

High entropy alloy

Current Status of Structural Materials

2014-30214

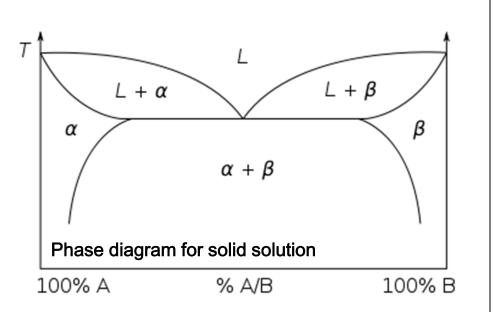
Jinyeon Kim

High entropy alloy : definition

High entropy alloy containing at least five principal elements, each having the atomic percentage between 5 % and 35 %.

$$\Delta S_{conf} = -klnw = -R\left(\frac{1}{n}ln\frac{1}{n} + \frac{1}{n}ln\frac{1}{n} + \dots + \frac{1}{n}ln\frac{1}{n}\right) = -Rln\frac{1}{n} = Rln(n)$$

Table I	Table I. Configurational entropies of equimolar alloys with constituent elements up to 13												
n	1	2	3	4	5	6	7	8	9	10	11	12	13
ΔS_{conf}	0	0.69R	1.1R	1.39R	1.61R	1.79R	1.95R	2.08R	2.2R	2.3R	2.4R	2.49R	2.57R

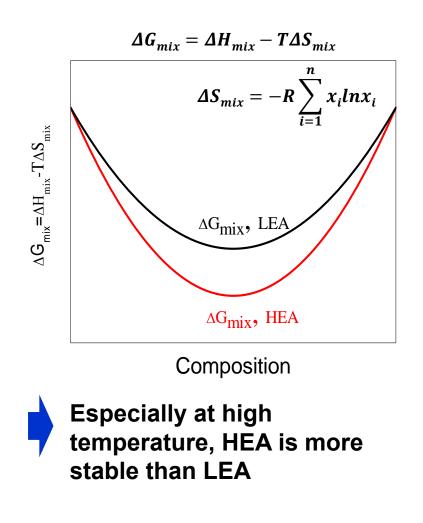

Conventional alloy system

Ex) 304 steel - Fe₇₄Cr₁₈Ni₈

Table II. Configurational	entropies calculated for
typical traditional alloys	at their liquid state or
random state	

Systems	Alloys	$\Delta S_{ m conf}$ at liquid state			
Low-alloy steel	4340	0.22R low			
Stainless steel	304	0.96R low			
	316	1.15R medium			
High-speed steel	M2	0.73R low			
Mg alloy	AZ91D	0.35R low			
Al alloy	2024	0.29R low			
•	7075	0.43R low			
Cu alloy	7-3 brass	0.61R low			
Ni-base superalloy	Inconel 718	1.31R medium			
	Hastelloy X	1.37R medium			
Co-base superalloy	•	1.13R medium			
BMG	Cu47Zr11Ti34Ni8	1.17R medium			
	$Zr_{53}Ti_5Cu_{16}Ni_{10}Al_{16}$	1.30R medium			

Unique properties of high entropy alloy



Solid solution

: relatively stabilized by significantly high entropy of mixing, especially at high temperature

Excellent high temperature property

Previous works for high entropy alloy system

Group Period	1	2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 H 1.008										2 He 4.0026								
2	3 Li 6.94	4 Be 9.0122	2	$ \rightarrow \text{ ennanced mechanical property} $ 2) Refractory metals $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$															
3	11 Na 22.990	12 Mg 24.305		: high temperature property 13 14 15 16 17 18 AI Si 26.982 28.085 30.974 32.06 35.45 39.948										Ar 39.948					
4	19 K 39.098	20 Ca 40.078		21 Sc 44.956	22 Ti 47.867	23 V 50.942	24 Cr 51.996	25 Mn 54.938	26 Fe 55.845	27 Co 58.933	28 Ni 58.693	29 Cu 63.546	30 Zn 65.38	31 Ga 69.723	32 Ge 72.63	33 As 74.922	34 Se 78.96	35 Br 79.904	36 Kr 83.798
5	37 Rb 85.468	38 Sr 87.62		39 Y 88.906	40 Zr 91.224	41 Nb 92.906	42 Mo 95.96	43 TC [97.91]	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 126.90	54 Xe 131.29
6	55 Cs 132.91	56 Ba 137.33	*	71 Lu 174.97	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 OS 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 TI 204.38	82 Pb 207.2	83 Bi 208.98	84 Po [208.98]	85 At [209.99]	86 Rn [222.02]
7	87 Fr [223.02]	88 Ra [226.03]	**	103 Lr [262.11]	104 Rf [265.12]	105 Db [268.13]	106 Sg [271.13]	107 Bh [270]	108 Hs [277.15]	109 Mt [276.15]	110 Ds [281.16]	111 Rg [280.16]	112 Cn [285.17]	113 Uut [284.18]	114 FI [289.19]	115 Uup [288.19]	116 Lv [293]	117 Uus [294]	118 Uuo [294]
*Lanthanoids		*	57 La 138.91	58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm [144.91]	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25	65 Tb 158.93	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.05			
**Actinoids		**	89 Ac [227.03]	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np [237.05]	94 Pu [244.06]	95 Am [243.06]	96 Cm [247.07]	97 Bk [247.07]	98 Cf [251.08]	99 Es [252.08]	100 Fm [257.10]	101 Md [258.10]	102 No [259.10]			

- (1) Thermodynamic : high entropy effect
- (2) Kinetics : sluggish diffusion effect
- (3) Structure : severe lattice distortion effect
- (4) Property : cocktail effect

(1) Thermodynamic : high entropy effect

: interfere with complex phase formation

Competing state :

- 1) Elemental phase : terminal solid solution based on one metal element
- 2) Intermetallic compound : stoichiometric compounds having specific superlattices
- 3) Solid solution : the phase with the complete mixing of all elements or

with a significant mixing of constituent elements

in the structure of BCC, FCC, and HCP

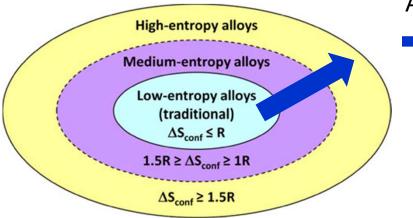
Possible states	Elemental phases	Compounds	Solid solutions
$\Delta H_{ m mix} - T\Delta S_{ m mix}$	~ 0 ~ 0	Large negative ~ 0	Medium negative $-RT\ln(n)$
$\Delta G_{\rm mix}$	~ 0	Large negative	Large negative

Table III. Comparisons of ΔH_{mix} , ΔS_{mix} , and ΔG_{mix} between elemental phases, compounds, and solid solutions

Strain energy from atomic size difference is not included in ΔH_{mix} .

(1) Thermodynamic : high entropy effect

: interfere with complex phase formation

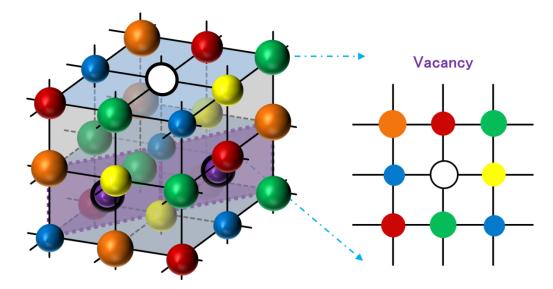

Exceptional case for Gibbs phase rule (F=C-P+1)

- conventional alloy : maximum number of phase possible to form

P = C+1

- high entropy alloy : single phase solid solution is dominant

(Gibbs phase rule)

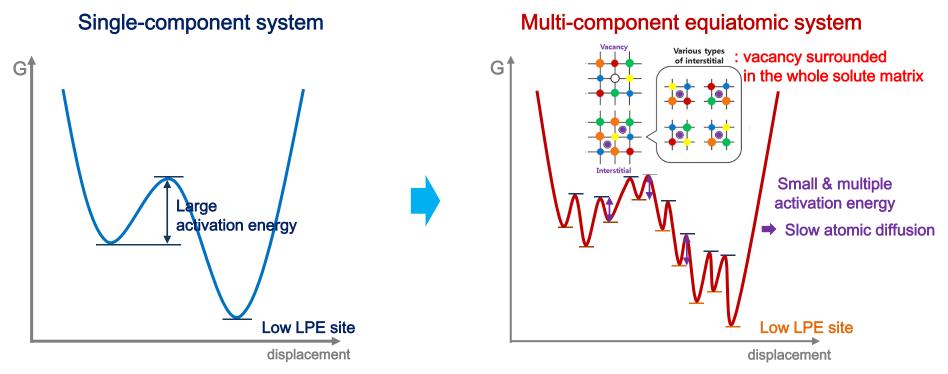

A higher number of elements

- Random state
 - 1) to have the mixing enthalpy closer to that of the completely ordered state
 - to become even more competitive with the ordered state under the aid of its high mixing entropy

(2) Kinetics : sluggish diffusion effect

: slow down phase transformation

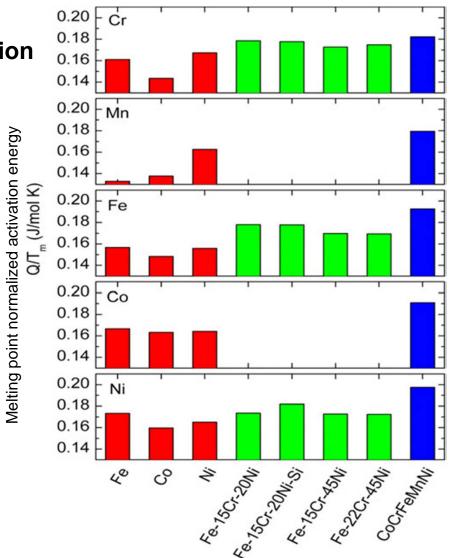
Formation of new phases requires cooperative diffusion of many different kinds of atoms to accomplish the partitioning of composition in HEAs


A vacancy in the whole-solute matrix is surrounded and competed by different element atoms during diffusion

 \rightarrow slow diffusion & higher activation energy

(larger fluctuation of lattice potential energy between lattice sites)

(2) Kinetics : sluggish diffusion effect



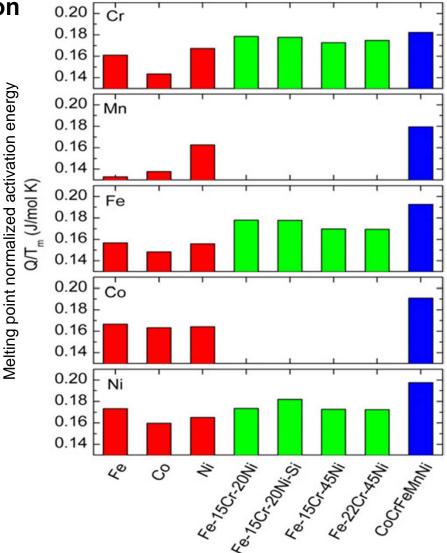
The abundant low lattice potential energy (LPE) sites can serve as traps and hinder atomic diffusion, leading to the sluggish diffusion effect

(2) Kinetics : sluggish diffusion effect : slow down phase transformation

Experiment to verify this : a near ideal solution system of Co-Cr-Fe-Mn-Ni with stable single fcc solid solution to make diffusion couples

 $(Q/T_m)HEA \gg (Q/T_m)Fe-Cr-Ni(-Si) >$ $(Q/T_m)pure metal$

(2) Kinetics : sluggish diffusion effect


: slow down phase transformation

Easy to get

- 1) Supersaturated state
- 2) Fine precipitates,
- 3) Increased recrystallization temperature
- 4) Slower grain growth
- 5) Reduced particle coarsening rate
- 6) Increased creep resistance

Microstructure and property control for better performance

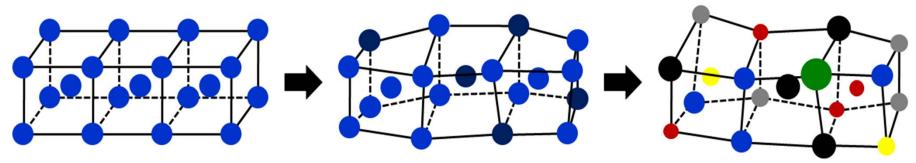
(3) Structure : severe lattice distortion effect

: alter properties to an extent

Multi-element matrix of each solid solution phase in HEAs

: whole-solute matrix

Every atom is surrounded by different kinds of atoms and thus suffers lattice strain and stress


- 1) Atomic size difference
- 2) Different bonding energy
- 3) Different crystal structure

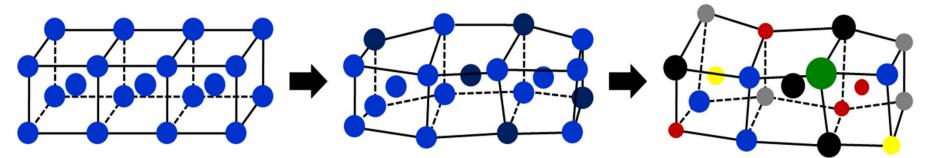
non-symmetrical bindings & electronic structure

higher lattice distortion

(3) Structure : severe lattice distortion effect

: alter properties to an extent

Yong Zhang et al., Adv. Eng. Mat. P534-538, 2008

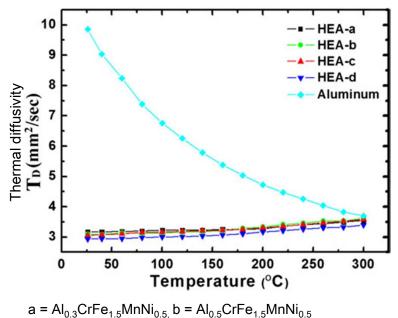

Lattice distortion

- 1) Affects properties
 - Large solution hardening in the heavily distorted lattice
 - Hardness and strength effectively increase

Vickers hardenss	Mixture rule [MPa]	HEA [MPa]
NbMoTaW	1,790	4,455
VNbMoTaW	1,557	5,250

(3) Structure : severe lattice distortion effect

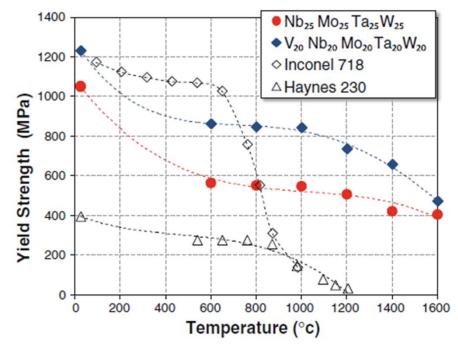
: alter properties to an extent



Yong Zhang et al., Adv. Eng. Mat. P534-538, 2008

Lattice distortion

2) Reduces the thermal effect on properties
 : electrical and thermal conductivity
 significantly decrease (∵ electron and
 phonon scattering)


Lattice distortion caused by thermal vibration of atoms is relatively small

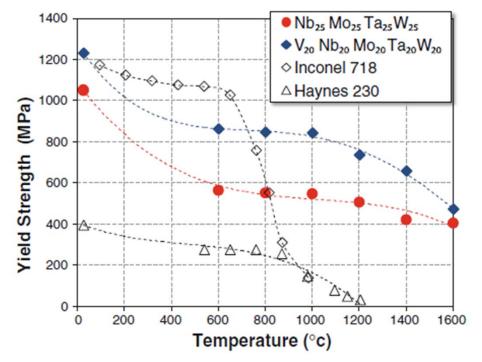
c = Al_{0.3}CrFe_{1.5}MnNi_{0.5}Mo_{0.1} d = Al_{0.5}CrFe_{1.5}MnNi_{0.5}Mo_{0.1}

(4) Property : cocktail effect

: bring excess quantities to the quantities predicted by the mixture rule due to mutual interactions of unlike atoms and severe lattice distortion

At least five major elements are used to enhance the properties of the materials

Property_{total} = Property A + Property B + Property C +····


By the effect of phase shape, phase distribution, phase boundaries, and properties of each phase

each phase : a multi-element solid solution

 \rightarrow atomic scale composites!!

(4) Property : cocktail effect

: bring excess quantities to the quantities predicted by the mixture rule due to mutual interactions of unlike atoms and severe lattice distortion

Inconel 718 : $Ni_{50}Cr_{17}Mo_{2.8}Nb_{4.75}$ Haynes 230 : $Ni_{57}Cr_{22}W_{14}Co_5Mo_2$

- Mechanical property is sustained at even high temperature
- 2) Refractory HEA has an excellent mechanical property compared with Haynes 230

Refractory high entropy alloy

 potential applications at very high temperature

Thanks for your kind attention.