
Multi-Level Logic Optimization

Kiyoung Choi
School of Electrical Engineering

Seoul National University

Introduction

Introduction
• Two-Level vs Multi-Level

– Two-level
• Sum of products or product of sums
• Implementation: PLA, ROM

– Multiple-level
• Factored form
• Implementation: standard cells

Introduction

– Example
X = AB + AC + ADE
Y = FB + FC + FAD
--> 6 product terms, 14 literals, 2 levels

K = B + C (common term)
X = AK + ADE
Y = FK + FAD
--> 6 product terms, 12 literals, 3 levels

K = B + C
X = A(K + DE) (factor)
Y = F(K + AD) (factor)
--> 10 literals, 3 levels

Representation

Representation
• Boolean network

– Set of variables X={x}
• inputs, outputs, intermediates

– Set of functions F={f}
• Specified for each intermediate and output variable
• Each function depends on some other variables

– Directed acyclic graph representation
• vertex: variable
• edge: dependency

– Implementation
• vertex: I/O, gates
• edge: nets

– ex) x = ab' + bc
y = ad
z = x + c'y

b’

b

a

c

c’

d

y

x

z

Multiple-Level Logic Synthesis

Multiple-Level Logic Synthesis
• Problem

– Minimize area under delay constraints
– Minimize maximum delay under area constraints
– Open book: arbitrary functions
– Closed book: all factored forms must conform to a library
– Technology mapping: transformation of an open book

representation into a closed book one
• Area minimization

– Minimize total number of literals
– Strategy:

• Modify the network incrementally
• Preserve I/O equivalence
• Optimize open book model first, then map to closed book

• Methods
– Algorithmic approach (MIS, BOLD)
– Rule-based approach (LSS)
– Combination (SOCRATES --> Synopsys)

Multiple-Level Logic Synthesis

• Reference
– R. K. Brayton, R. Rudell, A. Sangiovanni-Vinceltelli, and

A. R. Wang, "MIS: A Multiple-Level Logic Optimization
System," IEEE Trans. on CAD, Nov. 1987

• Network transformation
– Global transformation

• Exploit the dependencies among functions
• ex: find commonalities

– Local transformation
• Operate on each individual function
• ex: find best factorization

Multiple-Level Logic Synthesis

• Global transformation
– Resubstitution

• Simplify an expression by using another input

– Elimination
• Merge two expressions

Multiple-Level Logic Synthesis

– Extraction
• Add an extra expression for common subexpressions

– Decomposition
• Split an expression into two or more simpler expressions

Division

Division
• Boolean division

– Boolean divisor:
• g is a Boolean divisor of f if

f = gh+r, gh != 0
• g is a Boolean factor of f if

f = gh
– Example

f = a+bc+e
g = a+c
--> h = a+b, r = e
--> f = gh+r = (a+c)(a+b)+e = a+bc+e

– Hard to compute --> algebraic approximation

Division

• Algebraic division
– Algebraic expression

• An expression which is minimal w.r.t. single cube
containment

• ex) a+ab is not an algebraic expression
– Algebraic product

• fg is an algebraic product if f and g are algebraic
expressions and have no input variables in common.

• ex) (a+b)(c+d)=ac+ad+bc+bd: algebraic product
(a+b)(b'+c)=ab'+ac+bc:Boolean product

– Algebraic division
• View a Boolean expression as polynomials
• g is an algebraic divisor of f if

f = gh+r, gh ≠ 0,
and gh is an algebraic product (no non-algebraic operation
for computing gh).

Division

– All algebraic divisors are Boolean divisors
– Quotient h = f/g:

Largest algebraic divisor satisfying f = gh+r
--> g is not an algebraic divisor of r

– Algorithm
ALG_DIV (f, g) {

U = set {uj} of cubes in f with literals not in g deleted
V = set {vj} of cubes in f with literals in g deleted
/* ujvj is the j-th term of f */
Vi = {vj ∈ V: uj = gi}
h = ∩Vi

r = f - gh
}

ex)
f = ac + ad + bc + bd + e
g = a + b
U = a + a + b + b + 1
V = c + d + c + d + e
V1 = c + d
V2 = c + d
h = c + d
r = e

Resubstitution

Resubstitution
• Example

x = a+bc
y = ad+ae+bcd+bce+f = (a+bc)(d+e)+f
z = cy
--> y = x(d+e)+f --> need division

b

c

a

d

e

f

y

x

z

b

c

a

d

e

f

y

x

z

Resubstitution

• For all pairs (f, g), compute f/g and g/f and do
resubstitution
--> O(n2) algebraic division --> use filters

• Filtering: Function g is not an algebraic divisor of
f if
1. g contains a literal not in f

f = ab + c, g = ad
2. g has more terms than f

f = ab + c, g = a + b + c
3. For any literal, the count in g exceeds that in f

f = ab + c, g = ab + ac
4. f is in the transitive fan-in of g

f
f1

f2 g=F(f2)
g

For g=F(f2) to be an algebraic divisor of f,
f must also be a function of f2.
But the network is acyclic.

Kernel

Kernel
• Definition

– Kernel k of f is
k = f/c

where c is a cube and k is cube free (no cube is an
algebraic factor of k)

– K(f): set of all kernels of f
– c: co-kernel of k

ex)
f = abc + abde
f/a = bc + bde (not cube free)
f/ab = c + de (cube free --> kernel)

• No single cube is cube free
--> A kernel has at least two cubes

• If f is cube free, f/1 = f is a kernel

Kernel

• Co-kernel of a kernel is not unique.
ex) f = adh+aeh+bdh+beh+cdh+ceh+g

= (a+b+c)(d+e)h+g

kernel co-kernel
a+b+c dh, eh
d+e ah, bh, ch
(a+b+c)(d+e) h
(a+b+c)(d+e)h+g 1

Kernel

• Algorithm for computing all kernels
KERNELS(f) {

c=largest cube factor of f
K=KERNEL1(0, f/c)
return K

}
KERNEL1(j, g) {

R={g}
for (i=j+1; i<=n; i++) {

if (li appears in more than one cube) { -- multi-cube
c=largest cube factor of (g/li)
if (lk not in c for all k<=i) { -- not yet computed

R=R ∪ KERNEL1(i, g/(li∩c))
}

}
}
return R

}

Kernel

• Example
abcd+abce+adfg+aefg+abde+acdef+cg

a
bcd+bce+dfg+efg+bde+cdef

1

c d e

d+e c+e c+d

...b
cd+ce+de

dc e f g

g

c d e

c

d+e

b

kernel co-kernel
a(bc+fg)(d+e)+ade(b+cf)+cg 1
(bc+fg)(d+e)+de(b+cf) a
c(d+e)+de ab
d+e abc, afg
c+e abd
... ...

acd+ace+ade
i=1 i=2

c=a

Extraction

Extraction
• Multiple cube common sub-expression and single

cube common sub-expression
• Increase node cardinality
• Multiple cube common sub-expression

– Extraction
• Compute all kernels
• Compute all kernel intersections

– Example
K = {k1, k2, k3}
k1 = abc + de + fg
k2 = abc + de + fh
K3 = abc + fh + gh
I(K) = {abc, abc+de, abc+fh}

Extraction

– Area value of a node (area increase due to xformation)
• Number of literals increased by introducing a kernel

intersection as a new intermediate node j
• area_value(j) = (N + L) - NL

whereN: # of times literal j appears in the network
L: # of literals in fj

g1=...j... g2=...j... gN=...j...

j=fj

...

g1=...j... g2=...j... gN=...j...

Extraction

– Delay value of a node (delay increase due to xformation)
• delay_value(g) = max(0, maxk(ak

new - ak
old - max(0, sk)))

whereak
new: signal arrival time at fanout node k after

xformation
ak

old: signal arrival time at fanout node k before
xformation

sk: slack at fanout node k

k

gold

j

k

gnew

ak
old=5

sk=3
ak

new=9

delay_value(g) = 1

Factoring

Factoring
• Factor an expression by recursive division

--> Reduce literal count locally
• Algorithm

GFACTOR(f) {
If(|f| = 1) return f
k = CHOOSE_DIVISOR(f) -- choose best literal or
kernel
(h,r) = DIVIDE(f,k) -- algebraic or Boolean division
return (GFACTOR(k)GFACTOR(h)+GFACTOR(r))

}
• ex)

f = abde + acde + abh + ach + eh
= (b + c)(ade + ah) + eh
= (b + c)a(de + h) + eh

Decomposition

Decomposition
• Implement one or more divisors by additional

nodes
• Break large expressions (slow gates)
• Ease resubstitution
• Increase node cardinality
• ex)

f = (b + c)a(de + h) + eh
-->
g = de + h
f = (b + c)ag + eh

Elimination

Elimination
• Decrease node cardinality
• Exraction, resubstitution and decomposition may

increase some path lengths (timing).
• Eliminate nodes with area_value below threshold
• Example

x=a+b, f=ex+cde, g=(d+e)x+bf
area_value(x)=NL-(N+L)=4-(2+2)=0

• Repeat until no change

f g

x

fnew gnew

	Multi-Level Logic Optimization
	Introduction
	Introduction
	Representation
	Multiple-Level Logic Synthesis
	Multiple-Level Logic Synthesis
	Multiple-Level Logic Synthesis
	Multiple-Level Logic Synthesis
	Division
	Division
	Division
	Resubstitution
	Resubstitution
	Kernel
	Kernel
	Kernel
	Kernel
	Extraction
	Extraction
	Extraction
	Factoring
	Decomposition
	Elimination

