
Technology Mapping
(4541.554 Introduction to Computer-Aided Design)

School of EECS
Seoul National University



Technology Mapping Problem

Technology Mapping Problem

process
begin

wait until rising_edge(CLOCK);
if (SRST=‘0’) then

DOUT1 <= ‘0’;
else

DOUT1 <= DIN1 nand DIN2;
end if;
DOUT2 <= SRST and (DIN1 nand DIN2);

end process;

FD1
DOUT2

CLOCK

FD1
DOUT1

SRST

DIN1
DIN2

SRST

DIN1
DIN2

SRST

DIN1
DIN2

FD1
DOUT2

CLOCK

FD1
DOUT1

logic synthesis

technology mapping



Technology Mapping Problem

• Problem
– Given

• Netlist
• Library of components
• Performance goals (area, speed)

– Find
• Best implementation w.r.t. performance goals

• Methods
– Rule-based: LSS, SOCRATES
– Algorithmic (graph covering): DAGON, MIS



Rule-Based Technology Mapping

Rule-Based Technology Mapping
• SOCRATES

– Synthesis and Optimization of Combinatorics using a 
Rule-based And Technology-independent Expert 
System

– A. J. de Geus and W. Cohen, "A Rule Based System for 
Optimizing Combinational Logic," IEEE Design & Test of 
Computers, Aug. 1985.

• System Description
comparator

weak
division

two->multi

flattener
multi->two

synthesis
eq.->AND/OR/INV

extractor
minimizer
Espresso

optimizer

schematic
generator

rulesrule
entry

Boolean netlist

PLA



Rule-Based Technology Mapping

• Design Scenario

existing netlist

Boolean
functions

minimal
functions

minimal functions
with common terms

netlist

optimized
netlist

extract

minimize (two-level)

weak divide (multi-level)

synthesize

optimize (technology mapping)



Rule-Based Technology Mapping

• Technology Mapping
– A series of local transformations based on rules
– Example rules:

a
b

slow a
b

slow



Rule-Based Technology Mapping

• Main Operations
– Matching: Find a number of rules that apply to the 

present network
– Cost function evaluation: For each potential rule 

application, a cost function is computed to determine 
the quality of the resulting circuit

– Selection: Decide which rule should be applied
– Replacement: Perform network transformation by 

applying the selected rule

size 11

size 9 size: # of tr. pairs

patterns

target

replacement



Rule-Based Technology Mapping

• Search Strategies
– State space search problem
– Greedy algorithm

Order rules in the knowledge base.
do {

for each rule R {
for each gate G {

if rule R matches at gate G 
if cost improves

apply_rule (R, G)
}

}
} while improving

--> local minimum



Rule-Based Technology Mapping

size 11

size 9

size 11

size 9

size 7



Rule-Based Technology Mapping

– Look-ahead strategy
• Search tree

• Complexity of the search
complexity = breadthdepth

breadth = #gates * #rules
ex) 100 gates,

20 rules,
look-ahead two rule applications 
--> branching factor b = 100*20 = 2,000

depth d = 2
--> complexity = 2,0002 = 4,000,000
--> prune the tree

...

...

depth

breadth



Rule-Based Technology Mapping

– Pruning
• Limit to first B applicable rules
• Limit the depth to D

--> rule application depth = Dapp

• Limit the size of the neighborhood
--> only search mutually exclusive transformations

– Metarules
• Look-ahead is more useful in later phases

--> Dynamically vary parameters



Rule-Based Technology Mapping

• Rule Entry
– Two netlists are extracted and compared

comparator

weak
division

two->multi

flattener
multi->two

synthesis
eq.->AND/OR/INV

extractor
minimizer
Espresso

optimizer

schematic
generator

rulesrule
entry

Boolean netlist

PLA



Graph Covering

Graph Covering 
• DAGON

– K. Keutzer, "DAGON: technology binding and local 
optimization by DAG matching," Proc. 24th Design 
Automation Conference, 1987

• Problem
– Given

• Boolean network (represented by a DAG)
• Library (each cell is a DAG with a cost)

– Find minimal cost covering of the Boolean network
• Requires DAG matching (NP-complete)



Graph Covering

• Simplification
– Represent a network by a forest by partitioning DAG
– Partitioning

• If a node has fanout greater than one, cut the graph there
• Gate with fanout>1 becomes a root

– Complexity of the partitioning: linear
– Represent library cells by trees
– Use canonical forms: NANDs and NOTs
– Match trees by trees
– Dynamic programming for finding 

a minimal cost match



Graph Covering

• Tree Matching
– Compute all matching at each node
– Select best matching (depth-first)

• Leaf: Cost of a NAND or a NOT
• Internal node: Cost of matching tree + cost of sub-trees

– Example

ND2(3)

ND2(6)INV(2)

ND2(11)

AOI21(7)cost(INV)=2
cost(NAND)=3
cost(AOI21)=4

without AOI21:
cost at A=11+2=13

with AOI21:
cost at A=3+4=7

A



Graph Covering

• Weak Points
– Partitioning network into trees

--> local optimum
– Representing cells by trees

--> No way of representing XORs with a tree



Technology Mapping for FPGAs

Technology Mapping for FPGAs
• LUT-based FPGA

– Mapping

Boolean network Mapping to 5-input LUTs



Technology Mapping for FPGAs

– Decomposition

Without decomposition

4 LUTs

With decomposition

2 LUTs



Technology Mapping for FPGAs

– Local reconvergent paths

Reconvergent paths

realized within one LUT



Technology Mapping for FPGAs

– Replication of logic

Without replicated logic

3 LUTs

With replicated logic

2 LUTs


	Technology Mapping�(4541.554 Introduction to Computer-Aided Design)
	Technology Mapping Problem
	Technology Mapping Problem
	Rule-Based Technology Mapping
	Rule-Based Technology Mapping
	Rule-Based Technology Mapping
	Rule-Based Technology Mapping
	Rule-Based Technology Mapping
	Rule-Based Technology Mapping
	Rule-Based Technology Mapping
	Rule-Based Technology Mapping
	Rule-Based Technology Mapping
	Graph Covering
	Graph Covering
	Graph Covering
	Graph Covering
	Technology Mapping for FPGAs
	Technology Mapping for FPGAs
	Technology Mapping for FPGAs
	Technology Mapping for FPGAs

