Multi-Level Logic Optimization

Kiyoung Choi School of Electrical Engineering Seoul National University

Introduction

Two-Level vs Multi-Level

- Two-level
 - Sum of products or product of sums
 - Implementation: PLA, ROM
- Multiple-level
 - Factored form
 - Implementation: standard cells

- Example

X = AB + AC + ADE Y = FB + FC + FAD --> 6 product terms, 14 literals, 2 levels

K = B + C (common term)
X = AK + ADE
Y = FK + FAD
--> 6 product terms, 12 literals, 3 levels

$$K = B + C$$

 $X = A(K + DE)$ (factor)
 $Y = F(K + AD)$ (factor)
--> 10 literals, 3 levels

Representation

- Boolean network
 - Set of variables X={x}
 - inputs, outputs, intermediates
 - Set of functions F={f}
 - Specified for each intermediate and output variable
 - Each function depends on some other variables
 - Directed acyclic graph representation
 - vertex: variable
 - edge: dependency
 - Implementation
 - vertex: I/O, gates
 - edge: nets
 - ex) x = ab' + bc
 - y = ad
 - z = x + c'y

Multiple-Level Logic Synthesis

- Problem
 - Minimize area under delay constraints
 - Minimize maximum delay under area constraints
 - Open book: arbitrary functions
 - Closed book: all factored forms must conform to a library
 - Technology mapping: transformation of an open book representation into a closed book one
- Area minimization
 - Minimize total number of literals
 - Strategy:
 - Modify the network incrementally
 - Preserve I/O equivalence
 - Optimize open book model first, then map to closed book
- Methods
 - Algorithmic approach (MIS, BOLD)
 - Rule-based approach (LSS)
 - Combination (SOCRATES --> Synopsys)

• Reference

 R. K. Brayton, R. Rudell, A. Sangiovanni-Vinceltelli, and
 A. R. Wang, "MIS: A Multiple-Level Logic Optimization System," *IEEE Trans. on CAD*, Nov. 1987

Network transformation

- Global transformation
 - Exploit the dependencies among functions
 - ex: find commonalities
- Local transformation
 - Operate on each individual function
 - ex: find best factorization

- Global transformation
 - Resubstitution
 - Simplify an expression by using another input

- Elimination
 - Merge two expressions

- Extraction
 - Add an extra expression for common subexpressions

- Decomposition
 - Split an expression into two or more simpler expressions

Division

Boolean division

- Boolean divisor:
 - g is a Boolean divisor of f if
 - f = gh+r, gh != 0
 - g is a Boolean factor of f if

- Example
 - f = a+bc+e

g = a+c

```
--> h = a+b, r = e
```

--> f = gh+r = (a+c)(a+b)+e = a+bc+e

Hard to compute --> algebraic approximation

- Algebraic division
 - Algebraic expression
 - An expression which is minimal w.r.t. single cube containment
 - ex) a+ab is not an algebraic expression
 - Algebraic product
 - fg is an algebraic product if f and g are algebraic expressions and have no input variables in common.
 - ex) (a+b)(c+d)=ac+ad+bc+bd: algebraic product (a+b)(b'+c)=ab'+ac+bc:Boolean product
 - Algobraio division
 - Algebraic division
 - View a Boolean expression as polynomials
 - g is an algebraic divisor of f if

 $f = gh+r, gh \neq 0,$

and gh is an algebraic product (no non-algebraic operation for computing gh).

- All algebraic divisors are Boolean divisors
- Quotient h = f/g:

Largest algebraic divisor satisfying f = gh+r

- --> g is not an algebraic divisor of r
- Algorithm

ALG_DIV (f, g) { $U = set \{u_i\}$ of cubes in f with literals not in g deleted $V = set \{v_i\}$ of cubes in f with literals in g deleted /* u_iv_i is the j-th term of f */ $V^{i} = \{V_{i} \in V: u_{i} = g_{i}\}$ $\mathbf{h} = \bigcap \mathbf{V}^{\mathbf{i}}$ ex) f = ac + ad + bc + bd + er = f - ghg = a + b} U = a + a + b + b + 1 $\mathbf{V} = \mathbf{c} + \mathbf{d} + \mathbf{c} + \mathbf{d} + \mathbf{e}$ $V^1 = c + d$ $V^2 = c + d$ h = c + d

Resubstitution

- Example
 - **x** = a+bc
 - y = ad+ae+bcd+bce+f = (a+bc)(d+e)+f
 - z = cy
 - --> y = x(d+e)+f --> need division

 For all pairs (f, g), compute f/g and g/f and do resubstitution

--> O(n²) algebraic division --> use filters

- Filtering: Function g is not an algebraic divisor of f if
 - 1. g contains a literal not in f

f = ab + c, g = ad

2. g has more terms than f

f = ab + c, g = a + b + c

3. For any literal, the count in g exceeds that in f

f = ab + c, g = ab + ac

 $\int f1$

4. f is in the transitive fan-in of g

 $\widetilde{g}=F(f2)$

For g=F(f2) to be an algebraic divisor of f, f must also be a function of f2. But the network is acyclic.

<u>Kernel</u>

Definition

- Kernel k of f is

k = f/c

where c is a cube and k is cube free (no cube is an algebraic factor of k)

- K(f): set of all kernels of f
- c: co-kernel of k

ex)

f = abc + abde

f/a = bc + bde (not cube free)

f/ab = c + de (cube free --> kernel)

• No single cube is cube free

--> A kernel has at least two cubes

• If f is cube free, f/1 = f is a kernel

- Co-kernel of a kernel is not unique.
 - ex) f = adh+aeh+bdh+beh+cdh+ceh+g = (a+b+c)(d+e)h+g

kernel	co-kernel
a+b+c	dh, eh
d+e	ah, bh, ch
(a+b+c)(d+e)	h
(a+b+c)(d+e)h+g	1

Algorithm for computing all kernels KERNELS(f) { c=largest cube factor of f K=KERNEL1(0, f/c) return K KERNEL1(j, g) { **R={g}** for (i=j+1; i<=n; i++) { if (I_i appears in more than one cube) { -- multi-cube c=largest cube factor of (g/l_i) if (I_k not in c for all k<=i) { -- not yet computed $R=R \cup KERNEL1(i, g/(I_i \cap c))$ return R

•

• Example

abcd+abce+adfg+aefg+abde+acdef+cg

kernel	co-kernel
a(bc+fg)(d+e)+ade(b+cf)+c	g 1
(bc+fg)(d+e)+de(b+cf)	а
c(d+e)+de	ab
d+e	abc, afg
c+e	abd

Extraction

- Multiple cube common sub-expression and single cube common sub-expression
- Increase node cardinality
- Multiple cube common sub-expression
 - Extraction
 - Compute all kernels
 - Compute all kernel intersections
 - Example

$$K = \{k1, k2, k3\}$$

$$k1 = abc + de + fg$$

$$k2 = abc + de + fh$$

$$K3 = abc + fh + gh$$

$$I(K) = \{abc, abc+de, abc+fh\}$$

- Area value of a node (area increase due to xformation)
 - Number of literals increased by introducing a kernel intersection as a new intermediate node j
 - area_value(j) = (N + L) NL where N: # of times literal j appears in the network L: # of literals in f_i

- Delay value of a node (delay increase due to xformation)
 - delay_value(g) = max(0, max_k(a_k^{new} a_k^{old} max(0, s_k))) where a_k^{new}: signal arrival time at fanout node k after xformation
 - a_k^{old}: signal arrival time at fanout node k before xformation
 - s_k: slack at fanout node k

Factoring

- Factor an expression by recursive division
 --> Reduce literal count locally
- Algorithm

```
GFACTOR(f) {

If(|f| = 1) return f

k = CHOOSE_DIVISOR(f) -- choose best literal or

kernel

(h,r) = DIVIDE(f,k) -- algebraic or Boolean division
```

```
return (GFACTOR(k)GFACTOR(h)+GFACTOR(r))
```

```
}
```

```
• ex)
```

f = abde + acde + abh + ach + eh

= (b + c)a(de + h) + eh

Decomposition

- Implement one or more divisors by additional nodes
- Break large expressions (slow gates)
- Ease resubstitution
- Increase node cardinality

```
    ex)

            f = (b + c)a(de + h) + eh
            -->

            g = de + h
            f = (b + c)ag + eh
```

Elimination

- Decrease node cardinality
- Exraction, resubstitution and decomposition may increase some path lengths (timing).
- Eliminate nodes with area_value below threshold
- Example

x=a+b, f=ex+cde, g=(d+e)x+bf

area_value(x)=NL-(N+L)=4-(2+2)=0

Repeat until no change