
in accord with St. Venant’s principle and only becomes 
appreciably in error near the ends. (The length of these transition 
regions at the ends is of the order of the depth of the beam cross 
section.) 

 
 The analysis of the pure bending of curved beams is reasonably 
accurate for the non-uniform bending of curved beams 

▶ Section modulus, S  =     (a) 

or  =  	,			 =  	 	
  = − 		,			  = −   

à It’s convenience to define a required section modulus when we 
select the beam. 

i) The cross section of the beam must be used when the  is larger than 
the value that obtained from eq. (a). 

ii) It is desirable to select the cross section that has satisfactory section 
modulus and the smallest cross sectional area. 

iii) On the rectangular cross section, the greater height ℎ is, the larger  is. 
iv) The square cross section beam is more efficient than the circular 

cross section beam with respect to the same area. 
v) To design the beam economically, material should be placed in 

location that is away from the neutral axis as possible. (But, in an 
excessive case, there is a danger of buckling.) 
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▶Example 7.1 
A steel beam 25mm wide and 75mm deep is pinned to supports at points A 
and B, as shown in Fig. 7.11a, where the support B is on rollers and free to 
move horizontally. When the ends of the beam are loaded with 5kN loads, 
find the maximum bending stress at the mid-span of the beam and also the 
angle Δ subtended by the cross sections at A and B in the deformed 
beam. 
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Sol)	 from	fig.	(c)	 = ∫ 	// =  = 8.789 × 10		 	∴ 			  = −(/) = − ( ).×. () = 64.0	/	 	
  =  = 	 	∴ 			  −  = ∫  	// =  =  (.)(.×)	 	here,	we	let	  = 205	GPa	∆ =  (.)(×)(.×) = −0.0125	 = 0.7155°	 	now,	  =  =  = −120.12		 	

 

▶Example 7.2 
Find the maximum tensile and compressive bending stresses in the 
symmetrical T beam of Fig. 7.12 (a) under the action of a constant bending 
moment  . 
 
Sol)   = ∑ ∑  = (/)()(/)() =  ℎ  (a) ( ) = () + 2ℎ  ℎ =  ℎ  (b) ( ) = (/) + 3ℎ  =  ℎ  (c) 

Then, for the entire cross section  = ( ) + ( ) = 125/48	ℎ  (d) ∴   = − (/	)( /) =  	  = − (/	)(/) = −    

 | | ≈ |2.3 ∙  | 
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