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Intractability

Intractability
• Problem

– Optimization version
• Find the optimal feasible solution

– Evaluation version
• Find the cost of the optimal solution
• Not harder than solving the optimization version

– Recognition version
• Is there a feasible solution f ∈ F such that c(f) ≤ L
• Evaluate and compare the cost with L
• Not harder than solving the evaluation version

– Consider recognition version only
• No polynomial time algorithm for recognition version

--> no polynomial time algorithm for optimization version
– Recognition version --> Evaluation version

• Binary search
• Assume c(f) is an integer and logc(f) is bounded by a polynomial 

in the size of the input
– Evaluation version --> Optimization version

• No known general method



Intractability

• Example:

procedure MaxClique(G) -- Returns the largest clique of G
if G has no nodes then return null
else

begin
let v be a node such that 

CliqueSize(G(v))=CliqueSize(G),
where G(v) is the subgraph of G consisting of v and 
all of its adjacent nodes;
return {v} ∪ MaxClique(G(v)-v);

end

Complexity of CliqueSize: C(n)
--> Complexity of MaxClique: T(n) ≤ (n+1)C(n)+O(n)+T(n-1)

= (n+1)C(n)+O(n)+nC(n-1)+O(n-1)+...
≤ n(n+1)C(n)+nO(n) = O(n2C(n))

T(n) = O(n2C(n))

v



Intractability

• Definition of P and NP
– P 

• Class of problems which can be solved in polynomial time 
by a deterministic machine

– NP
• Class of problems which can be solved in polynomial time 

by a nondeterministic machine
• With input x$c(x), where x is a yes instance, c(x) is the 

certificate, and $ marks the end of the input, there exists a 
certificate checking algorithm that reaches the answer 
‘yes’ after at most polynomial steps

• Example of an NP problem
– Recognition version of the Maximum Clique problem:

Given a graph G(V, E), is there a clique of size K?
– x: graph G and integer K

c(x): a set of vertices C, |C|=K ≤ p(|x|)
– Checking whether there is an edge (u, v) in G 

for all u, v ∈ C takes O(n2) steps



Intractability

• Polynomial-Time Transformation
– A recognition problem A1 polynomially transforms to 

another recognition problem A2, if given x (any instance 
of A1), we can construct y (an instance of A2) within 
polynomial time, such that x is a yes instance of A1 if 
and only if y is a yes instance of A2

• Definition of NP-Completeness
– A recognition problem A ∈ NP is said to be NP-complete 

if all other problems in NP polynomially transform to A
• Proof of NP-Completeness

– Prove that the given problem is in NP --- (1)
– Then prove that all other problems in NP polynomially

transform to the given problem
Or prove that a known NP-complete problem is 
polynomially transformable to the given problem--- (2)

– A problem that satisfies (2) is said to be in NP-hard



Intractability

NP-complete

P NP

NP-hard

S. A. Cook proved that the Satisfiability problem is NP-complete

(x1 + x2’ + x3) (x1’ + x2' + x3)(x2)(x3') ...



Intractability

• Example
– Prove that the Clique problem is NP-complete
– Clique problem : Given a graph G(V, E), is there a clique 

of size K?
– Clique problem is in NP

• previously proven
– Let’s polynomially transform

the 3-Satisfiability problem  which
is known to be NP-complete to 
the Clique problem

There is a clique of size K
⇔ Satisfiable

101d

1d11

10d1

d011

must contain 1011must contain 1011
10111011



Vertex Cover

Vertex Cover
• Intractable (NP-complete)
• Greedy algorithm

– select vertices with largest degree (possibly exceeds 
twice the minimum)

– select edges (at most twice the minimum)

minimum cover

irredundant cover

redundant cover

selected



Vertex Cover

1                  2                 3                 4        5              n=6 

n                               6         10         30       100
|vertex cover|/n       2.17     2.6       3.67      4.8

|vertex cover| = n + ⎣ ⎦∑
−

=

1n

2j

n/j



Graph Coloring

Graph Coloring
• Intractable
• VERTEX_COLOR (G(V, E)) {

for (i = 1 to |V|) {
c = 1;
while (a vertex adjacent to vi has color c) do {

c = c + 1;
}
label vi with color c;

}
}
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Graph Coloring

– Chordal graph --> has perfect vertex elimination scheme
--> coloring in O(|V| + |E|) time

– Perfect vertex elimination scheme : An ordering of 
vertices [v1, v2, ..., vn] such that {vj ∈ Adj(vi) | j > i} is 
complete

– Interval graph --> chordal --> use perfect vertex 
elimination scheme

– When a problem is specified by a set of intervals --> use 
left edge algorithm --> O(|V|log|V|)

• intervals in a row --> no intersection --> no edge --> same 
color

• min. # of tracks --> min. # of colors
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Graph Coloring

– Left edge algorithm
LEFT_EDGE(L) {

Sort elements in a list L in ascending order of li;
/* li=coordinate of left edge of element i */

Build a heap priority queue containing only root node q such that
track_number(q)=0 and coordinate of rightmost edge(q)=0;

/* priority queue containing nodes, one for each track */
n=1; /* initialize max # of tracks */
while (L is not empty) do {

s=First element in L ;
if (ls ≥ rmin) { /* rmin=coordinate of root in the queue */

assign s to track of the root;
update priority queue;

} 
else {

n=n+1; /* add a new track */
assign s to track n; 
update priority queue with a new node;

}
}

}



Graph Coloring

– Complexity:
• Sorting: O(|V|log|V|)
• If the elements sorted are in a limited range, we can use 

linear time sorting techniques such as radix sort (may be 
less efficient due to high constant).
--> complexity becomes O(|V|log(d)), where d is the density
--> can be reduced further down to linear time

– Proof of optimality
• Assuming density d, lower bound of the number of tracks 

required is d.
• So it is sufficient to prove that the left edge algorithm 

always places all intervals on d tracks, which is optimum.
• Now, assume the left edge algorithm does not give the 

optimum. That is, during the run of the algorithm, an 
interval cannot be assigned to any of the d tracks. This 
implies that the density is d+1, which is a contradiction.



Clique Partitioning

Clique Partitioning
• Intractable
• Clique partitioning <---> coloring the complement

– clique <--> independent set in the complement
– find max. clique <--> find max. independent set in the 

complement
– vertices not in a vertex cover --> no edge between any pair of 

these vertices --> independent set

• Can be solved in O(|V|+|E|) for chordal graph using perfect 
vertex elimination scheme

• Can be solved in polynomial time for comparability graph 
by transforming it into a minimum network flow problem
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