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Intractability

Intractability

e Problem

Optimization version

* Find the optimal feasible solution
Evaluation version

* Find the cost of the optimal solution

* Not harder than solving the optimization version
Recognition version

* Is there afeasible solution f € F such that c(f) <L

 Evaluate and compare the cost with L

* Not harder than solving the evaluation version
Consider recognition version only

* No polynomial time algorithm for recognition version

-->no polynomial time algorithm for optimization version

Recognition version --> Evaluation version

* Binary search

 Assume c(f) is an integer and logc(f) is bounded by a polynomial
in the size of the input

Evaluation version --> Optimization version
« No known general method



Intractability

 Example:
procedure MaxClique(G) -- Returns the largest clique of G
if G has no nodes then return null
else
begin

let v be anode such that
CligueSize(G(v))=CliqueSize(G),

A

vV where G(v) is the subgraph of G consisting of v and

all of its adjacent nodes;

\1 return {v} u MaxClique(G(v)-v);
end

Complexity of CliqueSize: C(n)

--> Complexity of MaxClique: T(n) £ (n+1)C(n)+O(n)+T(n-1)
= (n+1)C(n)+O(n)+nC(n-1)+0O(n-1)+...
<n(n+1)C(n)+n0O(n) = O(n2C(n))

T(n) = O(n2C(n))



Intractability

o Definition of P and NP
- P
» Class of problems which can be solved in polynomial time
by a deterministic machine

— NP
« Class of problems which can be solved in polynomial time
by a nondeterministic machine

o With input x$c(x), where x is a yes instance, c(X) is the
certificate, and $ marks the end of the input, there exists a
certificate checking algorithm that reaches the answer
‘ves’ after at most polynomial steps

« Example of an NP problem
— Recognition version of the Maximum Clique problem:
Given a graph G(V, E), is there a clique of size K?
— X: graph G and integer K O
c(x): a set of vertices C, |C|=K < p(|x|)
— Checking whether there is an edge (u, v) in G
for all u, v e C takes O(n?) steps \1



Intractability

 Polynomial-Time Transformation

— A recognition problem A, polynomially transforms to
another recognition problem A,, if given x (any instance
of A,), we can construct y (an instance of A,) within
polynomial time, such that x is a yes instance of A if
and only if y is a yes instance of A,

o Definition of NP-Completeness

— A recognition problem A € NP is said to be NP-complete
if all other problems in NP polynomially transform to A

 Proof of NP-Completeness
— Prove that the given problemisin NP --- (1)

— Then prove that all other problems in NP polynomially
transform to the given problem

Or prove that a known NP-complete problem is
polynomially transformable to the given problem--- (2)

— A problem that satisfies (2) is said to be in NP-hard



Intractability

NP-hard
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S. A. Cook proved that the Satisfiability problem is NP-complete

(x1 +x2" +x3) (x1" + x2' + x3)(x2)(x3') ...



Intractability

« Example
— Prove that the Cliqgue problem is NP-complete
— Clique problem : Given a graph G(V, E), is there a clique

of size K?
— Clique problem is in NP b Tem) + Gt tT) + G tRtE) o G tEyes
e previously proven
— Let’s polynomially transform e =
the 3-Satisfiability problem which -
IS known to be NP-complete to
the Clique problem o1 1e 2104

There is a clique of size K
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Vertex Cover

Vertex Cover
* Intractable (NP-complete)

o Greedy algorithm

— select vertices with largest degree (possibly exceeds
twice the minimum)

O O O O O  minimum cover
O O O O O  irredundant cover
O O O O O  redundant cover

— select edges (at most twice the minimum)
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|vertex cover|/n 217 2.6 3.67 4.8
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Vertex Cover




Graph Coloring

Graph Coloring

* Intractable
« VERTEX COLOR (G(V, E)){
for (i=1to |V]){
c =1,
while (a vertex adjacent to v, has color c) do {
c=c+1,;

}

label v; with color c;

ROReAS:

greedy backtrack




Graph Coloring

— Chordal graph --> has perfect vertex elimination scheme
--> coloring in O(|V| + |E]) time
— Perfect vertex elimination scheme : An ordering of
vertices [vy, V,, ..., V] such that {v, € Adj(v)) | ] > i} IS
complete

.a b C
N\ ZS/‘ [a, d, b, e, c]
d e

— Interval graph --> chordal --> use perfect vertex
elimination scheme
— When a problem is specified by a set of intervals --> use

left edge algorithm --> O(|V|log|V|)
e intervals in arow --> no intersection --> no edge --> same

color
* min. # of tracks --> min. # of colors d b
a a b a a
b b
c .\z C m



Graph Coloring

— Left edge algorithm
LEFT _EDGE(L) {
Sort elements in alist L in ascending order of |;
* l,=coordinate of left edge of element i */
Build a heap priority queue containing only root node g such that
track_number(q)=0 and coordinate of rightmost edge(q)=0;
[* priority queue containing nodes, one for each track */
n=1; [* initialize max # of tracks */
while (L is not empty) do {
s=First elementin L ;
if (Is= i) { /*r...=coordinate of root in the queue */
assign s to track of the root;
update priority queue;

}
else {
n=n+1; [* add a new track */
assign s to track n;
update priority queue with a new node;
}



Graph Coloring

— Complexity:
e Sorting: O(|V|log|V|)
* If the elements sorted are in a limited range, we can use

linear time sorting techniques such as radix sort (may be
less efficient due to high constant).

--> complexity becomes O(|V|log(d)), where d is the density
--> can be reduced further down to linear time
— Proof of optimality

« Assuming density d, lower bound of the number of tracks
required is d.

» So it is sufficient to prove that the left edge algorithm
always places all intervals on d tracks, which is optimum.

 Now, assume the left edge algorithm does not give the
optimum. That is, during the run of the algorithm, an
interval cannot be assigned to any of the d tracks. This
implies that the density is d+1, which is a contradiction.



Cligue Partitioning

Cligue Partitioning
e |ntractable

 Clique partitioning <---> coloring the complement
— cligue <-->independent set in the complement

— find max. clique <--> find max. independent set in the
complement

— vertices not in a vertex cover --> no edge between any pair of
these vertices --> independent set

a b 8 %
m o\o
C d C d

« Can be solved in O(|V|+|E|) for chordal graph using perfect
vertex elimination scheme

« Can be solved in polynomial time for comparability graph
by transforming it into a minimum network flow problem
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