3. Reflection and Transmission of Plane EM Waves

A. Normal Incidence of Plane Waves at Plane Boundaries

1) Reflection and transmission of TEM waves

In two unbounded lossless (or lossy) media contacting at a plane boundary,

Incident wave (E_i, H_i) : $\hat{k_i} = \hat{z}$

$$\boldsymbol{E}_{\boldsymbol{i}}(z) = \hat{x} E_{io} e^{-j\beta_1 z}, \qquad \boldsymbol{H}_{\boldsymbol{i}}(z) = \frac{\hat{k}_i \times \boldsymbol{E}_{\boldsymbol{i}}(z)}{\eta_1} = \hat{y} \frac{E_{io}}{\eta_1} e^{-j\beta_1 z}$$
(7-84, 85)

Reflected wave (E_r, H_r) : $\hat{k_r} = -\hat{z}$ $E_r(z) = \hat{x} E_{ro} e^{+j\beta_1 z}, \quad H_r(z) = \frac{\hat{k_r} \times E_r(z)}{\eta_1} = -\hat{y} \frac{E_{ro}}{\eta_1} e^{+j\beta_1 z}$ (7-86, 87)

Transmitted wave (E_t, H_t) : $\hat{k}_t = \hat{z}$ $E_t(z) = \hat{x} E_{to} e^{-j\beta_2 z}, \quad H_t(z) = \frac{\hat{k}_t \times E_t(z)}{\eta_2} = \hat{y} \frac{E_{to}}{\eta_2} e^{-j\beta_2 z}$ (7-88, 89)

Total fields in medium 1 : incident + reflected waves

$$\boldsymbol{E}_{1}(z) = \hat{x} \left(E_{io} e^{-j\beta_{1}z} + E_{ro} e^{+j\beta_{1}z} \right), \quad \boldsymbol{H}_{1}(z) = \hat{y} \frac{1}{\eta_{1}} \left(E_{io} e^{-j\beta_{1}z} - E_{ro} e^{+j\beta_{1}z} \right) \tag{11}$$

Total fields in medium 2 : transmitted waves

$$\boldsymbol{E_2}(z) = \hat{x} E_{to} e^{-j\beta_2 z}, \qquad \qquad \boldsymbol{H_2}(z) = \hat{y} \frac{E_{to}}{\eta_2} e^{-j\beta_2 z}$$
(12)

Boundary conditions at z = 0 :

$$\hat{\boldsymbol{n}} \times (\boldsymbol{E_1} - \boldsymbol{E_2}) = \boldsymbol{0}, \qquad \hat{\boldsymbol{n}} \times (\boldsymbol{H_1} - \boldsymbol{H_2}) = \boldsymbol{0} \implies \text{Continuity of } \boldsymbol{E_{\parallel}} \& \boldsymbol{H_{\parallel}}$$

$$\implies \boldsymbol{E_{io}} + \boldsymbol{E_{ro}} = \boldsymbol{E_{to}}, \qquad (\boldsymbol{E_{io}} - \boldsymbol{E_{ro}}) / \eta_1 = \boldsymbol{E_{to}} / \eta_2 \qquad (7-90, 91)$$

$$\stackrel{(111),(12)}{\checkmark}$$

Solving (7-90, 91),

$$E_{ro} = \left(\frac{\eta_2 - \eta_1}{\eta_2 + \eta_1}\right) E_{io} \equiv \Gamma E_{io} , \quad E_{to} = \left(\frac{2\eta_2}{\eta_2 + \eta_1}\right) E_{io} \equiv \tau E_{io}$$
(7-92, 93)

where Reflection coefficient : $\Gamma \triangleq \frac{E_{ro}}{E_{io}} = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1}$ (7-94)

Transmission coefficient :
$$\tau \triangleq \frac{E_{to}}{E_{io}} = \frac{2\eta_2}{\eta_2 + \eta_1}$$
 (7-95)

$$\Rightarrow$$
 1+ $\Gamma = \tau$ for normal incidence (7-96)

Note) In lossy media, η (real) is replaced by η_c (complex).

Then, Γ and τ become complex (phase shift at the interface). Rewriting (11) for total fields in medium 1,

$$E_{1}(z) = \hat{x} E_{io} e^{-j\beta_{1}z} \left(1 + \Gamma e^{+j2\beta_{1}z}\right)$$
(7-97)

Standing (envelope) wave

$$H_{1}(z) = \hat{y} \frac{E_{io}}{\eta_{1}} e^{-j\beta_{1}z} \left(1 - \Gamma e^{+j2\beta_{1}z}\right)$$
(7-100)

Rewriting (12) for total fields in medium 2,

$$E_{2}(z) = E_{t}(z) = \hat{x} \tau E_{io} e^{-j\beta_{2}z}$$
(7-101)

$$H_{2}(z) = H_{t}(z) = \hat{y} \frac{\tau}{\eta_{2}} E_{io} e^{-j\beta_{2}z}$$
(7-102)

If the standing-wave ratio (SWR) is defined as

$$S \triangleq \frac{|E|_{\max}}{|E|_{\min}} = \frac{1+|\Gamma|}{1-|\Gamma|} \qquad (1 \le S < \infty)$$
 (7-98)

then
$$|\Gamma| = \frac{1-S}{1+S}$$
 $(-1 \le \Gamma \le 1)$ (7-99)

Time-ave. power density = time-ave. Poynting vector (7-79)

$$\mathscr{P}_{av}(z) = \frac{1}{2} \operatorname{Re}[\mathbf{E} \times \mathbf{H}^*] \quad (W/m^2)$$
(7-79, 103)

(7-97, 100) in (7-103) :
$$(\mathscr{P}_{av})_1 = \frac{1}{2} \operatorname{Re}[E_1 \times H_1^*] = \hat{z} \frac{E_{io}^2}{2\eta_1} (1 - \Gamma^2)$$
 (7-104)

(7-101, 102) in (7-103):
$$(\mathcal{P}_{av})_2 = \frac{1}{2} Re[E_2 \times H_2^*] = \hat{z} \frac{E_{io}^2}{2\eta_2} \tau^2$$
 (7-105)

Power (or Energy) conservation in lossless media :
$$(\mathscr{P}_{av})_1 = (\mathscr{P}_{av})_2$$

 $\Rightarrow 1 - \Gamma^2 = (\eta_1 / \eta_2) \tau^2$
(7-107)

(cf) Reflectivity (or reflectance in optics):

$$R \triangleq \frac{(P_{av})_{ro}}{(P_{av})_{io}} = \frac{S_{ro}(\mathscr{P}_{av})_{ro}}{S_{io}(\mathscr{P}_{av})_{io}} = \Gamma^2$$
(7-94)*

Transmissivity (or transmittance in optics):

$$T \triangleq \frac{(P_{av})_{to}}{(P_{av})_{io}} = \frac{S_{to}(\mathscr{P}_{av})_{to}}{S_{io}(\mathscr{P}_{av})_{io}} = \frac{\eta_1}{\eta_2} \tau^2$$
(7-95)*

$$(7-107) \implies R+T=1 \tag{7-107}*$$

2) Normal incidence on a good conductor and standing waves For medium 2 of perfect conductor ($\sigma_2 \rightarrow \infty$, *i.e.*, $\sigma_2/\omega \epsilon \gg 1$),

(7-52):
$$\alpha = \beta \cong \sqrt{\pi f \mu \sigma_2} \to \infty$$

(7-53): $\eta_{2c} = (1+j)\sqrt{\pi f \mu / \sigma_2} = 0$ (short-circuit boundary) (7-94): $\Gamma = \frac{E_{ro}}{E_{io}} = \frac{\eta_{2c} - \eta_1}{\eta_{2c} + \eta_1} = -1$ [total reflection and out-of-phase between $E_r \& E_i (-1 = e^{j\pi})$: phase shift $= \pi$] (7-95): $\tau = \frac{E_{to}}{E_{io}} = \frac{2\eta_2}{\eta_2 + \eta_1} = 0$ (no transmission across perfect conductor surface) La sident many: $\mathbf{F}(\cdot) = \hat{\mathbf{F}}_{io} - \frac{j\beta_1 z}{\eta_2 + \eta_1} = \mathbf{F}_{io} - \frac{j\beta_1 z}{\eta_2 + \eta_1} = 0$ (no transmission across perfect conductor surface)

$$\begin{array}{l} \text{Incident wave: } E_{i}(z) = x E_{io} e^{-\beta \beta_{1} z}, \quad H_{i}(z) = y \frac{\omega}{\eta_{1}} e^{-\beta \beta_{1} z} \quad (7-84, \ 85)(7-108, \ 109) \\ \text{Reflected wave: } E_{r}(z) = -\hat{x} E_{io} e^{+\beta \beta_{1} z}, \quad H_{r}(z) = \hat{y} \frac{E_{io}}{\eta_{1}} e^{+\beta \beta_{1} z} \quad (7-110, \ 111) \end{array}$$

Total wave phasors in medium 1 (7-97, 100) : $\begin{pmatrix}
\mathbf{E_{1}}(z) = \hat{x} E_{io} \left(e^{-j\beta_{1}z} - e^{+j\beta_{1}z} \right) = -j\hat{x} 2 E_{io} \sin\beta_{1}z \quad (\mathbf{E_{1}} \text{ lags behind } \mathbf{H_{1}} \text{ by } \pi/2) (7-112) \\
\mathbf{H_{1}}(z) = \hat{y} \frac{E_{io}}{\eta_{1}} \left(e^{-j\beta_{1}z} + e^{+j\beta_{1}z} \right) = \hat{y} 2 \frac{E_{io}}{\eta_{1}} \cos\beta_{1}z \quad (7-113)$

Total instantaneous waves in medium $1 \Rightarrow$ Standing wave resulted from the interference of two (incid. and reflec.) waves

$$\int E_1(z,t) = Re[E_1(z)e^{j\omega t}] = \hat{x} \, 2 E_{io} \sin\beta_1 z \sin\omega t = \hat{x} E_1 \sin\omega t \tag{7-114}$$

$$\mathbf{H}_{\mathbf{1}}(z,t) = Re[\mathbf{H}_{\mathbf{1}}(z)e^{j\omega t}] = \hat{y} \, 2\frac{\mathbf{L}_{io}}{\eta_1} \cos\beta_1 z \, \cos\omega t = \hat{y} \, \mathbf{H}_1 \cos\omega t \quad (7-115)$$

Standing wave curve = Envelope of instantaneous curve Note) (7-104) $\Rightarrow (\mathscr{P}_{av})_1 = 0$: No EM power flow in medium 1

B. Oblique Incidence of Plane Waves at Plane Boundaries

1) Snell's laws (ind. of wave polarization)
Traveling with same
$$u_{p1}$$
 in medium 1
 $\Rightarrow \overline{OA'} = \overline{AO'}$
 $\Rightarrow \overline{OO'} \sin \theta_r = \overline{OO'} \sin \theta_i$
 $\Rightarrow \theta_r = \theta_i$: Snell's law
of reflection (7-116)
Traveling with different u_p 's in med. 1 & 2,
 $\Rightarrow \frac{\overline{OB}}{u_{p2}} = \frac{\overline{AO'}}{u_{p1}}$
 $\Rightarrow \frac{\overline{OO'} \sin \theta_i}{\overline{OO'} \sin \theta_i} = \frac{u_{p2}}{u_{p1}}$
 $\Rightarrow \frac{\overline{OO'} \sin \theta_i}{\sin \theta_i} = \frac{u_{p2}}{u_{p1}} = \frac{\beta_1}{\beta_2} = \frac{n_{r1}}{n_{r2}}$
 \vdots Snell's law of refraction (7-117)
For $\mu_1 = \mu_2$,
 $\frac{\sin \theta_i}{\sin \theta_i} = \frac{u_{p2}}{u_{p1}} = \frac{\sqrt{\epsilon_1}}{n_{r2}} = \sqrt{\frac{\epsilon_1}{\epsilon_2}} = \frac{\eta_2}{\eta_1}$
 $u_p = \frac{1}{\sqrt{\mu\epsilon}}$
 $(7-118)$

$$E_{t}(x, z), \quad H_{t}(x, z) \propto e^{-jk_{t} \cdot R} \qquad k = \omega \sqrt{\mu\epsilon} = \beta$$

$$\Rightarrow e^{-jk_{t} \cdot R} = e^{-jk_{2}\hat{k}_{t} \cdot R} = e^{-j\beta_{2}(\hat{x}\sin\theta_{t} + \hat{z}\cos\theta_{t}) \cdot (\hat{x}x + \hat{z}z)}$$

$$= e^{-j\beta_{2}(x\sin\theta_{t} + z\cos\theta_{t})}$$

$$= e^{-j\beta_{2}x} + e^{-j\beta_{2$$

exponentially attenuating amplitud in the normal direction (z)

where
$$\alpha_2 = \beta_2 \sqrt{\frac{\epsilon_1}{\epsilon_2} sin^2 \theta_i - 1}$$
, $\beta_{2x} = \beta_2 \sqrt{\frac{\epsilon_1}{\epsilon_2}} sin \theta_i$ (7-125a, b)

 \Rightarrow Surface wave = Evanescent wave along the interface for $heta_i > heta_c$

(e.g. 7-9) Underwater light source

- 25 -

(e.g. 7-10) Optical fiber

= Dielectric rod or fiber guiding EM wave by total internal reflection

For total internal reflection in the fiber,

$$\sin\theta_1 \ge \sin\theta_c \implies \cos\theta_t \ge \sin\theta_c = \epsilon_{r1}^{-1/2}$$
 (7-127)

Snell's law of refraction : $\sin \theta_t \ge \epsilon_{r1}^{-1/2} \sin \theta_i$ (7-128)

(7-127) in (7-128):
$$1 - \epsilon_{r1}^{-1} \sin^2 \theta_i \ge \epsilon_{r1}^{-1}$$
$$\Rightarrow \quad \epsilon_{r1} \ge 1 + \sin^2 \theta_i$$
(7-129)

For the total internal reflection at any incident angle,

$$\begin{array}{l} \theta_i \leq \pi/2 \implies (\epsilon_{r1})_{\min} = 1 + \sin^2(\pi/2) = 2\\ \\ \text{or} \quad (n_{r1})_{\min} = \sqrt{(\epsilon_{r1})_{\min}} = \sqrt{2}\\ \\ \text{Note)} \ \epsilon_r = 4 \text{~10 (glass), 3.4 (flexiglass)} \end{array}$$

Boundary conditions at $z = 0 \implies$ Continuity of $E_{\parallel}(x,0) \& H_{\parallel}(x,0)$

$$\begin{pmatrix}
E_{iyo} + E_{ryo} = E_{tyo} : E_{io}e^{-j\beta_1 x \sin\theta_i} + E_{ro}e^{-j\beta_1 x \sin\theta_r} = E_{to}e^{-j\beta_2 x \sin\theta_t} & (7-143) \\
H_{ixo} + H_{rxo} = H_{txo} : \eta_1^{-1} (-E_{io}\cos\theta_i e^{-j\beta_1 x \sin\theta_i} + E_{ro}\cos\theta_r e^{-j\beta_1 x \sin\theta_r}) \\
= -\eta_2^{-1}E_{to}\cos\theta_t e^{-j\beta_2 x \sin\theta_t} & (7-144)
\end{cases}$$

 \Rightarrow Phase-matching condition for all x :

$$\beta_1 x \sin \theta_i = \beta_1 x \sin \theta_r = \beta_2 x \sin \theta_t$$

$$\Rightarrow \quad \theta_r = \theta_i \text{ and } \sin \theta_t = (\beta_1 / \beta_2) \sin \theta_i \text{ : Snell's laws} \quad (7\text{--}116, 117)$$

Then, rewriting of (7-143) and (7-144) yields

$$\int E_{io} + E_{ro} = E_{to} \tag{7-145}$$

$$\int \eta_1^{-1} (E_{io} - E_{ro}) \cos\theta_i = \eta_2^{-1} E_{to} \cos\theta_t$$
(7-146)

Solving (7-145, 145),

$$E_{ro} = \Gamma_{\perp} E_{io}$$
, $E_{to} = \tau_{\perp} E_{io}$
 $E_{ro} = \eta_2 \cos \theta_i - \eta_1 \cos \theta_i$

where $\Gamma_{\perp} \triangleq \frac{E_{ro}}{E_{io}} = \frac{\eta_2 \cos \theta_i - \eta_1 \cos \theta_t}{\eta_2 \cos \theta_i + \eta_1 \cos \theta_t}$

: Fresnel's refl. coeff. for perpendicular polarization (7-147)

$$au_{\perp} riangleq rac{E_{to}}{E_{io}} = rac{2 \eta_2 \cos heta_i}{\eta_2 \cos heta_i + \eta_1 \cos heta_t}$$

: Fresnel's trans. coeff. for perpendicular polarization (7-148) $\Rightarrow 1 + \Gamma_{\perp} = \tau_{\perp}$ for perpendicular polarization (7-149) *Notes*)

- i) For $\theta_i=0$ (normal incidence), $\theta_t=0$, $\Gamma_{\perp}=\Gamma$ and $\tau_{\perp}=\tau$
- ii) If med. 2 is perfect conductor, $\eta_2 = 0$, $\Gamma_{\perp} = -1$ and $\tau_{\perp} = 0$
- iii) For lossless ($\sigma = 0$), nonmagnetic ($\mu = \mu_o$) dielectrics,

using
$$\eta_1/\eta_2 = \sqrt{\epsilon_2/\epsilon_1}$$
 and $\cos\theta_t = \sqrt{1 - \sin^2\theta_t} = \sqrt{1 - (\epsilon_1/\epsilon_2)\sin^2\theta_i}$
(7-147) $\Rightarrow \Gamma_\perp = \frac{\cos\theta_i - \sqrt{(\epsilon_2/\epsilon_1) - \sin^2\theta_i}}{\cos\theta_i + \sqrt{(\epsilon_2/\epsilon_1) - \sin^2\theta_i}}$ (7-147)*

For $\epsilon_1 < \epsilon_2$ (Med. 2 is optically denser), $~ \varGamma_\perp = real$

For $\epsilon_1 > \epsilon_2$ (Med. 1 is optically denser) and $\theta_i > \theta_c = \sin^{-1} \sqrt{\epsilon_2 / \epsilon_1}$, $\Gamma_{\perp} = complex$, $|\Gamma_{\perp}| = 1$: total internal reflection

$$(7-141) \Rightarrow E_t(x,z) = \hat{y} \tau_\perp E_{io} e^{-j\beta_2(x\sin\theta_t + z\cos\theta_t)} \propto e^{-\alpha_2 z} e^{-j\beta_{2x} x} (7-125)$$

: accompanied by a surface wave

4) Parallel [||]) polarization

$$E_i \parallel (incidence \ plane)$$

Incident wave (E_i, H_i) :
 $\hat{k}_i = \hat{x} \sin \theta_i + \hat{z} \cos \theta_i$
 $E_i(x,z) = E_{io}(\hat{x} \cos \theta_i - \hat{z} \sin \theta_i)$
 $\times e^{-j\beta_1(x \sin \theta_i + z \cos \theta_i)}$
 $H_i(x,z) = \hat{y} \frac{E_{io}}{\eta_1} e^{-j\beta_1(x \sin \theta_i + z \cos \theta_i)}$
Reflected wave (E_r, H_r) :
 $\hat{k}_r = \hat{x} \sin \theta_r - \hat{z} \cos \theta_r$
 $E_r(x,z) = E_{ro}(\hat{x} \cos \theta_r + \hat{z} \sin \theta_r)$
 $\times e^{-j\beta_1(x \sin \theta_r - z \cos \theta_r)}$
 $H_r(x,z) = -\hat{y} \frac{E_{ro}}{\eta_1} e^{-j\beta_1(x \sin \theta_r - z \cos \theta_r)}$
Transmitted wave (E_t, H_t) :
 $\hat{k}_t = \hat{x} \sin \theta_t - \hat{z} \cos \theta_t$
 $E_t(x,z) = E_{to}(\hat{x} \cos \theta_t - \hat{z} \sin \theta_t) e^{-j\beta_2(x \sin \theta_t + z \cos \theta_t)}$
 $Transmitted wave (E_t, H_t) :
 $\hat{k}_t = \hat{x} \sin \theta_t + \hat{z} \cos \theta_t$
 $E_t(x,z) = E_{to}(\hat{x} \cos \theta_t - \hat{z} \sin \theta_t) e^{-j\beta_2(x \sin \theta_t + z \cos \theta_t)}$
 $H_t(x,z) = \hat{y} \frac{E_{to}}{\eta_2} e^{-j\beta_2(x \sin \theta_t + z \cos \theta_t)}$
 $Total x = 0 \Rightarrow Continuity of $E_{\parallel}(x,0) \otimes H_{\parallel}(x,0)$$$

$$\Rightarrow \text{ Phase-matching condition for all } x : \Rightarrow \theta_r = \theta_i \text{ and } \sin\theta_t = (\beta_1 / \beta_2) \sin\theta_i : \text{ Snell's laws}$$
(7-116, 117)

$$\Rightarrow \begin{bmatrix} (E_{io} - E_{ro}) \cos\theta_i = E_{to} \cos\theta_t \\ 0 \end{bmatrix}$$
(7-156)

$$\int \eta_1^{-1} (E_{io} - E_{ro}) = \eta_2^{-1} E_{to}$$
(7-157)

Solving (7-156, 157),

$$\begin{split} E_{ro} &= \ \Gamma_{\perp} \ E_{io} \ , \qquad E_{to} = \ \tau_{\perp} \ E_{io} \\ \end{split}$$
 where
$$\ \Gamma_{\parallel} \triangleq \frac{E_{ro}}{E_{io}} = \ \frac{\eta_2 \cos\theta_t - \eta_1 \cos\theta_i}{\eta_2 \cos\theta_t + \eta_1 \cos\theta_i} \end{split}$$

: Fresnel's refl. coeff. for parallel polarization (7-158)

$$\tau_{\perp} \triangleq \frac{E_{to}}{E_{io}} = \frac{2\eta_2 \cos\theta_t}{\eta_2 \cos\theta_t + \eta_1 \cos\theta_i}$$

: Fresnel's trans. coeff. for parallel polarization (7-159)

$$\Rightarrow 1 + \Gamma_{\parallel} = \tau_{\parallel} \left(\frac{\cos \theta_t}{\cos \theta_i} \right) \text{ for parallel polarization}$$
(7-160)

Notes)

i) For $\theta_i = 0$ (normal incidence), $\theta_t = 0$, $\Gamma_{\parallel} = \Gamma$ and $\tau_{\parallel} = \tau$ ii) If med. 2 is perfect conductor, $\eta_2 = 0$, $\Gamma_{\parallel} = -1$ and $\tau_{\parallel} = 0$ iii) For lossless ($\sigma = 0$), nonmagnetic ($\mu = \mu_o$) dielectrics,

using
$$\eta_1/\eta_2 = \sqrt{\epsilon_2/\epsilon_1}$$
 and $\cos\theta_t = \sqrt{1 - \sin^2\theta_t} = \sqrt{1 - (\epsilon_1/\epsilon_2)\sin^2\theta_i}$
(7-158) $\Rightarrow \Gamma_{\parallel} = \frac{-(\epsilon_2/\epsilon_1)\cos\theta_i + \sqrt{(\epsilon_2/\epsilon_1) - \sin^2\theta_i}}{+(\epsilon_2/\epsilon_1)\cos\theta_i + \sqrt{(\epsilon_2/\epsilon_1) - \sin^2\theta_i}}$ (7-158)*

iv) Comparison between $|\varGamma_{\perp}|$ and $|\varGamma_{\parallel}|$

v) Brewster angle θ_B (or polarizing angle) of no reflection

= Threshold incidence angle at which $\Gamma = 0$ (no reflection). Parallel polarization :

(7-158) for
$$\Gamma_{\parallel} = 0 \implies \eta_1 \cos \theta_{B\parallel} = \eta_2 \cos \theta_t$$
 (7-161)

$$\Rightarrow \sin^2 \theta_{B\parallel} = \frac{1 - \mu_2 \epsilon_1 / \mu_1 \epsilon_2}{1 - (\epsilon_1 / \epsilon_2)^2} \tag{7-162}$$

For $\mu_1 = \mu_2$, $\theta_{B\parallel} = \sin^{-1} \frac{1}{\sqrt{1 + (\epsilon_1/\epsilon_2)}} = \tan^{-1} \sqrt{\frac{\epsilon_2}{\epsilon_1}} = \tan^{-1} \left(\frac{n_{r_2}}{n_{r_1}} \right)$ (7-163)

Perpendicular polarization :

(7-147) for
$$\Gamma_{\perp} = 0 \implies \eta_2 \cos \theta_{B\perp} = \eta_1 \cos \theta_t$$
 (7-165)

$$\Rightarrow \quad \sin^2 \theta_{B\perp} = \frac{1 - \mu_1 \epsilon_2 / \mu_2 \epsilon_1}{1 - (\mu_1 / \mu_2)^2} \tag{7-166}$$

For $\mu_1 = \mu_2$, $\theta_{B\perp}$ does not exist for nonmagnetic medium.