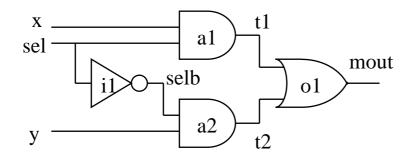
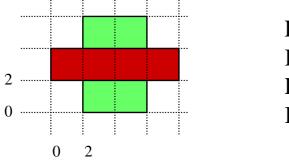
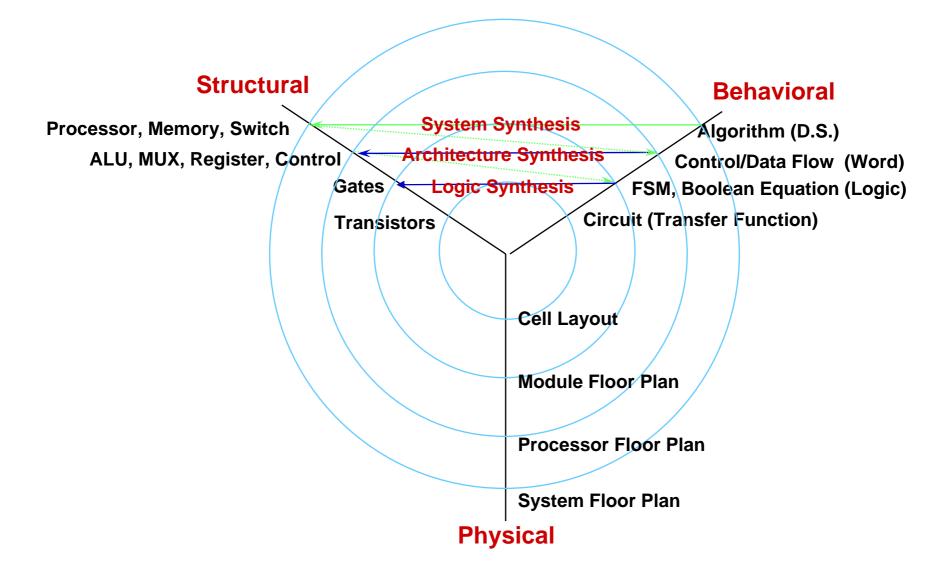
Design Representations and CAD Tools (4541.554 Introduction to Computer-Aided Design)


School of EECS Seoul National University

Design Representation


- We focus on HW designs.
- Behavioral Representation
 - Behavior of outputs in terms of inputs and time
 - Independent of implementation
 - Chart, state diagram, state table, HDL(Hardware Description Language; VHDL, Verilog)
 - Example:

```
if sel = '1' then
  mout <= x;
else
  mout <= y;
end if;</pre>
```

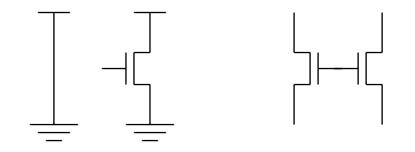

- Structural Representation
 - Components and their connections
 - Represents implementation
 - Schematic diagram, HDL, netlist language (EDIF)
 - Example:
 - i1: inv port map (selb, sel);
 - a1: and2 port map (t1, x, sel);
 - a2: and2 port map (t2, y, selb);
 - o1: or2 port map (mout, t1, t2);

- Physical Representation
 - Geometrical representation
 - Graphical image, layout language (CIF, GDSII)
 - Example: CIF

L ND; B 4 6 4 3; L NP; B 8 2 4 3; l_x l_y x y • Y-Chart

CAD Tools

• Taxonomy of CAD Tools for HW design


- Synthesis tools
 - Transform from a higher-level description to a lower-level description satisfying functionality and constraints
- Estimation tools
 - Estimate performance, area cost, power consumption, etc.
 - Used for manual design space exploration or integrated into synthesis tools
- Verification tools
 - Check to see if the functionality and constraints are satisfied
 - Used to check synthesis results
- Design management tools
 - Design version control, data dependency management, tool integration, format conversion, etc.

• Synthesis Tools

- Silicon compiler
 - Goal is to generate a mask layout from behavioral specification in HDL as a single-step process
 - Complexity is too high
- Whole process is divided into multiple steps.
- Each step consists of synthesis and verification
- There can be debug cycles within each step or across multiple steps.
- From the viewpoint of systems design
 - System synthesis (HW-SW co-synthesis)
 - Partitioning
 - Software synthesis
 - Hardware synthesis
 - Interface Synthesis
- Looking at hardware design only
 - Architecture synthesis
 - Logic synthesis
 - Layout synthesis

• Verification Tools

- Physical design verification
 - Used mainly for custom design
 - Less important for ASIC design due to correct-byconstruction concept
 - DRC (Design Rule Checking)
 - Dimensions of each pattern, distance between patterns, enclosure, extension
 - ERC (Electrical Rule Checking)
 - Short circuit, floating input, tied output, fan-out

- Circuit extraction
 - Connectivity extraction
 - Extract derived layer

tran: D & P & (! B) dwire: D & (! tran) PDcut: P & D & B

- Merge signals connected together
- Connect transistors to signals
- Parameter extraction
 - Parasitic capacitance
 - Parasitic resistance
 - Transistor size: W/L
- Connectivity verification
 - LVS (Layout Versus Schematic)

– Simulation

- Most popular method for verification
- In general, exhaustive test is impossible.
- Simulation at every levels of synthesis process
- Depending on the levels,
 - Circuit
 - Logic (switch, gate)
 - Functional
 - Behavioral
 - Mixed-level
 - Mixed-signal
- Depending on simulation algorithms
 - Event-driven simulation
 - Oblivious simulation
 - Compiled-code simulation
 - Cycle-based simulation

- Formal verification
 - Complete verification is possible.
 - Prove logically that implementation (synthesis result) satisfies or is equivalent to specification (synthesis input)
 - Complexity is high and it still takes too much time in some case.
 - The user must represent the design in a formal way, which can be a difficult task
 - Examples:
 - Model checking
 - Equivalence checking

- Timing verification
 - Compute delay along critical paths
 - Need to find critical paths excluding false paths, which is a very difficult task
 - Can be used in combination with cycle-based simulation