Week 9 Project Cost Estimating (2)

457.657 Civil and Environmental Project Management Department of Civil and Environmental Engineering Seoul National University

> Prof. Seokho Chi <u>shchi@snu.ac.kr</u> 건설환경공학부 35동 304호

LCC Methodology - Overview

- Major steps (1-10)
- Main discussion areas
 - Types of decisions
 - Dates and Assumptions
 - Cost categories
 - NPV/LCC computation
 - Refinements
 - prioritization
 - uncertainty
 - non-monetary considerations

LCC Methodology – Major Steps

- 1. Define problem and state objectives
- 2. Identify feasible alternatives
- 3. Establish common assumptions and parameters
- 4. Estimate costs and times for each alternative
- 5. Project future costs to present value (NPV)
- 6. Compute and compare LCC for each alternative
- 7. Compute supplementary measures if necessary for project prioritization
- 8. Assess uncertainty of input data
- 9. Consider affects for which costs or benefits can't be estimated
- 10. Advise on the decision

Major Steps 1 – 3

1. Problem Description

- General info, type of decision, constraints

2. Feasible Alternatives

- Technical description, rationale, non-monetary considerations

3. Common Assumptions and Parameters

 Study period, base date, service date(s), discount rate, treatment of inflation, operational assumptions, energy and water price schedules

Types of Decisions for LCC

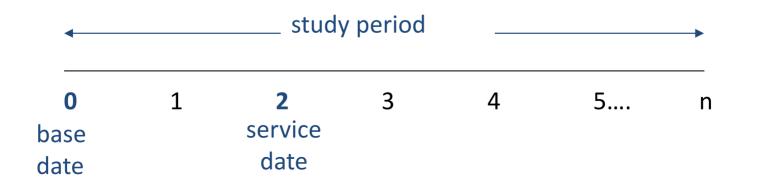
- Accept/reject project
 - Add storm windows to existing single pane windows
- Select an optimal efficiency level for a building system
 - Specify insulation value in an exterior wall
- Select an optimal system from competing alternatives
 - Select type of heating & cooling system

Types of Decisions for LCC (Cont'd)

- Select an optimal combination of interdependent systems
 - Specify type of lighting systems and efficiency of heating and cooling systems
 - Select building design among alternatives
- Rank competing projects to allocate a limited budget
 - Select among numerous energy efficiency projects

"Each of these uses similar investment criteria"

- Only complexity/range of calculations & inputs varies
- Methodology remains same (some execution differences)


Study Period and Dates

- LCC computes Present Value of alternatives over a period of time using discounting methods
- Hence, important to consider alternatives using same period of time or study.
 - e.g., if want to compare over 10 years, need to compute costs for each alternative over a 10 year span
 - This implies alternatives with "lifespan < study" period must include replacement costs (if "lifespan > study", salvage)

Study Period and Dates (Cont'd)

- Base date: common starting point for all alternatives
 - Must be the same date for each alternative!!!!
 - Must project all cash flows to base date
- Service date: time that construction is expected to be completed/start operation (occupancy date)

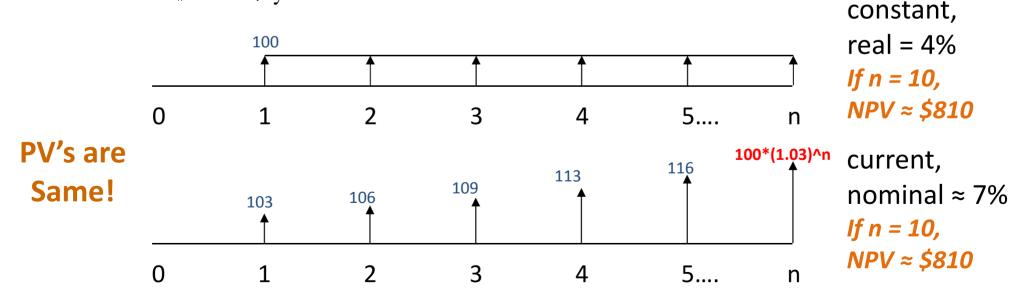
- Generally assume service date is same across alternatives

Discount Rates and Inflation

- Discount rate accounts for time value of money
 - Real interest: Rate after inflation
 - Nominal interest: Rate inclusive of inflation
 - Nominal \approx Real + Inflation rate (approximate)

*Real interest rate 4%: inflation 이 있어도 4%의 이자

• Cash flows


- Constant dollars: No inflation, dollars expected to be same as base date (time=0, thinking from Present)
 e.g., \$100 O&M costs: In 2030, actually pay \$100+α
- Current dollars: Account for inflation in each period
 e.g., \$1,000 home mortgage: In 2030, actually still pay \$1,000

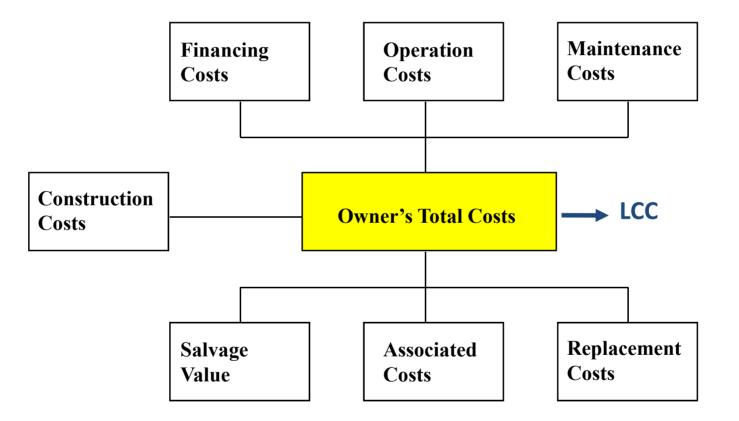
*O&M Cost of \$400: 현재로 봤을 때 400불이란 얘기지 실제로 그때가 되면 더 낼 수가 있다. Home Mortgage of \$400: 그때가 되도 400불을 낸다. (inflation 이미 고려)

Discount Rates and Inflation

• Use

- Real interest rate with constant dollars
- Nominal interest rate with current dollars
- Example: real rate = 4%, inflation rate = 3%, annual income of \$100k/yr in constant dollars

Discount Rates and Inflation (Cont'd)

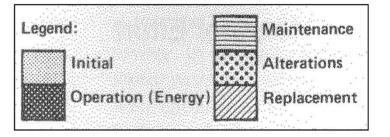

- Federal Government has standard tables for accepted discount factors and inflation
- Discount rates for capital projects
 - OMB Circular A-94
 - Includes nominal and real rates
- Expected inflation rates for energy costs
 - NISTIR 85-3273 (DOE energy indices/discount factors)
 - Includes regional adjustments

LCC Methodology – Major Steps

- 1. Define problem and state objectives
- 2. Identify feasible alternatives
- 3. Establish common assumptions and parameters
- 4. Estimate costs and times for each alternative
- 5. Project future costs to present value (NPV)
- 6. Compute and compare LCC for each alternative
- 7. Compute supplementary measures if necessary for project prioritization
- 8. Assess uncertainty of input data
- 9. Consider affects for which costs or benefits can't be estimated
- 10. Advise on the decision

- Construction
 - Estimates
- Finance
 - Need to include time value of payment flows if project is financed
- **O**&M
 - Annual O&M costs
 - History for current equipment
 - Special calculations for equipment to be replaced
 - Energy costs indices

- Salvage value
 - If end of life, what is disposition value: projected sale value or disposal expense
 - If life remains at end of study period, must compute residual value
 - Accepted rule: linearly pro-rate initial cost across lifespan Ex: \$500k initial cost, 50yr lifespan, residual=\$10k/yr
 If 30yr study period, residual value = \$10k/yr × (50-30yrs) = \$200k (note: this is constant dollars)



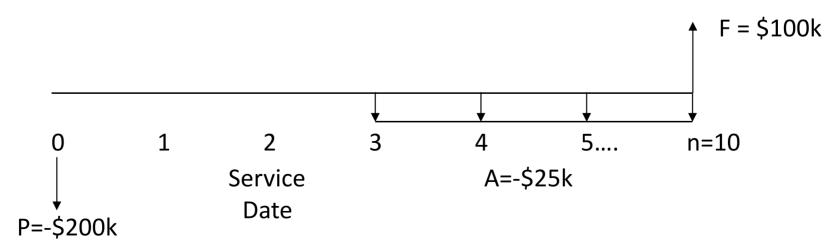
- 1. All categories can be taken into consideration
- 2. Scope of decision can limit which categories are relevant (e.g., replace HVAC vs new building)

Typical life-cycle costs per GSF

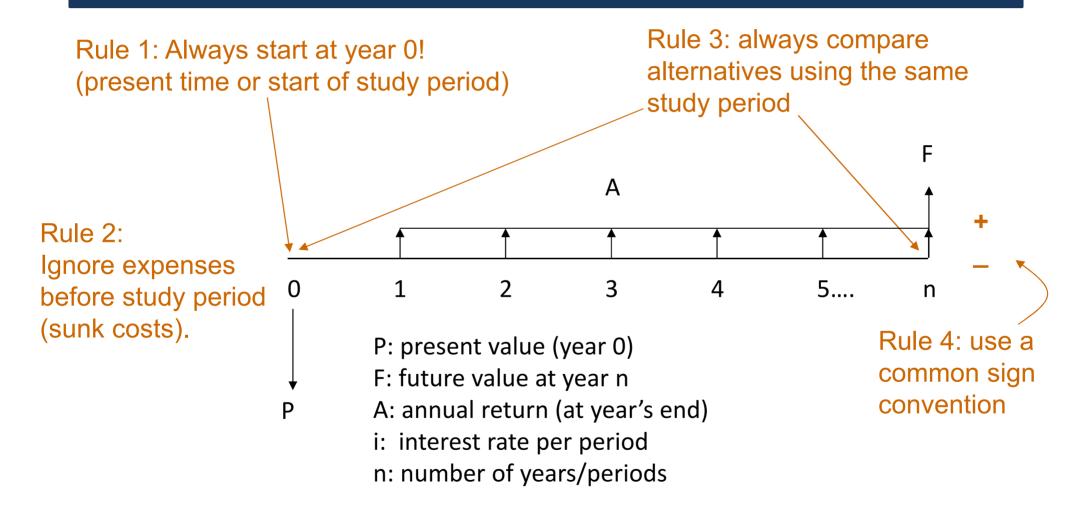
01 Foundation		
02 Substructure		
03 Superstructure		
04 Exterior Closure		
05 Roofing		
06 Interior Const.		
07 Conveying System		**************************************
08 Mechanical: Plumbing		
HVAC		
Fire Protection		
09 Electrical		
11 Equipment		
12 Sitework		
Note: 10% Discount Ra Figure 9-2	te & 25 Year Life Cycle Period Used	

*GSF: Gross Square Feet

- Capital replacement: Future value of replacements required within study period
 - Estimated by present dollar value of replacement cost at base date
- Other costs
 - Revenues, one-time expenses, rebates, etc.


Life Cycle Cost Analysis General Purpose Work Sheet			Alternative 1 Describe:		Alternative 2 Describe:		Alternative 3 Describe:		Alternative 4 Describe:	
Study Title: Date: Date: Discount Rate: Date: Life Cycle (Years): Present Time:		Estimated Costs	Present Worth	Estimated Costs	Present Worth	Estimated Costs	Present Worth	Estimated Costs	Present Worth	
Initial/Collateral Costs	Initial/Collateral Costs A B C D									
	E F Total Initial/Collateral Costs Initial Cost PW Difference									
Replacement/Salvage Costs	Replacement/Salvage (Single Expediture) A. B. C. D. E. F. Total Replacement/Salvage Costs	Veer PW Factor								
Annual Costs	Annual Costs A. B. C. D. E. F. Total Annual Costs	DH. Escal. PHA Rate W/Escal.								
207	Total Life Cycle Costs (Present Worth Life Cycle Cost PW Difference									
	Discounted Payback Total Life Cycle Costs (Annualized)		Per Year		Years Per Year		Years Per Year		Years Per Year	

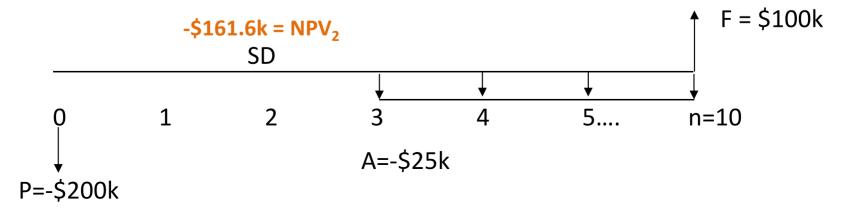
LCC Methodology – Major Steps


- 1. Define problem and state objectives
- 2. Identify feasible alternatives
- 3. Establish common assumptions and parameters
- 4. Estimate costs and times for each alternative
- 5. Project future costs to present value (NPV)
- 6. Compute and compare LCC for each alternative
- 7. Compute supplementary measures if necessary for project prioritization
- 8. Assess uncertainty of input data
- 9. Consider affects for which costs or benefits can't be estimated
- 10. Advise on the decision

Step 5 – Compute NPV

- Construct a cash flow diagram for each alternative
 - Record annual costs, one-time expenses, etc.
 - Typically use constant dollars
 - Ex: pay \$200k now, construction over 2 years (service date = 2), annual expenses from service date are \$25k/yr, 10 year study, residual value=\$100k, real rate = 5%

Reminder: Cash Flow Mapping


If you can get the cash flow diagram straight, you have the problem mostly solved!

Step 5 - Computing NPV

- Example (cont'd)
 - Compute NPV for each aspect of cash flow
 - NPV of investment = -\$200k
 - NPV of Residual = $100k \times (P | F, n=10, i=5\%) = 61.4k$
 - NPV of annual costs starting at Service date
 First, find NPV assuming Service Date is year 0:

 $NPV_2 = -\$25k \times (P | A, n=8, i=5\%) = -\$161.6k$

Second, compute NPV of NPV₂ = - $161.6k \times (P | F, n=2, i=5) = -146.6k$

LCC Methodology – Major Steps

- 6. Compute and compare LCC for each alternative
- 7. Compute supplementary measures if necessary for project prioritization
- 8. Assess uncertainty of input data
- Consider affects for which costs or benefits can't be estimated
- 10. Advise on the decision

From NIST Handbook 135

Step 6 – Compute LCC and Compare

- From Step 5, sum NPV of individual cost elements for each alternative
 - Sum of costs = LCC for alternative
- For previous example:
 - LCC = -\$200k + -\$146.6k + \$61.4k = -\$285.2k
 - Cash inflows positive
 - Cash outflows negative
 - Watch your signs and be consistent!!!!

Step 7 – Supplementary Measures

• In general, LCC allows you to calculate the best choice among mutually exclusive alternatives for a single decision

- e.g., which HVAC system?

- But what about a program of possible (independent) investments with a limited budget?
 - Which to prioritize? How do I allocate the budget?

Do projects having higher SIR (Savings/Investment ratio)

Step 8 – Uncertainty Assessment

- Future predictions are uncertain by nature
 - Interest rates, costs, timing of replacements, etc.
- Need to make an assessment of how variation in costs makes a difference to NPV
 - In general, the further out in time, the less important something is (discounting at work)
 - Most important assessment is uncertainty in costs in near term and annual costs
 - Change in NPV due to variation in interest rates also important

Step 8 – Uncertainty Assessment

- Sensitivity Analysis:
 - Vary key costs, re-compute NPV
 - Generally "High-Expected-Low" is good to get a range
 - Vary costs one at a time to build picture of most influential
 - Cost that have great influence on NPV bear further study to increase certainty

Step 8 – Uncertainty Assessment

- Breakeven analysis:
 - Compute min/max values
 - Minimum value of a savings for project to breakeven
 - Maximum value of initial investment for project to breakeven
 - Useful to determine at what threshold value(s) project becomes uneconomic
 - Compare min/max to expectations about costs

Step 9 – Assess Non-Monetary Value

- Some costs/benefits cannot easily be quantified
 - Value of a quieter HVAC system
 - Value of north facing windows with a view
- These should be identified and presented to decision makers along with cost assessment
 - e.g., energy efficient HVAC has LCC savings of \$235,000, but is significantly noisier (>3db)

Step 9 – Assess Non-Monetary Value

• Generally, multiple considerations attach to multiple alternatives

Ambient temp Acoustic privacy Lighting View Base (do nothing) Alternative 1 Alternative 2

- Difficult to make a fair, collective comparison
- Several structured, matrix approaches exist to help rank, value non-monetary considerations
 - Attach benefit value and importance for each consideration to each alternative
 - Make a weighted comparison

Step 10 – Make Recommendations

- Present
 - Alternatives
 - LCC of each alternative with non-monetary benefits/costs
 - Ranking of independent projects (SIRs) (as needed by decision)
- Make a recommendation
 - Alternative 2 costs \$10k more than Alternative 1 but saves \$25k over the base (do-nothing) scenario. Alternative 2 provides a better working environment than Alternative 1 and the base scenario (non-monetary benefits), which we believe outweighs the \$10k difference in cost.

In Class Exercise

The SH 230 highway project east of Austin was awarded based on a life cycle cost analysis. Proposals were made by two consortiums; Lonestar and Four Rivers. Lonestar proposed to build the four lane divided highway east of Austin using continuously reinforced concrete pavement for a construction cost of \$226,666,000/year for six years, and for *a maintenance cost of \$4,300,000/year for the following 29* years. Four Rivers proposed to build the highway using asphalt concrete pavement for *\$262,000,000/year for five years* and for *a* maintenance cost of \$10,600,000/year for the following 30 years. TxDOT added a cost of \$1,733,000/year in the last 15 years onto the Four Rivers proposal for a more realistic estimate that included milling and overlay expenses. At a 6% interest, which proposal should TxDOT have chosen? Use NPV analysis and a 35 year analysis period.

In Class Exercise

• Lonestar

In Class Exercise

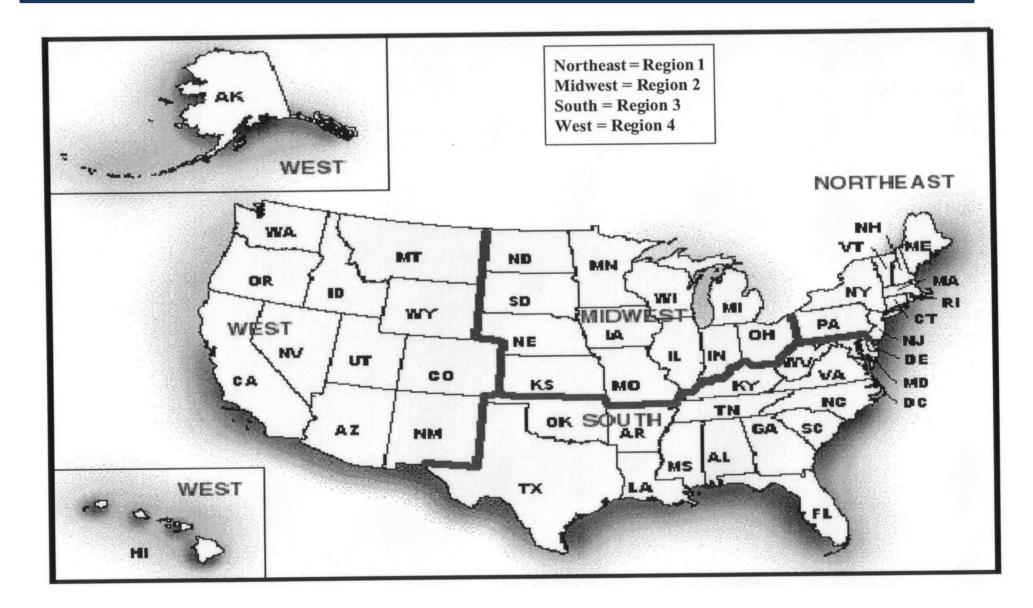
• Four River

Energy Prices

- Energy savings are a key area of LCC practice
 - Annual savings/expenditures
 - Energy costs can be large share of operating costs
 - 15% of total lifecycle cost, higher portion of operating costs
- Lighting/electrical, HVAC, & water most common replacements and upgrades
 - Direct users of energy (e.g., air handling units)
 - Indirect energy wasters (e.g., windows)

Building Energy Costs

		Energy Costs: (Percent of Annual Cost)										
U	niformat Categories		5%	10%	15%	20%	25%	30%	35%	40%	45%	50
01	1 Foundation	.2%										
02	2 Substructure	.2%										
03	3 Superstructure	.1%										
04	Exterior Closure			9.5%		<						
05	Roofing	1.0%										
06	Interior Const.				14.5%							
07	Conveying System		5.0%									
	Mechanical: Plumbing		5.0%									
	HVAC		5.4%	%								
	Fire Protection	.1%										
	Electrical Lighting											48%
)	Power			8%								
1 8	Equipment	1.0%										
2 5	Sitework	2.0%										


Energy Price Changes

- Energy costs may have changes in real rates aside from inflation
 - Contradicts constant dollar assumptions
- Accounting for energy price changes
 - Use current dollar valuations
 - Use a discount factor

Energy Price Indices/Factors

- US Government publishes energy price indices and discount factor tables
 - NISTIR 85-3273 (DOE rates)
 - Lookup FEMP UPV* factor
 - Federal Energy Management Program Uniform Present Value Factor
 - Multiply FEMP UPV* by present annual expenditure rate to get discounted NPV (this NPV includes real price adjustments)
 - FEMP UPV* determined by:
 - Region, fuel type, rate type, discount rate, study period

DOE Energy Regions

FEMP UPV* Example

- \$20,000/yr annual energy cost
 - Get costs from current data, utilities, manufacturers...
- Data for analysis using Table
 - Federal commercial office building
 - 20 year span
 - Natural gas
 - Connecticut building: Region=1
 - Discount: std DOE value
 - FEMP UPV* = 17.09
- NPV = $$20,000 \times 17.09 = $341,800$

FEMP UPV* Table

Table Ba-1. FEMP UPV* Discount Factors adjusted for fuel price escalation, by end-use sector and fuel type.

Discount rate = 3.0 % (DOE)

Census Region 1 (Connecticut, Maine, Massachusetts, New Hampshire,

New Jersey, New York, Pennsylvania, Rhode Island, Vermont)

	RESIDENTIAL					COMMERCIAL						INDUSTRIAL					
N	Elec	Dist	LPG	NtGas	Elec	Dist	Resid	NtGas	Coal	Ele	c Dis	t Resi	d NtGas	Coal	Gasln	N	
-																-	
1	0.91	0.97	0.96	1.01	0.87	0.98	0.97	1.04	0.95	0.8	3 1.0	0 0.98	1.12	0.96	1.01	1	
2	1.83	1.96	1.92	2.03	1.74	1.99	2.01	2.10	1.88	1.6	5 2.0	3 2.02	2.32	1.89	2.04	2	
3	2.76	2.98	2.90	2.99	2.60	3.03	3.14	3.14	2.77	2.4	8 3.0	9 3.14	3.49	2.78	3.11	3	
4	3.66	4.00	3.87	3.92	3.42	4.09	4.31	4.12	3.64	3.2	5 4.1	8 4.30	4.61	3.65	4.20	4	
5	4.53	5.02	4.85	4.82	4.21	5.15	5.50	5.09	4.48	4.0	0 5.2	7 5.47	5.70	4.49	5.28	5	
6	5.38	6.05	5.81	5.69	4.99	6.23	6.70	6.02	5.30	4.7	4 6.3	7 6.65	6.75	5.29	6.36	6	
7	6.22	7.09	6.76	6.54	5.76	7.31	7.90	6.93	6.08	5.4	7 7.4	8 7.84	7.78	6.08	7.42	7	
8	7.04	8.12	7.70	7.37	6.52	8.39	9.12	7.81	6.84	6.1	8 8.5	9 9.03	8.77	6.84	8.47	8	
9	7.83	9.14	8.62	8.18	7.25	9.47	10.35	8.68	7.57	6.8	8 9.6	9 10.23	9.74	7.57	9.51	9	
10	8.60	10.15	9.52	8.97	7.97	10.53	11.57	9.52	8.28	7.5	6 10.7	8 11.42	10.69	8.28	10.53	10	
11	9.35	11.14	10.40	9.74	8.68	11.57	12.77	10.34	8.96	8.2	3 11.8	5 12.59	11.62	8.96	11.53	11	
12	10.09	12.11	11.26	10.50	9.37	12.60	13.95	11.15	9.62	8.8	9 12.9	1 13.74	12.54	9.63	12.51	12	
13	10.81	13.06	12.10	11.25	10.05	13.60	15.11	11.95	10.27	9.5	4 13.9	4 14.87	13.44	10.28	13.48	13	
14	11.51	13.98	12.93	11.97	10.72	14.58	16.25	12.73	10.90	10.1	8 14.9	5 15.99	14.32	10.91	14.42	14	
15	12.19	14.90	13.73	12.68	11.37	15.55	17.38	13.48	11.51	10.8	0 15.9	4 17.09	15.18	11.51	15.34	15	
16	12.85	15.79	14.52	13.37	11.99	16.50	18.48	14.22	12.10	11.4	1 16.9	1 18.16	16.03	12.11	16.24	16	
17	13.49	16.67	15.29	14.05	12.61	17.43	19.56	14.95	12.68	12.0	0 17.8	7 19.21	16.86	12.68	17.13	17	
18	14.12	17.53	16.04	14.72	13.21	18.34	20.62	15.67	13.24	12.5	9 18.8	0 20.24	17.69	13.24	18.00	18	
19	14.74	18.37	16.78	15.38	13.81	19.24	21.67	16.38	13.78	13.1	7 19.7	3 21.25	18.51	13.79	18.85	19	
20	15.34	19.20	17.50	16.04	14.40	20.12	22.69	17.09	14.32	13.7	5 20.6	3 22.25	19.33	14.32	19.69	20	
21	15.94	20.02	18.20	16.69	14.98	20.99	23.71	17.79	14.84	14.3	2 21.5	3 23.24	20.16	14.83	20.51	21	
22	16.52	20.82	18.89	17.33	15.56	21.85	24.72	18.48	15.34	14.8	9 22.4	1 24.21	20.97	15.34	21.31	22	
23	17.09	21.62	19.57	17.96	16.13	22.70	25.70	19.16	15.83	15.4	4 23.2	7 25.16	21.77	15.82	22.10	23	
24	17.64	22.40	20.24	18.57	16.68	23.53	26.67	19.82	16.31	15.9	9 24.1	3 26.11	22.56	16.30	22.88	24	
25	18.19	23.16	20.89	19.17	17.22	24.35	27.62	20.48	16.78	16.5	3 24.9	7 27.03	23.33	16.77	23.64	25	
26	18.72	23.92	21.53	19.76	17.76	25.16	28.56	21.11	17.23	17.0	5 25.8	0 27.94	24.09	17.22	24.39	26	
27	19.23	24.66	22.16	20.34	18.28	25.96	29.49	21.74	17.67	17.5	7 26.6	1 28.84	24.84	17.66	25.13	27	
28	19.74	25.39	22.77	20.91	18.78	26.74	30.41	22.36	18.11	18.0	7 27.4	1 29.72	25.58	18.09	25.85	28	
29	20.23	26.10	23.37	21.47	19.28	27.50	31.32	22.97	18.52	18.5	6 28.2	0 30.60	26.31	18.50	26.55	29	
30	20.71	26.80	23.96	22.01	19.76	28.26	32.21	23.56	18.93	19.0	4 28.9	7 31.46	27.03	18.91	27.25	30	

LCC: Optimal Efficiency Level

- Definition: Most cost effective *Performance Level* for a facility
 - Differs from other LCC analysis
 - Not LCC for alternative with potentially different performance
 - Rather, least costly parameter for a given level of performance
 - Examples (energy efficiency):

*R-value: Measure of thermal resistance (insulation)

- Level of insulation in roof and walls (R-values)
- Efficiency of a furnace
- Collector area for a solar heating system

Calculating Efficiency Level

- General assumption: increasing efficiency increases initial investment
 - If not, no tradeoffs
- Steps:
 - Define parameters and range of possible alternatives
 - Estimate energy usage (or relevant parameter) for each alternative
 - Calculate LCC for each alternative
 - Select lowest LCC
 - Interpolate as needed

Efficiency Example

- Find R-Value on House Attic Insulation
 - Service date: Jan 13
 - Life: 25 yrs
 - Replacement schedule: N/A
 - Residual value: None
 - Electricity price: \$0.08/kWh
 - Location: Ohio (DOE Region 2)
 - Rate type: Residential
 - FEMP UPV* = 17.57

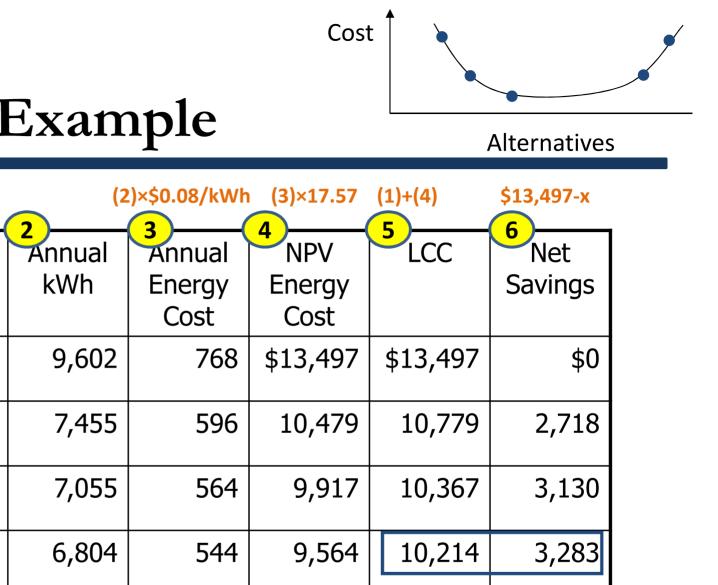

Efficiency Example

Table Ba-2. FEMP UPV* Discount Factors adjusted for fuel price escalation, by end-use sector and fuel type.

Discount Rate = 3.0 % (DOE)

Census Region 2 (Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, <u>Ohio</u>, South Dakota, Wisconsin)

	↓	RESIDEN	TIAL			COMMERCIAL						INDUSTRIAL					
N	Elec	Dist	LPG	NtGas	Elec	Dist	Resid	NtGas	Coal	Elec	Dis	st	Resid	NtGas	Coal	Gasln	N
-																	-
1	0.93	0.95	0.97	1.02	0.91	0.97	1.06	1.05	0.98	0.1	37 0.	.98	1.08	1.17	0.96	1.00	1
2	1.84	1.93	1.95	2.03	1.79	1.96	2.15	2.12	1.94	1.	70 2.	.00	2.17	2.42	1.90	2.02	2
3	2.74	2.93	2.96	3.00	2.64	3.00	3.26	3.17	2.87	2.	51 3.	.06	3.30	3.65	2.81	3.08	3
4	3.62	3.95	3.98	3.92	3.48	4.05	4.40	4.17	3.78	3.1	29 4	.13	4.46	4.84	3.70	4.18	4
5	4.48	4.96	4.99	4.82	4.29	5.10	5.53	5.16	4.66	4.0	04 5	.21	5.60	6.00	4.58	5.26	5
6	5.32	5.99	6.01	5.71	5.09	6.18	6.66	6.12	5.52	4.	79 6.	.31	6.75	7.15	5.44	6.33	6
7	6.14	7.03	7.02	6.57	5.87	7.26	7.78	7.07	6.36	5.	52 7	.41	7.88	8.26	6.28	7.39	7
8	6.93	8.07	8.01	7.42	6.62	8.34	8.89	7.98	7.16	6.3	23 8	.51	9.01	9.35	7.09	8.44	8
9	7.70	9.09	9.00	8.24	7.36	9.42	9.98	8.88	7.94	6.	92 9.	.61	10.12	10.41	7.88	9.48	9
10	8.45	10.11	9.96	9.05	8.08	10.48	11.04	9.76	8.69	7.	50 10	.69	11.19	11.45	8.64	10.49	10
11	9.18	11.10	10.90	9.84	8.79	11.52	12.09	10.62	9.41	8.3	26 11	.75	12.25	12.47	9.38	11.49	11
12	9.89	12.08	11.83	10.62	9.48	12.55	13.11	11.48	10.11	8.	91 12	.80	13.29	13.49	10.09	12.47	12
13	10.58	13.03	12.73	11.39	10.16	13.55	14.11	12.31	10.79	9.	55 13	.82	14.31	14.48	10.78	13.43	13
14	11.26	13.97	13.62	12.13	10.82	14.54	15.09	13.12	11.45	10.3	14	.82	15.31	15.43	11.44	14.37	14
15	11.91	14.89	14.49	12.85	11.47	15.50	16.06	13.91	12.09	10.	78 15	.80	16.29	16.36	12.09	15.29	15
16	12.55	15.79	15.34	13.56	12.10	16.45	17.00	14.68	12.71	11.3	38 16.	.77	17.24	17.28	12.72	16.19	16
17	13.16	16.68	16.17	14.26	12.71	17.38	17.92	15.44	13.31	11.9	95 17	.71	18.18	18.19	13.32	17.08	17
18	13.76	17.55	16.98	14.95	13.31	18.30	18.82	16.20	13.89	12.	52 18	.64	19.09	19.09	13.92	17.95	18
19	14.34	18.40	17.78	15.64	13.89	19.20	19.71	16.95	14.46	13.0	08 19	.56	19.99	20.00	14.50	18.81	19
20	14.92	19.24	18.57	16.32	14.47	20.09	20.58	17.70	15.02	13.	52 20	.46	20.88	20.90	15.06	19.64	20
21	15.47	20.07	19.34	17.00	15.03	20.96	21.45	18.45	15.56	14.3	16 21	.35	21.76	21.81	15.61	20.46	21
22	16.02	20.89	20.09	17.67	15.58	21.82	22.29	19.19	16.08	14.0	59 22	.22	22.62	22.71	16.14	21.27	22
23	16.55	21.69	20.83	18.33	16.12	22.67	23.13	19.91	16.59	15.3	21 23	.08	23.47	23.59	16.66	22.06	23
24	17.07	22.48	21.56	18.98	16.65	23.51	23.95	20.62	17.09	15.	12 23	.93	24.30	24.46	17.17	22.84	24
25	17.57	23.26	22.28	19.61	17.16	24.34	24.76	21.32	17.58	16.3	22 24	.77	25.13	25.32	17.66	23.60	25
26	18.07	24.03	22.99	20.24	17.67	25.15	25.55	22.01	18.05	16.	1 25	.60	25.93	26.17	18.15	24.36	26
27	18.55	24.78	23.68	20.85	18.16	25.95	26.34	22.69	18.52	17.	19 26	.41	26.73	27.01	18.62	25.09	27
28	19.02	25.52	24.35	21.45	18.65	26.74	27.11	23.36	18.96	17.	56 27	.21	27.52	27.83	19.07	25.82	28
29	19.47	26.25	25.02	22.05	19.12	27.51	27.87	24.01	19.40	18.3	2 27	.99	28.29	28.65	19.52	26.53	29
30	19.92	26.97	25.67	22.63	19.59	28.27	28.62	24.66	19.83	18.	57 28	.76	29.05	29.46	19.96	27.22	30

Efficiency Example

Initial

R-value

Cost **R-0** \$0 R-11 300 450 R-19 R-30 650 **R-38** 800 6,703 536 9,422 10,222 3,275 R-49 1,000 6,628 9,316 10,316 3,181 530

R-30 is best option (lowest LCC-using positive number convention)

Project Financing

- Many projects are financed
 - Bonds, mortgages, etc.
- Need to include NPV of financing in LCC
- Why is this tricky?
 - Value of annual payments in CURRENT, not constant dollars
 - EX: Mortgage payment of \$12,000/yr, 30yr period. The payment does not grow with inflation!!!

Reminder: Discount Rates and Inflation

- Discount rate accounts for time value of money
 - Real interest: Rate after inflation
 - Nominal interest: Rate inclusive of inflation
 - Nominal \approx Real + Inflation rate (approximate)

*Real interest rate 4%: inflation 이 있어도 4%의 이자

• Cash flows

- Constant dollars: No inflation, dollars expected to be same as base date (time=0, thinking from Present)
 e.g., \$100 O&M costs: In 2030, actually pay \$100+α
- Current dollars: Account for inflation in each period
 e.g., \$1,000 home mortgage: In 2030, actually still pay \$1,000

*O&M Cost of \$400: 현재로 봤을 때 400불이란 얘기지 실제로 그때가 되면 더 낼 수가 있다. Home Mortgage of \$400: 그때가 되도 400불을 낸다. (inflation 이미 고려)

Financing Example

- Project Financing Data
 - Annual O&M costs \$2,000/yr
 - Mortgage payment: \$12,000/yr
 - **-** 30 years
 - Nominal rate: 7%
 - Real rate: 4%