
I - Introduction Contemporary Logic Design 1

Ch 1. Introduction

I - Introduction Contemporary Logic Design 2

Introduction

Computer hardware has experienced the most dramatic
improvement in capabilities and costs ever experienced by
humankind.
Logic design is one of the disciplines that has enabled the
digital revolution which has dramatically altered our lives.

I - Introduction Contemporary Logic Design 3

Design

What is design?
the process of coming up with a solution to a problem
while meeting some criteria for size, cost, power, beauty,
elegance, etc.

The divide-and-conquer approach
Has been developed to handle the complexity of the process
We breakdown the problem into smaller pieces, deal with
constraints beyond their control, put all the pieces together to
solve the bigger problem.

I - Introduction Contemporary Logic Design 4

Logic Design

The logic designer’s job
To choose the right components to solve a logic design problem
while meeting constraints (e.g., size, cost, performance, and
power consumption)

Digital components
have input and output wires which carry digital logic values
(i.e., 0 and 1).
Arbitrary information can be represented using this digital
abstraction.
Transistors react to the voltage levels on the input wires.
Sequential logic circuits’ outputs react to the current values on
the input wires and to the past history of values on those same
input wires.

I - Introduction Contemporary Logic Design 5

Contemporary Logic Design

Important trends in contemporary Logic Design
larger and larger designs
shorter and shorter time to market
cheaper and cheaper products

Scale
pervasive use of computer-aided design tools over hand methods
multiple levels of design representation

Time
emphasis on abstract design representations
programmable rather than fixed function components
automatic synthesis techniques
importance of sound design methodologies

Cost
higher levels of integration
use of simulation to debug designs
simulate and verify before you build

I - Introduction Contemporary Logic Design 6

A Brief History of Logic Design

1850: George Boole invents Boolean algebra
maps logical propositions to symbols
permits manipulation of logic statements using mathematics

1938: Claude Shannon links Boolean algebra to switches
his Masters’ thesis

1946: ENIAC . . . The world’s first completely electronic
computer

18,000 vacuum tubes
several hundred multiplications per minute

1947: Shockley, Brittain, and Bardeen invent the transistor
replaces vacuum tubes
enable integration of multiple devices into one package
gateway to modern electronics

I - Introduction Contemporary Logic Design 7

A Brief History of Logic Design (cont’d)

1960s: A large catalog of logic components
Texas Instruments TTL data book
Arbitrary logic circuits could be built from these basic primitives.

1975: The introduction of Programmable Array Logic (PAL)
collections of switches in regular arrangements
increase levels of integration
make it easier for designers to change the wiring pattern

1984: Field-programmable gate arrays introduced by Xilinx
Logic circuits can be altered over times.
Synthesis tools have followed with the appropriate compilation.

I - Introduction Contemporary Logic Design 8

Computation: abstract vs. implementation

Up to now, computation has been a mental exercise (paper,
programs)
This class is about physically implementing computation using
physical devices that use voltages to represent logical values
Basic units of computation are:

representation: "0", "1" on a wire
set of wires (e.g., for binary ints)

assignment: x = y
data operations: x + y – 5
control:

sequential statements: A; B; C
conditionals: if x == 1 then y
loops: for (i = 1 ; i == 10, i++)
procedures: A; proc(...); B;

We will study how each of these are implemented in hardware
and composed into computational structures

I - Introduction Contemporary Logic Design 9

close switch (if A is “1” or asserted)
and turn on light bulb (Z)

A Z

open switch (if A is “0” or unasserted)
and turn off light bulb (Z)

Switches: basic building block of digital
computers

Implementing a simple circuit (arrow shows action if wire
changes to “1”):

Z = A

A
Z

I - Introduction Contemporary Logic Design 10

AND

OR

Z = A and B

Z = A or B

A B

A

B

Compose switches into more complex ones (Boolean
functions):

Switches (cont’d)

A
B Z

A
B

Z

I - Introduction Contemporary Logic Design 11

Switching networks

Switch settings
determine whether or not a conducting path exists to light
the light bulb

To build larger computations
use a light bulb (output of the network) to set other switches
(inputs to another network).

Connect together switching networks
to construct larger switching networks, i.e., there is a way to
connect outputs of one network to the inputs of the next.

I - Introduction Contemporary Logic Design 12

conducting
path composed

of switches
closes circuit

current flowing through coil
magnetizes core and causes normally
closed (nc) contact to be pulled open

when no current flows, the spring of the contact
returns it to its normal position

A simple way to convert between conducting paths and
switch settings is to use (electro-mechanical) relays.
What is a relay?

What determines the switching speed of a relay network?

Relay networks

I - Introduction Contemporary Logic Design 13

Transistor networks

Relays aren't used much anymore
Relay circuits were large and slow

Modern digital systems are designed in CMOS technology
MOS stands for Metal-Oxide on Semiconductor
C is for complementary because there are both normally-open
and normally-closed switches

MOS transistors act as voltage-controlled switches
similar, though easier to work with than relays.

I - Introduction Contemporary Logic Design 14

n-type
open when voltage at G is low

closed when voltage at G is high

p-type
closed when voltage at G is low
open when voltage at G is high

G

S D

MOS transistors

MOS transistors have three terminals: drain, gate, and source
they act as switches in the following way:
if the voltage on the gate terminal is (some amount) higher/lower
than the source terminal then a conducting path will be
established between the drain and source terminals

G

S D

I - Introduction Contemporary Logic Design 15

3v

X

Y 0 volts

X Y

3 volts0v

what is the
relationship

between X and Y?

CMOS network

0 volts

3 volts

NOT

I - Introduction Contemporary Logic Design 16

X Y Z1 Z2

0 volts

3 volts

0 volts

3 volts

0 volts

0 volts

3 volts

3 volts

what is the
relationship

between X, Y and Z?

Two CMOS transistors networks

3v

X Y

0v

Z1

3v

X Y

0v

Z2

3 volts

3 volts

3 volts

0 volts

3 volts

0 volts

0 volts

0 volts

NAND NOR

I - Introduction Contemporary Logic Design 17

easy to implement
with CMOS transistors
(the switches we have
and use most)

Combinational logic symbols

Common combinational logic systems have standard symbols
called logic gates

Buffer, NOT

AND, NAND

OR, NOR

Z

A
B

Z

Z

A

A
B

Vdd

I - Introduction Contemporary Logic Design 18

Digital vs. analog

analog

digital

continuous
value

continuous time

quantized

discrete
value

continuous time

sampled

continuous
value

discrete time

digital

discrete
value

discrete time

I - Introduction Contemporary Logic Design 19

Why digital/binary?

Why digital?
Human processes in digital

e.g. analog vs. digital watch
Robust : immune to noise by reshaping

e.g. LP vs. CD

How many quantization levels?
Binary (represented by bits, i.e. 0's and 1's) is the most popular

Why binary?
Can use simple switches (on and off)
Regarded as decision making (true and false) --> simple logical
model
Reliability (big noise margin)

I - Introduction Contemporary Logic Design 20

An example : Calendar

Calendar subsystem: number of days in a month (to control
watch display)

used in controlling the display of a wrist-watch LCD screen

inputs: month, leap year flag
outputs: number of days

I - Introduction Contemporary Logic Design 21

Implementation in software

integer number_of_days (month, leap_year_flag)
{
switch (month) {

case ‘january’: return (31);
case ‘february’: if (leap_year_flag == 1) then
return (29) else return (28);

case ‘march’: return (31);
...
case ‘december’: return (31);
default: return (0);

}

}

I - Introduction Contemporary Logic Design 22

leapmonth

d28 d29 d30 d31

month leap d28 d29 d30 d31
0000 – – – – –
0001 – 0 0 0 1
0010 0 1 0 0 0
0010 1 0 1 0 0
0011 – 0 0 0 1
0100 – 0 0 1 0
0101 – 0 0 0 1
0110 – 0 0 1 0
0111 – 0 0 0 1
1000 – 0 0 0 1
1001 – 0 0 1 0
1010 – 0 0 0 1
1011 – 0 0 1 0
1100 – 0 0 0 1
1101 – – – – –
111– – – – – –

Implementation as a
combinational digital system

Encoding:
how many bits for each input/output?
binary number for month
four wires for 28, 29, 30, and 31

Behavior:
combinational
truth table
specification

I - Introduction Contemporary Logic Design 23

symbol
for and

symbol
for or

symbol
for not

Combinational example (cont’d)

Truth-table to logic to switches to gates
d28 = 1 when month=0010 and leap=0
d28 = m8'•m4'•m2•m1'•leap'

d31 = 1 when month=0001 or month=0011 or ... month=1100
d31 = (m8'•m4'•m2'•m1) + (m8'•m4'•m2•m1) + ...
(m8•m4•m2'•m1')
d31 = can we simplify more? month leap d28 d29 d30 d31

0001 – 0 0 0 1
0010 0 1 0 0 0
0010 1 0 1 0 0
0011 – 0 0 0 1
0100 – 0 0 1 0
...
1100 – 0 0 0 1
1101 – – – – –
111– – – – – –
0000 – – – – –

I - Introduction Contemporary Logic Design 24

Combinational example (cont’d)

d28 = m8'•m4'•m2•m1'•leap'
d29 = m8'•m4'•m2•m1'•leap
d30 = (m8'•m4•m2'•m1') + (m8'•m4•m2•m1') +

(m8•m4'•m2'•m1) + (m8•m4'•m2•m1)
= (m8'•m4•m1') + (m8•m4'•m1)

d31 = (m8'•m4'•m2'•m1) + (m8'•m4'•m2•m1) +
(m8'•m4•m2'•m1) + (m8'•m4•m2•m1) +
(m8•m4'•m2'•m1') + (m8•m4'•m2•m1') +
(m8•m4•m2'•m1')

I - Introduction Contemporary Logic Design 25

Combinational example (cont’d)

d31 = (m8'•m4'•m2'•m1) + (m8'•m4'•m2•m1) +
(m8'•m4•m2'•m1) + (m8'•m4•m2•m1) +
(m8•m4'•m2'•m4') + (m8•m4'•m2•m1') +
(m8•m4•m2'•m1')

Alternate realizations for a 7-input OR function

I - Introduction Contemporary Logic Design 26

Another example : Combination Lock

Door combination lock:
punch in 3 values in sequence and the door opens; if there is an
error the lock must be reset; once the door opens the lock must
be reset

inputs: sequence of input values, reset
outputs: door open/close
memory: must remember combination

or always have it available as an input

I - Introduction Contemporary Logic Design 27

Implementation in software

integer combination_lock () {
integer v1, v2, v3;
integer error = 0;
static integer c[3] = 3, 4, 2;

while (!new_value());
v1 = read_value();
if (v1 != c[1]) then error = 1;

while (!new_value());
v2 = read_value();
if (v2 != c[2]) then error = 1;

while (!new_value());
v3 = read_value();
if (v2 != c[3]) then error = 1;

if (error == 1) then return(0); else return (1);

}

I - Introduction Contemporary Logic Design 28

Implementation as a sequential digital system

Encoding:
how many bits per input value?
how many values in sequence?
how do we know a new input value is entered?
how do we represent the states of the system?

Behavior:
clock wire tells us when it’s ok
to look at inputs
(i.e., they have settled after change)
sequential: sequence of values
must be entered
sequential: remember if an error occurred
finite-state specification

ResetValue

Open/Closed

New

Clock
State

I - Introduction Contemporary Logic Design 29

C2!=Value
& New

C3!=Value
& New

Reset

Not NewNot NewNot New

closed

S1

closed
C1=Value

& New

S2

closed
C2=Value

& New

S3

C3=Value
& New

OPEN

open

C1!=Value
& New

closed

ERR

Sequential example (cont’d):
abstract control

Finite-state diagram
states: 5 states

represent point in execution of machine
each state has outputs

transitions: 6 from state to state, 5 self transitions, 1 global
changes of state occur when clock says it’s ok
based on value of inputs

inputs: reset, new, results of comparisons
output: open/closed

I - Introduction Contemporary Logic Design 30

Reset

Open/Closed

New

C1 C2 C3

Comparator

Value

Equal

Multiplexer

Equal

Controller
MUX
Control

Clock

control
finite-state machine controller
control for data-path
state changes controlled by clock

Sequential example (cont’d):
data-path vs. control

Internal structure
data-path

storage for combination
comparators

I - Introduction Contemporary Logic Design 31

closed

closed
mux=C1reset equal

& new

not equal
& new

not equal
& new

not equal
& new

not newnot newnot new

S1 S2 S3 OPEN

ERR

closed
mux=C2 equal

& new

closed
mux=C3 equal

& new

open

Sequential example (cont’d):
finite-state machine

Finite-state machine
refine state diagram to include internal structure

I - Introduction Contemporary Logic Design 32

reset new equal state state mux open/closed
1 – – – S1 C1 closed
0 0 – S1 S1 C1 closed
0 1 0 S1 ERR – closed
0 1 1 S1 S2 C2 closed
0 0 – S2 S2 C2 closed
0 1 0 S2 ERR – closed
0 1 1 S2 S3 C3 closed
0 0 – S3 S3 C3 closed
0 1 0 S3 ERR – closed
0 1 1 S3 OPEN – open
0 – – OPEN OPEN – open
0 – – ERR ERR – closed

next

Finite-state machine
generate state table (much like a truth-table)

Sequential example (cont’d):
finite-state machine

closed

closed
mux=C1

reset equal
& new

not equal
& new

not equal
& new

not equal
& new

not newnot newnot new

S1 S2 S3 OPEN

ERR

closed
mux=C2 equal

& new

closed
mux=C3 equal

& new

open

I - Introduction Contemporary Logic Design 33

Sequential example (cont’d):
encoding

Encode state table
state can be: S1, S2, S3, OPEN, or ERR

needs at least 3 bits to encode: 000, 001, 010, 011, 100
and as many as 5: 00001, 00010, 00100, 01000, 10000
choose 4 bits: 0001, 0010, 0100, 1000, 0000

output mux can be: C1, C2, or C3
needs 2 to 3 bits to encode
choose 3 bits: 001, 010, 100

output open/closed can be: open or closed
needs 1 or 2 bits to encode
choose 1 bits: 1, 0

I - Introduction Contemporary Logic Design 34

good choice of encoding!

mux is identical to
last 3 bits of state

open/closed is
identical to first bit
of state

Encode state table
state can be: S1, S2, S3, OPEN, or ERR

choose 4 bits: 0001, 0010, 0100, 1000, 0000
output mux can be: C1, C2, or C3

choose 3 bits: 001, 010, 100
output open/closed can be: open or closed

choose 1 bits: 1, 0

reset new equal state state mux open/closed
1 – – – 0001 001 0
0 0 – 0001 0001 001 0
0 1 0 0001 0000 – 0
0 1 1 0001 0010 010 0
0 0 – 0010 0010 010 0
0 1 0 0010 0000 – 0
0 1 1 0010 0100 100 0
0 0 – 0100 0100 100 0
0 1 0 0100 0000 – 0
0 1 1 0100 1000 – 1
0 – – 1000 1000 – 1
0 – – 0000 0000 – 0

Sequential example (cont’d):
encoding

next

I - Introduction Contemporary Logic Design 35

Reset

Open/Closed

New Equal

Controller
MUX
Control

Clock

Reset

Open/Closed

New Equal

MUX
Control

Clock

Comb. Logic

State

special circuit element,
called a register, for
remembering inputs
when told to by clock

Sequential example (cont’d):
controller implementation

Implementation of the controller

I - Introduction Contemporary Logic Design 36

System

Data-path Control

State
Registers

Combinational
Logic

Multiplexer Comparator
Code

Registers

Register Logic

Switching
Networks

Design hierarchy

	Ch 1. Introduction
	Introduction
	Design
	Logic Design
	Contemporary Logic Design
	A Brief History of Logic Design
	A Brief History of Logic Design (cont’d)
	Computation: abstract vs. implementation
	Switches: basic building block of digital computers
	Switches (cont’d)
	Switching networks
	Relay networks
	Transistor networks
	MOS transistors
	CMOS network
	Two CMOS transistors networks
	Combinational logic symbols
	Digital vs. analog
	Why digital/binary?
	An example : Calendar
	Implementation in software
	Implementation as a�combinational digital system
	Combinational example (cont’d)
	Combinational example (cont’d)
	Combinational example (cont’d)
	Another example : Combination Lock
	Implementation in software
	Implementation as a sequential digital system
	Sequential example (cont’d):�abstract control
	Sequential example (cont’d):�data-path vs. control
	Sequential example (cont’d):�finite-state machine
	Sequential example (cont’d):�finite-state machine
	Sequential example (cont’d):�encoding
	Sequential example (cont’d):�encoding
	Sequential example (cont’d):�controller implementation
	Design hierarchy

