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4. Laminate Theory

Can now manipulate orthotropic plies in plane stress
g = Qg & = Qg
where Q = f(Q.9)

Similarly, have ¢ = S o , etc.

~

But, composites are actually used as laminates

- Many plies (lamina) are arranged at many 6
| % - Carry load, provide stiffness, strength, etc.
Note, other laminates > electronics - circuit boards

Capacitors, active materials (piezoelectrics), thermal barrier

- coats for engine combustors, etc.
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4. Laminate Theory

s Laminate Notation
Need keep track of ply orientation
Use a compact notation

X, X

N

§§ 0 : ply angle

X &\\\ Note : Usually 0° direction corresponds to principal loading direction

X2
TOp +30
Laminates specified as [ £30/ 92 ]SR > ‘30
0
a0 repeat  symm. —_
-30 0
[ £30 / O3 ]T 2 0 Bottom -30
N 0 0 +30
total 0 20
0
30
[ 0 / 30 ]ZS 2 30
0
repeat group 30

Typical Laminates may bear ,

CI‘OSS Ply = [ 02 / 902 ]T 9 0

90
Angle ply - [£¢ I :
Quasi - Isotropic -[ 0/ £45/90],,[ 0/ £60 ],
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4. Laminate Theory

s In-plane stress strain & stiffness
(Symmetric laminates — no bending)

Basic Assumptions :
1. Plies are all glued together
2. Plies are in plane-stress

Op = Oy = 05 = 0
« Strain Because of gluing, ¢;'s all same
0
& X
g’ = g = £,"
laminate each lamina 0
7/ Xy
» Stress _
A Is stress in 0° and 90° same ?
il Not same.
&y )
0 | = Q4 different
90 | = _ . .
o —— = lo find stresses, look at average force in plies.

Define N € force/unit width of laminate

N, = load in X
W
N,  Total load - P (lb)
N=""(b/in)
W
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4. Laminate Theory

Average stress (o0,), = N,/h , h = laminate thickness
h
N, =3 0,0z
2 "W
e _ . . N =Y oMt
= ) In discrete plies, ; k
; = = n = number of plies, k=1, 2, 3, --- top to down
. . n s K
Similarly N, =>'o,®t, , Ny=> 0,
k=1 k=1
will then have
0 n _ _
NX €x Nx = Z [Qu(k)gx +Q11(k)8 +Q11(k)7xy]tk
N — n c 0 k=1
y ' y noo__ n
N 0 =[ Qll(k)tk]gxo + [z le(k)tk]gyo + [Z Q16(k)tk]7xy0
& Exy (=1 = =
L. = An = Ap = Ase
Similarly for N, and N,,
So finally
0
N X All AlZ A16 gx
Ny, r=1A, Ay A gyo
N, . A Ay Agg ' 7/Xyo
=N =A :go
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4. Laminate Theory

Given a symmetric laminate

z NY
Yy ny
i «— Many plies (symmetric)
X NX
Have formed a relation N = A &°
NX
Where, _ N
~ X = Force (Ibs/in)
ny
e 0
g = g = Midplane strains (in/in)
0 (laminate axes)
7xy
Ar Ay Ag
A=A A Ay = Extensional stiffness (Ib/in)
As Ag  As

N
and A, = Z Qij(k)tk
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4. Laminate Theory

Could also write as equivalent moduli

5 = Eeq 6‘0 _hl_

%N

Averaged stress = N/h

S0 ’ (g
Eeqé—— Lbs/in? : modulus

eq eq eq
Ell E12 E16

E® = Elzeq Ezzeq Ezﬁeq <— Like Q matrix for the laminate

eq eq eq
ElG EZG E66

These are not the Engineering constants for the laminate.
Also, have Inverse Relations
g = a N where a = A"
This only applies for symmetric laminates (no bending)

Deal later with unsymm. laminates
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4. Laminate Theory

% Properties of A matrix
N —
A=> QM
k=1

611 = C4Q11 + S4Q22 e
Qy = C%s*(Qyy + - See Handout, also Jones, p.51
611 =

- Remark on A

1. Thickness (area) weight stiffness Q;
2. Independent of stacking order

3. Balanced laminates
_ “a-#forevery 0
Q. Qn,, Q,, Qg not sensitive to sign
(c? s% ¢c2,s2,...)
Q.. Q, are affected (c3s,cs3,...) Ay = A, = 0
Balanced laminates are orthotropic.

4. Quasi - isotropic laminate
[0/ £ 60],, [0/ £45/90], < primary
[0/ £ 30/ £60/90]; < Builtup from [0/ £60],
Ay = Ar1s Age = T (Ar1, Ag)
.. Quasi - isotropic have “isotropic” stiffness
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4. Laminate Theory

- Example of using A matrix

P(Ibs)
| N Piw g = M P
L h h hw
zgy:O Ny = 0
Qo0 Ny =0
Test g = A_lN = a N
laminate P

)

gxo = alle +a12Ny +a16ny = allW: a1lhgx
P _

gyo = ay, W= a12th

?/xy0 = aiﬁhgx = O

s Laminate Engineering Constants
Constants we get from mechanical tests on laminates (as for plies)

_ P _ _ o
@ — Measure £° £ o, = —, o, = EL £, < Engineering stiffness or Modulus
x 1 Cy wh
laminate Vi = _gyo /8X0 < Engineering Poisson’s Ratio
Measure gyo
P = 0 _

@ @ o, = _Wh’ 5y = ET &y, & Engineering Transverse stiffness E;

Ty

T O
l/ Measure 7x I 0
Ty = GLT Vxy < Engineering shear stiffness GLT

1%
%
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4. Laminate Theory

% Obtaining Laminate Engineering Constants

For Test @

T N, = P/w = ho,
——h Ny = 0

7 ny = 0

M & = AN = a N

. w 8y
gy =0 For balanced laminate
(If it weren't, €Xy0 =a,N, =%5X0 )
Note E - % - 1 '
&y a;h
M
Y gxo all

If not balanced, would also have 7, (Lekhnitski coefficient)

For Test@
/r Laminate N, = P/w = hg,
Ty rBoetfa(])treedc?.l(t)ting N, =0, NXV =0
—> X e’ =a,N, =a,hc,
g, =a,N, =ayha, B
lp 6‘Xy0=0 if balanced g, = 2 - 1
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4. Laminate Theory

For Test ®
P
- N, = P/w = hEXy
T l o N - o
0o _ _ 0 _ _
g, =N, =0 g, =a,N, =0

0 — ~ 0
£y =a6N = a%ho-Xy ny =0, lgxy =1/a,h

For balanced laminate,

Ay A, O a, a, 0
A = A12 Azz 0|, a = |q, 3dy 0
0 0 A, 0 0 a,
1
Qg =
A66
; _ 1 _ Ags  _ E..
! A h
1

But % * -~ , So E, # E,
A 7 AL n Equivalent
Engineering

When does difference come up ?
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4. Laminate Theory

For w << { case

i Unconstrained
Ny = ny =0
fHw g’ = &,1E,
\L —|> Engineering stiffness
N,

For w >> [ case
" \ Cantsay N, = N,, =0
PP ITTTT ™ & = £° = 0 is a better approximation

y Xy

ARV Then would have

N = Ag

N, = Ag” + 0 + 0
Ny = A12§0

ny = A16‘go

o = - = E,°

—|> Equivalent stiffness
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4. Laminate Theory

<+ Effect of Boundaries

Note also this effect in isotropic materials.
current stiffness there > E* =E/(1-v?)

Because plies are constrained by neighbors, usually more

convenient to work with A (or E*) rather then E,, E,, etc.
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4. Laminate Theory

% Ply Stresses
- Given a laminate description, can find laminate engineering constants for input to plate
and shell problems.
- Given loads P,, P,, P,,, can find N,, N,, N,, and then one gets laminate strains from
&=a-N

- Average laminate stresses =N /h

- Now, want to look at individual stress in kt ply. (to predict failure)

o

£
—— S O
. — o Ply strains ¢, all the same
O O x X
90° 5.2 Ply stresses 5 " all different
0 o (Bar indicates laminate coordinate system)

k
- How do we calculate Q'( )
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4. Laminate Theory

- Note: no bar — want stress in ply coordinate system

- Two paths for getting o®

Path #1

Know

laminate strain
ply strain, ply k, laminate coord.

Also know
—(k) = (k)—(k)

Q':QE,‘ \

ply strain, laminate coord.

ply stress, ply k, laminate coord.
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4. Laminate Theory

Therefore, can calculate stresses in ply

— (k)
ox , etc.

AN

_)NX

N — (k)
NX :ZO-X tk
K=1

(can check out N,)

—® .
Unfortunately, o« ~ isn’t very useful.

L 11

0 =45

i
IR
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4. Laminate Theory

Type of failure
Fiber failure ‘ Matrix failure

/ N

o, 0,

. —(K)
Given ¢, get co¥

by transformation

o) = '|~' ((Tkét(k)

ply / \Iaminate >/ \<aﬁ
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4. Laminate Theory

Also, get ply strain in ply coordinates.
é'(k) — §(k)Q'(k)

So, system we have
a o T
~ ° same _(k) Q _(k) ~0 k (k)
P > N— & — ¢ —>» g — g ——> ¢

~

110p]

Path #2

: —()
Given ¢ ', godirectly to £ by transformation

—(k)
(k) _ 71 (k)
g =T"¢

~

N

Ply coords. laminate coordinates

Then from £®, get o from ply stress - strain equations.

Q.(k) — Q(k)cf(k)
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4. Laminate Theory

So, have another system

d . _ .
P— > N = 5 g =M, 202 S g0 = 500

~
~ ~

So, summarizing what we know so far, we have arrived at,

 In-Plane Classical Laminate Plate Theory (CLPT)

Loads Constraints
N > A > £° Laminate
/
sum \l/
_ — #1 M
o < Q < E Ply in laminate coordinate system
\
transform \l/ transform #2 \l/
o < > Q < > & Ply (ply coordinates system)

1

Laminate properties
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4. Laminate Theory

- Example of In-Plane CLPT

Use previous system to solve a practical problem.

20,000 Ibs
ﬁ\ Tubular compression member
N _
| Assume | short (no buckling)
Material T300/934 Gr/Ep
N
2ll

Ply Engineering Properties

E, =20 Msi, E; =1.4 Msi, v ; =0.29, G; =0.7 Msi
Ply thicknesses: 0.005"(5 mils)
Lay up : [0/+45/90],

Referring to ground scheme, already have Ply Eng’g Consts
(obtained by micromechanics and test)
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4. Laminate Theory

Step #1: Find Q

E

~

v =—v. =0.020
L
E. 20 : :
Q.= = =20.12 Msi <—— not much different from E,
1-v,;v;, 1-0.29(0.02)
le = VLT ET =0.408 Msi
1_VLTVTL
Q,, :L =1.41 Msi approximately E;
1_VLTVTL
20.12 0.408 O
Qi =0, Qx =0, Q=|0.408 141 0 [(Msi)
0 0 0.7

Qg =G, =0.7 Msi
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4. Laminate Theory

Step #2: Compute 6 for each ply
0° plies: Trivial —> Q_=Q

90° plies: Easy — - Reverse 1, 2

141 0408 0
Q, =|0.408 2012 0 |(Msi)
0 o0 0.7

45" Plies: Harder > Use transform formulas
Q11 - C4Q11 + 32sz + ZCZSZ(le + 2Q66)

Note: cos@ =sin@=0.707
{ cos® @ =sin*@ =0.500

Q,, = 0.25(20.12) + 0.25(1.41) + 0.500(0.408 + 2[0.7])
= 6.29 Msi
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4. Laminate Theory

Similarly
Q,, =4.89 Msi

Q16 = ’626 = ’666 =

6.29 487 4.68

Q. =487 629  4.68|(Msi)
468 468 5.8

—45’ Plies: Easy, same as +45 except 616 and Qg

change signs

Note: sin(—6)=-sin() — only s, s°
cos(—€) = cos(#)
6.29 489 4.68

Q.,=/489 629 -4.68|(Msi)
468 -468 5.18
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4. Laminate Theory

Step #3: Assemble A matrix

A — ZN:Q(k)tk
Note: - Thickl;\:elrss all the same
- order doesn't matter here
- Symmetric § > symmetric A
- Also, 611_450 :611450 (etc. for 12, 22, 66)
but, Q, ~ =-Q,  (and for 26),

so, 16 and 26 term cancel
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4. Laminate Theory

So summing,
A, = t(ZQllo + 2Q1190 + 4Q1145)
=0.005(2(20.12x10°) + 2(1.41x10°) + 4(6.29 x 10°)
=0.341x10° Ib/in

A, =t(2Q, +2Q,” +4Q,”)
— 0.005(2(0.408 x 10°) + 2(0.408 x 10°) + 4(4.89 x10°)
~0.106x10° Ib/in

A, =0.341x10° Ib/in
A, =0.118x10° Ib/in

Ag=0, A =0

0341 0106 O
A=]0.106 0341 0|x10°Ib/in
0 0 0.118
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§eb)

4. Laminate Theory

Step #4: Establish Loading

20,000 Ibs
ﬁ\ Loading assume thin, load distributes evenly
N
| N-— P 2000 5iesh/in
circumference 2zr  27z(1)
] Assume unrestrained, N, =0, ny =0
o
Step #5: Calculate Laminate Strain
g=aN, a=A"
Can invert 3x3 matrix, on else, )
. _ Azz _Azz 0
|:A11 A12 } 0 A11A22 o A122 A11A22 o A122 325 —1.01 0
Ao Poz = e > o > 0 |=(-1.01 325 0 |[x10%in/Ib
O O i 'AilAZZ - A12 A11A22 - 'AIZ 0 0 8.47
Aee i 0 0 i
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4. Laminate Theory

g =a,N, =3.25x10°(-3183) =—0.0103
g, =a,N, = -1.01x107°(~3183) = +0.0032

gxyc = alGNx = O
Step #6: Calculate Ply Strains in Laminate coordinates
Jones Notation (g;’
—(k) o
£ =38, ¢
%3

—(k) o
All ¢ equalto ¢

Step #7: Calculate Ply Stresses in Laminate Coordinates System

Jones Notation ()
O-X
—(k)
O =X O'y >
(k) (k) SE2
o =Q z®

~

Active Aeroelasticity and Rotorcraft Lab., Seoul National Universit



4. Laminate Theory

o Qu Qu Qu &y
<5y - =1 Qy, Q. Q. <‘c"yo (

Oy | _Q16 Q2 Qee_ \7/xyo)

0 ply: ¢, = Q—n5x° +Q_128y°
= 20.12x10°(-0.0103) + 0.408 x 10°(+0.0032)
= -206 (Ksi) (high)

, = Qe +Qpue,, G, =0
= 0.300 (Ksi) (low)

Q|

490" ply:z, =Q,, & +Qp &,
= -13 (Ksi)
&, = 60 Ksi
&, =0
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4. Laminate Theory

+45° ply:

o, =Que&, +Qpe, +Qfy,, = -49 (Ksi)

c, = Q_128X° +Q_228y° +Q7y, = -30 (Ksi)

o, = Q_legx" +Q_268y° +Q47, = -33 (Ksi)
—45° ply: same as +45°, but

0, (-45") =-0,, (+45")

Plotting stresses

Ply
0 -208 | +0.3
+45° -49 -30
—45° -49 -30 -33
90 13| +60 +33
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4. Laminate Theory

Step #8: Calculate Ply Stress 2 in ply coordinates

0,
o =40, < Jones Notation
Og
B o) [¢¢ &  2s¢ |[g
g=T,g = g{az =|s* ¢ -2s¢ |10, ¢
O —cs c¢s (c*-s%) Ty
0° ply: o | | 0 0|(-206 —206
10,7=/0 1 0K 30 +=41 30 ¢Ksi
os) [0 O 111 0 0
90° ply: (o,] [1 0 0][-13 60
j0,0=(0 1 0K 60;=<-13}Ksi
os) |0 111 0 0
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4. Laminate Theory

o,t=|-05 —05 -1l 30\={-65\Ksi
os) |0 0.5 0 33 -95

—45° ply: Same signs as  +45° by 0, change sign

Summary of stress (Ksi)

ply, & o, o, o Note
0" 2206 0.3 0 Compare to strength of unidirectional material
Compress ultimate (1-dir) = 160 Ksi
+45° -73 -6.5 9.5
Compress ultimate (2-dir) = 25 Ksi
—45° -7 -6. -9,
45 3 6.5 95 Shear ultimate = 10 Ksi
+90° 60 -13 0

Fiber failure in Q°ply, reinforce strut

Look also at ply-axis strains
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4. Laminate Theory

Step #9: Calculate Ply Strains ¢ in ply coordinates.

&
E=16&, < Jones notation
&g
& _811 Sp Sis ] O,
=3¢ > g 0=, Sy Sy |10
Es _Sle Sy See_ Og
S, = L = 1 - =0.050x10°°
E, 20x10
s, =t 92 __ 40145410°
E, 20x10
S,, = L = 1 - =0.7143x10°°
E, 1.4x10
S = 1 __1 —=1.429%x10"°
G,; 0.7x10
SlG = S26 =0
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Laminate Theory

x10-6 x10-3

/ /

g ) [0.0500 -0.0145 07(0.206) (-0.0103
~0.0145 07143 0 [{ 0.3 \={ 0.0032
& 0 0 1429

o
=a
<
™

N

Il

+90° ply: {g,+=|-0.0145 0.7143 -0.0103

& 0.0500 —-0.0145 —0.0032
-13
Ee 0 0 1.429

&, p=|-0.0145 0.7143 —0.0036

& 0.0500 —-0.0145 —0.0036
—6.5
Eg 0 0 1.429 0.0136

-45°ply - same as +45° by ¢, change sign
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4. Laminate Theory

Summary of strains

ply, 6 & &5 &g

0 -0.0103 0.0032 0
+45° -0.0036 -0.0036 0.0136

—45° -0.0036 -0.0036 -0.0136

+90° -0.0032 -0.0103 0

Sometimes use a max. strain criteria instead of max. stress (& = 7000 u¢)
Also can do ply stress analysis by Path #2
Steps 1 ~ 6 same as before

Step #7A Calculate ply strain € in ply coords.

& > s sC z
e=Le 2 gr=|s" ¢ -sc <&, ¢
& -2cs 2cs (c°—s%) || &,
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Laminate Theory

& 1 0 0([-0.0103 —0.0103

0" ply: &¢=[0 1 0] 0.0032;=1 0.0032
&) [0 0 1] 0 0

50 o &| [1 0  0](-0.0103 0.0032

=L Py e,l=l0 1 0] 0.0032!=]-00103
&) |0 1] 0 0

etc. 45° and -45° plus
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4. Laminate Theory

Step #8A: Calculate ply stress 2 in ply coords.

oz} Qu Q. Qs || &
o, r=|Qp Q,, Qs 1 &2
Og _Q16 Que Qss 1%

c=Q¢ >

o, 20.12  0.408 O ||-0.0103 —206

0 ply: {o,0=|0408 141 0 [1-0.0032;{={ -3} Ksi
os| |0 0 { 0 0
x10-6
+90° ply: o, ~0.0032 60
o, = same —0.0103} =<-13 } Ksi
o 0 0

[op]

same +45° and -45°

_~7 easier (butno g )
Same results from Path #1 and Path #2
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4. Laminate Theory

g, z
- |
0°
X
90° O,
l :
/|
| ---.E / % Gy

y

shear stress 7Ty

r,,dydx = o, h(e, — &, )dydx

r,, =o,h(e; —¢&,)
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