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7.8 2D imaging basics 
Spatial localization is necessary for MRI. The simplest approach is acquiring data slice by slice instead of a full 3D object.  This can be achieved by 
using a slice selective RF excitation.  

Let's say we applied a z gradient.  Then the resonance frequency of each position along z-axis becomes different. 

Slice selection for 2D imaging 

 

 

 

 

Figure: slice selective excitation 

• Basic procedure of 2D imaging 

1) Selectively excite a slice  

2) Change Gx and Gy and record FID. 

3) Wait for recovery (Why?) 

4) Repeat the measurement 
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7.9 Bloch equation revisit 

Until we have learned that  

𝑑𝑑𝐌𝐌
𝑑𝑑𝑑𝑑

= 𝐌𝐌 × γ𝐁𝐁 

𝑑𝑑𝐌𝐌
𝑑𝑑𝑑𝑑

= −
Mx𝒊̂𝒊 + My𝒋𝒋̂

T2
   

𝑑𝑑𝐌𝐌
𝑑𝑑𝑑𝑑

= −  
Mz − Mo

T1
𝒌𝒌�  

 

 

What is M? 

What does B consist of? 

The first term is;    The second term is;   The third term is 

Precession happens on;   T1 recovery happens on; T2 decay happens on 
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So the full version of Bloch equation becomes 

 

 

 

 

𝑑𝑑𝐌𝐌
𝑑𝑑𝑑𝑑

= 𝐌𝐌 × γ𝐁𝐁 −
Mx𝒊̂𝒊 + My𝒋𝒋̂

T2
−  

Mz − Mo

T1
𝒌𝒌�   

 

 

 

 

 

Ok now you are all set to solve the equation. 

Still let's begin with the simplest one.  



 

Pa
ge

4 

7.9.1 Homogeneous object, uniform field 

We will only consider Bo field and the object is uniform: (i.e. it has one T1 and T2 values) 

 

Let's ignore the relaxations 

 

𝑑𝑑𝐌𝐌
𝑑𝑑𝑑𝑑

= 𝐌𝐌 × γBo𝐤̂𝐤  

 

Based on our memory (?), the solution is  

 

M𝑥𝑥(𝑡𝑡) + 𝑖𝑖M𝑦𝑦(𝑡𝑡) =  M0exp (−𝑖𝑖γBo𝑡𝑡) 

M𝑧𝑧(𝑡𝑡) =  M𝑧𝑧(0) 

 
Another way to solve this equation is looking up a differential equation list and find out a solution but we need to change the equation a bit. 
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Differential equations can be written as: 

𝑑𝑑𝐌𝐌
𝑑𝑑𝑑𝑑

=

⎣
⎢
⎢
⎢
⎢
⎡
𝑑𝑑M𝑥𝑥

𝑑𝑑𝑑𝑑
𝑑𝑑M𝑦𝑦

𝑑𝑑𝑑𝑑
𝑑𝑑M𝑧𝑧

𝑑𝑑𝑑𝑑 ⎦
⎥
⎥
⎥
⎥
⎤

= 𝐌𝐌 × γBo𝐤̂𝐤 = �
M𝑥𝑥
M𝑦𝑦
M𝑧𝑧

� × �
0
0
γBo

� 

=  �
γBoM𝑦𝑦
−γBoM𝑥𝑥

0
� = �

0 γBo 0
−γBo 0 0

0 0 0
� �

M𝑥𝑥
M𝑦𝑦
M𝑧𝑧

� 

i.e. 

⎣
⎢
⎢
⎢
⎢
⎡
𝑑𝑑M𝑥𝑥

𝑑𝑑𝑑𝑑
𝑑𝑑M𝑦𝑦

𝑑𝑑𝑑𝑑
𝑑𝑑M𝑧𝑧

𝑑𝑑𝑑𝑑 ⎦
⎥
⎥
⎥
⎥
⎤

= �
0 γBo 0

−γBo 0 0
0 0 0

� �
M𝑥𝑥
M𝑦𝑦
M𝑧𝑧

� 
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So  

�

𝑑𝑑M𝑥𝑥

𝑑𝑑𝑑𝑑
𝑑𝑑M𝑦𝑦

𝑑𝑑𝑑𝑑

� = � 0 γBo
−γBo 0 � �

M𝑥𝑥
M𝑦𝑦

� 

 

and  

𝑑𝑑M𝑧𝑧

𝑑𝑑𝑑𝑑
= 0 

 

The solutions for these differential equations are 

M𝑥𝑥(𝑡𝑡) + 𝑖𝑖M𝑦𝑦(𝑡𝑡) = �M𝑥𝑥(0) + 𝑖𝑖M𝑦𝑦(0)� exp(−𝑖𝑖γBo𝑡𝑡) 

M𝑧𝑧(𝑡𝑡) = M𝑧𝑧(0) 

 

These equations can be simplified in matrix form: 
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M𝑥𝑥(𝑡𝑡) + 𝑖𝑖M𝑦𝑦(𝑡𝑡) = �M𝑥𝑥(0) + 𝑖𝑖M𝑦𝑦(0)� exp(−𝑖𝑖ω0𝑡𝑡) 

                                              = �M𝑥𝑥(0) + 𝑖𝑖M𝑦𝑦(0)� (cosω0𝑡𝑡 − 𝑖𝑖sinω0𝑡𝑡) 

                                  = cosω0𝑡𝑡 ∙ M𝑥𝑥(0) + sinω0𝑡𝑡 ∙ M𝑦𝑦(0) 

                                                    +𝑖𝑖 �−sinω0𝑡𝑡 ∙ M𝑦𝑦(0) + cosω0𝑡𝑡 ∙ M𝑦𝑦(0)� 

 

𝐌𝐌(𝑡𝑡) =  �
M𝑥𝑥(𝑡𝑡)
M𝑦𝑦(𝑡𝑡)
M𝑧𝑧(𝑡𝑡)

� = �
cosω0𝑡𝑡 sinω0𝑡𝑡 0
−sinω0𝑡𝑡 cosω0𝑡𝑡 0

0 0 1
� �

M𝑥𝑥(0)
M𝑦𝑦(0)
M𝑧𝑧(0)

� 

= 𝐑𝐑𝒛𝒛(ω0𝑡𝑡)𝐌𝐌𝐨𝐨 

where      

𝐌𝐌𝐨𝐨= initial magnetization 

ω0 =  γBo = Larmor frequency 
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For T2 decay, 

 

𝑑𝑑𝐌𝐌
𝑑𝑑𝑑𝑑

= −
Mx𝒊̂𝒊 + My𝒋𝒋̂

T2
     

 

In matrix form 

 

⎣
⎢
⎢
⎢
⎢
⎡
𝑑𝑑M𝑥𝑥

𝑑𝑑𝑑𝑑
𝑑𝑑M𝑦𝑦

𝑑𝑑𝑑𝑑
𝑑𝑑M𝑧𝑧

𝑑𝑑𝑑𝑑 ⎦
⎥
⎥
⎥
⎥
⎤

= �
−1/T2 0 0

0 −1/T2 0
0 0 0

� �
M𝑥𝑥
M𝑦𝑦
M𝑧𝑧

� 

 

which can be simplified as: 
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�

𝑑𝑑M𝑥𝑥

𝑑𝑑𝑑𝑑
𝑑𝑑M𝑦𝑦

𝑑𝑑𝑑𝑑

� = �−1/T2 0
0 −1/T2

� �
M𝑥𝑥
M𝑦𝑦

� 

 

The solution is 

M𝑥𝑥(𝑡𝑡) + 𝑖𝑖M𝑦𝑦(𝑡𝑡) = �M𝑥𝑥(0) + 𝑖𝑖M𝑦𝑦(0)� exp(−𝑡𝑡/T2) 

 

In matrix form 

𝐌𝐌(𝑡𝑡) =  �
exp(−𝑡𝑡/T2) 0 0

0 exp(−𝑡𝑡/T2) 0
0 0 0

� �
M𝑥𝑥(0)
M𝑦𝑦(0)
M𝑧𝑧(0)

� 
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For T1 recovery, 

 

𝑑𝑑𝐌𝐌
𝑑𝑑𝑑𝑑

= −
Mz − Mo

T1
𝒌𝒌�       

 

In matrix form 

 

⎣
⎢
⎢
⎢
⎢
⎡
𝑑𝑑M𝑥𝑥

𝑑𝑑𝑑𝑑
𝑑𝑑M𝑦𝑦

𝑑𝑑𝑑𝑑
𝑑𝑑M𝑧𝑧

𝑑𝑑𝑑𝑑 ⎦
⎥
⎥
⎥
⎥
⎤

= �
0 0 0
0 0 0
0 0 −1/T1

� �
M𝑥𝑥
M𝑦𝑦
M𝑧𝑧

� + �

0
0

Mo

T1

� 

 

which can be simplified 
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𝑑𝑑M𝑧𝑧

𝑑𝑑𝑑𝑑
=  −

M𝑧𝑧

T1
+

Mo

T1
 

 

The solution is 

M𝑧𝑧(𝑡𝑡) = M𝑧𝑧(0)exp �−
𝑡𝑡

T1
� + Mo(1 − exp �−

𝑡𝑡
T1
�) 

 

In matrix form 

𝐌𝐌(𝑡𝑡) =  �
0 0 0
0 0 0
0 0 exp(−𝑡𝑡/T1)

� �
M𝑥𝑥(0)
M𝑦𝑦(0)
M𝑧𝑧(0)

� + �
0
0

Mo(1 − exp(−𝑡𝑡/T1))
� 
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If we add all three matrix forms 

⎣
⎢
⎢
⎢
⎢
⎡
𝑑𝑑M𝑥𝑥

𝑑𝑑𝑑𝑑
𝑑𝑑M𝑦𝑦

𝑑𝑑𝑑𝑑
𝑑𝑑M𝑧𝑧

𝑑𝑑𝑑𝑑 ⎦
⎥
⎥
⎥
⎥
⎤

= �
−1/T2 γBo 0
−γBo −1/T2 0

0 0 −1/T1
� �

M𝑥𝑥
M𝑦𝑦
M𝑧𝑧

� + �
0
0

Mo/T1
� 

 

The final solution is 

M𝑥𝑥(𝑡𝑡) + 𝑖𝑖M𝑦𝑦(𝑡𝑡) = �M𝑥𝑥(0) + 𝑖𝑖M𝑦𝑦(0)� exp(−𝑡𝑡/T2) exp(−𝑖𝑖γBo𝑡𝑡) 

(or simply, M𝑥𝑥𝑥𝑥(𝑡𝑡) = Mo exp(−𝑡𝑡/T2) exp(−𝑖𝑖ω0𝑡𝑡)) 

 

M𝑧𝑧(𝑡𝑡) = M𝑧𝑧(0)exp �−
𝑡𝑡

T1
� + Mo(1 − exp �−

𝑡𝑡
T1
�) 
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In matrix form 

 

𝐌𝐌(𝑡𝑡) =  

⎣
⎢
⎢
⎢
⎡𝑒𝑒−

𝑡𝑡
T2 0 0

0 𝑒𝑒−
𝑡𝑡
T2 0

0 0 𝑒𝑒−
𝑡𝑡
T1⎦
⎥
⎥
⎥
⎤
𝐑𝐑𝒛𝒛(ω0𝑡𝑡)𝐌𝐌𝐨𝐨 + �

0
0

Mo(1 − 𝑒𝑒−
𝑡𝑡
T1)

� 

 
Note that transverse magnetization and longitudinal magnetization are independent.  This is only the case when only z-directional B-field is 
considered.  The transverse magnetization depends on T2 relaxation and Larmor frequency whereas the longitudinal magnetization depends on T1 
relaxation and proton density. 

 

Q: Why the rotation matrix is before the relaxation matrix?  

 

Q: What happens when the initial magnetization is (1, 0, 0), (0, 1, 0), or (0, 0, 1)? 

 

 


