Intractable Graph Optimization Problems (4541.554 Introduction to Computer-Aided Design)

School of EECS Seoul National University

Intractability

- Problem
 - Optimization version
 - Find the optimal feasible solution
 - Evaluation version
 - Find the cost of the optimal solution
 - Not harder than solving the optimization version
 - Recognition version
 - Is there a feasible solution $f \in F$ such that $c(f) \leq L$
 - Evaluate and compare the cost with L
 - Not harder than solving the evaluation version
 - Consider recognition version only
 - No polynomial time algorithm for recognition version
 --> no polynomial time algorithm for optimization version
 - Recognition version --> Evaluation version
 - Binary search
 - Assume c(f) is an integer and logc(f) is bounded by a polynomial in the size of the input
 - Evaluation version --> Optimization version
 - No known general method

• Example:

```
procedure MaxClique(G) -- Returns the largest clique of G
if G has no nodes then return null
else
begin
let v be a node such that
CliqueSize(G(v))=CliqueSize(G),
where G(v) is the subgraph of G consisting of v and
all of its adjacent nodes;
return {v} ∪ MaxClique(G(v)-v);
end
```

Complexity of CliqueSize: C(n) --> Complexity of MaxClique: T(n) \leq (n+1)C(n)+O(n)+T(n-1) = (n+1)C(n)+O(n)+nC(n-1)+O(n-1)+... \leq n(n+1)C(n)+nO(n) = O(n^2C(n)) T(n) = O(n^2C(n))

• Definition of P and NP

- P
 - Class of problems which can be solved in polynomial time by a deterministic machine
- **NP**
 - Class of problems which can be solved in polynomial time by a nondeterministic machine
 - With input x\$c(x), where x is a yes instance, c(x) is the certificate, and \$ marks the end of the input, there exists a certificate checking algorithm that reaches the answer 'yes' after at most polynomial steps

• Example of an NP problem

- Recognition version of the Maximum Clique problem:
 Given a graph G(V, E), is there a clique of size K?
- x: graph G and integer K c(x): a set of vertices C, $|C|=K \le p(|x|)$
- Checking whether there is an edge (u, v) in G for all u, $v \in C$ takes O(n²) steps

- Polynomial-Time Transformation
 - A recognition problem A_1 polynomially transforms to another recognition problem A_2 , if given x (any instance of A_1), we can construct y (an instance of A_2) within polynomial time, such that x is a yes instance of A_1 if and only if y is a yes instance of A_2
- Definition of NP-Completeness
 - A recognition problem $A \in NP$ is said to be NP-complete if all other problems in NP polynomially transform to A
- Proof of NP-Completeness
 - Prove that the given problem is in NP --- (1)
 - Then prove that all other problems in NP polynomially transform to the given problem
 - Or prove that a known NP-complete problem is polynomially transformable to the given problem--- (2)
 - A problem that satisfies (2) is said to be in NP-hard

Intractability

S. A. Cook proved that the Satisfiability problem is NP-complete $(x1 + x2' + x3)(x1' + x2' + x3)(x2)(x3') \dots$

• Example

- Prove that the Clique problem is NP-complete
- Clique problem : Given a graph G(V, E), is there a clique of size K?
- Clique problem is in NP
 - previously proven
- Let's polynomially transform the 3-Satisfiability problem which is known to be NP-complete to the Clique problem

 $(x_1 + \overline{x}_2 + x_3) \cdot (\overline{x}_1 + x_3 + \overline{x}_4) \cdot (x_1 + \overline{x}_2 + \overline{x}_3) \cdot (x_2 + \overline{x}_3 + x_4)$

Vertex Cover

- Intractable (NP-complete)
- Greedy algorithm
 - select vertices with largest degree (possibly exceeds twice the minimum)

select edges (at most twice the minimum)

<u>Vertex Cover</u>

n 6 10 30 100
|vertex cover|/n 2.17 2.6 3.67 4.8
|vertex cover| = n +
$$\sum_{j=2}^{n-1} \lfloor n/j \rfloor$$

Graph Coloring

Intractable

```
VERTEX_COLOR (G(V, E)) {
{}^{\bullet}
     for (i = 1 to |V|) {
         c = 1;
         while (a vertex adjacent to v<sub>i</sub> has color c) do {
            c = c + 1;
         label v<sub>i</sub> with color c;
                                              greedy
                                                                       backtrack
```

- Chordal graph --> has perfect vertex elimination scheme
 --> coloring in O(|V| + |E|) time
- Perfect vertex elimination scheme : An ordering of vertices $[v_1, v_2, ..., v_n]$ such that $\{v_j \in Adj(v_i) \mid j > i\}$ is complete

- Interval graph --> chordal --> use perfect vertex elimination scheme
- When a problem is specified by a set of intervals --> use left edge algorithm --> O(|V|log|V|)
 - intervals in a row --> no intersection --> no edge --> same color


```
    Left edge algorithm

     LEFT_EDGE(L) {
       Sort elements in a list L in ascending order of I<sub>i</sub>;
               /* l<sub>i</sub>=coordinate of left edge of element i */
       Build a heap priority queue containing only root node q such that
            track_number(q)=0 and coordinate of rightmost edge(q)=0;
               /* priority queue containing nodes, one for each track */
                                   /* initialize max # of tracks */
       n=1;
       while (L is not empty) do {
            s=First element in L;
                                   /* r<sub>min</sub>=coordinate of root in the queue */
            if (I_s \ge r_{min}) {
               assign s to track of the root;
               update priority queue;
            }
            else {
                                   /* add a new track */
               n=n+1;
               assign s to track n;
               update priority queue with a new node;
```

- Complexity:

- Sorting: O(|V|log|V|)
- If the elements sorted are in a limited range, we can use linear time sorting techniques such as radix sort (may be less efficient due to high constant).

--> complexity becomes O(|V|log(d)), where d is the density

- --> can be reduced further down to linear time
- Proof of optimality
 - Assuming density d, lower bound of the number of tracks required is d.
 - So it is sufficient to prove that the left edge algorithm always places all intervals on d tracks, which is optimum.
 - Now, assume the left edge algorithm does not give the optimum. That is, during the run of the algorithm, an interval cannot be assigned to any of the d tracks. This implies that the density is d+1, which is a contradiction.

Clique Partitioning

- Intractable
- Clique partitioning <---> coloring the complement
 - clique <--> independent set in the complement
 - find max. clique <--> find max. independent set in the complement
 - vertices not in a vertex cover --> no edge between any pair of these vertices --> independent set

- Can be solved in O(|V|+|E|) for chordal graph using perfect vertex elimination scheme
- Can be solved in polynomial time for comparability graph by transforming it into a minimum network flow problem