Numerical Methods in Rock EngineeringIntroduction to Finite Element Method

(Lecture 2, 3, 4, 5) (15, 22, 29 Sept, 20 Oct 2014)

Ki-Bok Min, PhD Associate Professor Department of Energy Resources Engineering Seoul National University

Term Paper Proposal

Term Paper Proposal

- Keep it simple determine what kind of problem you want to tackle that can not be known otherwise.
- Be clear what will the be verification case
- Distinguish between laboratory and numerical investigation numerical study cannot, in general, produce a new constitutive relation
- If this term paper is *part* of your thesis or project, then make sure *only part of the whole project* will be conducted during class.
- Well begun is half done!

Home Assignment #1

- Make your own summary
 - Don't just make a copy and paste
 - Your views on this summary is the most important

- 6 Oct 2014 (or 29 Sept 2014)
- Introduction to COMSOL, a general FEM solver
- Exercise
 - Saint Venant Principle
 - Mesh size effect
 - Brazilian Test
 - Uniaxial Test
 - Heat Conduction (Thermal Conductivity measurement)

Numerical Approach in Rock Engineering Physical variables for THMC problems

SEOUL NATIONAL UNIVERSITY

Physical problem	Conservation Principle $\nabla \cdot q = 0$	State Variable <i>u</i>	Flux σ	Material properties k	Source f	Constitutive equation $\sigma = ku'$
Elasticity	Conservation of linear momentum (equilibrium)	Displacement u	Stress σ	Young's modulus & Poisson's ratio	Body forces	Hooke's law
Heat conduction	Conservation of energy	Temperature T	Heat flux Q	Thermal conductivity k	Heat sources	Fourier's law
Porous media flow	Conservation of mass	Hydraulic head h	Flow rate Q	Permeability k	Fluid source	Darcy's law
Mass transport	Conservation of mass	Concentration C	Diffusive flux q	Diffusion coefficient D	Chemical source	Fick's law

Structure of state variables and fluxes are mathematically similar – *a convenient truth!*

Numerical Approach in Rock Engineering Mathematical model

Basics of Finite Element Method

- Governing Equations: 1D Boundary Value Problem
 - Elasticity
 - Diffusion equation (Heat conduction & Fluid flow in porous media)
 - 3D expansion
- Finite Elements in One Dimension (Boundary Value Problem)
 - Basics of FEM
 - Weak Formulation and Galerkin's Method
 - Illustrative Example (12 steps)
 - General 1D Boundary Value Problem
- Finite Elements in One Dimension (Mixed Initial-Boundary-Value Problem)
 - Time stepping method
- Finite Elements in two- and three-Dimensions

SEOUL NATIONAL UNIVERSITY

• Elasticity formulation was extensively covered in 'theory of poroelasticity'.

2D & 3D elasticity Stress in 3D

• By Cauchy's formula

$$\overset{\nu}{T_i} = \nu_j \sigma_{ji}$$

- Knowing the stress component, we can write down the stress vector acting on any surface
- Stress state in a body is characterized completely by stress tensor

$$\begin{pmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{pmatrix}$$
Tensor form

s tensor σ_{xx} σ_{yy} σ_{zz} σ_{yz} σ_{xz} σ_{xy} matrix

2D & 3D elasticity Strain – 2D & 3D

SEOUL NATIONAL UNIVERSITY

 Geometric expression of deformation caused by stress (dimensionless)

2D & 3D elasticity Strain – 2D & 3D

SEOUL NATIONAL UNIVERSITY

Strain is also a 2nd order tensor and symmetric by definition.strain

2D & 3D elasticity Equation of motion (Equilibrium equation) SECUL NATIONAL UNIVERSITY

www.mcasco.com/eande.htm

- Sum of traction, body and inertial forces (and moment) are zero

- Hooke's Law
 - Stress is directly proportional to strain

1D

• Stress and Strain

$$\sigma = \frac{F}{A} \qquad \qquad \varepsilon = \frac{dL}{L}$$

• Elastic modulus (N/m²=Pa) = $\frac{\sigma_y}{\varepsilon_y}$

• Poisson's ratio (dimension $f \overline{e}_{x}$

- Hooke's Law
- Shear modulus G

$$\tau_{xy} = G\gamma_{xy}$$

1D

 $\sigma = E\varepsilon$

- 2 independent parameters (E,

$$G = \frac{E}{2(1+\nu)}$$
ic material

$$\begin{pmatrix} \varepsilon_{x} \\ \varepsilon_{y} \\ \varepsilon_{z} \\ \gamma_{yz} \\ \gamma_{xz} \\ \gamma_{xy} \end{pmatrix} = \begin{pmatrix} \frac{1}{E} & -\frac{\nu}{E} & -\frac{\nu}{E} & 0 & 0 & 0 \\ -\frac{\nu}{E} & \frac{1}{E} & -\frac{\nu}{E} & 0 & 0 & 0 \\ -\frac{\nu}{E} & -\frac{\nu}{E} & \frac{1}{E} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{G} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{G} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{G} \end{pmatrix} \begin{pmatrix} \sigma_{x} \\ \sigma_{y} \\ \sigma_{z} \\ \tau_{yz} \\ \tau_{xz} \\ \tau_{xy} \end{pmatrix}$$

- Complete anisotropy
 - 21 independent parameters

$$\begin{pmatrix} \varepsilon_x \\ \varepsilon_y \\ \varepsilon_z \\ \gamma_{yz} \\ \gamma_{xz} \\ \gamma_{xy} \end{pmatrix} = \begin{pmatrix} S_{11} & S_{12} & S_{13} & S_{14} & S_{15} & S_{16} \\ S_{21} & S_{22} & S_{23} & S_{24} & S_{25} & S_{26} \\ S_{31} & S_{32} & S_{33} & S_{34} & S_{35} & S_{36} \\ S_{41} & S_{42} & S_{43} & S_{44} & S_{45} & S_{46} \\ S_{51} & S_{52} & S_{53} & S_{54} & S_{55} & S_{56} \\ S_{61} & S_{62} & S_{63} & S_{64} & S_{65} & S_{66} \end{pmatrix} \begin{pmatrix} \sigma_x \\ \sigma_y \\ \sigma_z \\ \tau_{yz} \\ \tau_{xy} \end{pmatrix}$$

$$\varepsilon_{ij} = S_{ijkl} \sigma_{kl}$$
 $\sigma_{ij} = C_{ijkl} \varepsilon_{kl}$

SEOUL NATIONAL UNIVERSITY

- Stress and strain in different dimensions are coupled. Therefore, we need a special consideration –plane strain and plane stress
- Plane strain
 - 3rd dimensional strain goes zero
 - Stresses around drill hole or 2D tunnel

$$\begin{pmatrix} \varepsilon_{xx} & \varepsilon_{xy} & 0 \\ \varepsilon_{yx} & \varepsilon_{yy} & 0 \\ 0 & 0 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} \sigma_{xx} & \sigma_{xy} & 0 \\ \sigma_{yx} & \sigma_{yy} & 0 \\ 0 & 0 & \sigma_{zz} \end{pmatrix}$$

$$\begin{pmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \gamma_{xy} \end{pmatrix} = \begin{pmatrix} \frac{(1-v^2)}{E} & -\frac{v(1+v)}{E} & 0 \\ -\frac{v(1+v)}{E} & \frac{(1-v^2)}{E} & 0 \\ 0 & 0 & \frac{2(1+v)}{E} \end{pmatrix} \begin{pmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \end{pmatrix}$$

0 $\frac{1}{E}$ 0 \overline{E} \overline{E} 0 0 σ_x \mathcal{E}_x \overline{E} \mathcal{E}_{y} σ_y 0 0 \overline{E} \mathcal{E}_{z} σ_{z} γ_{yz} τ_{yz} $\frac{1}{G}$ 0 0 0 γ_{xz} τ_{xz} $\frac{1}{G}$ (γ_{xy}) τ_{xy} 0 0 0 0 0

- Plane stress
 - 3rd dimensional stress goes zero
 - Thin plate stressed in its own plane

2D & 3D elasticity Governing equations

SEOUL NATIONAL UNIVERSITY

- Strain-displacement relationship (6)
- Stress-strain relationship (6)
- Equation of motion (3)

$$\varepsilon_{ij} = \frac{1}{2}(u_{i,j} + u_{j,i})$$

$$\sigma_{ij} = C_{ijkl} \varepsilon_{kl}$$

$$\sigma_{ji,j} + \rho b_i = \rho \frac{\partial^2 u_i}{\partial t^2}$$

• Navier's equation

$$Gu_{i,jj} + (\lambda + G)u_{j,ji} + \rho b_i = 0$$

$$G\left(\frac{\partial^2 u_x}{\partial x^2} + \frac{\partial^2 u_x}{\partial y^2} + \frac{\partial^2 u_x}{\partial z^2}\right) + (\lambda + G)\left(\frac{\partial^2 u_x}{\partial x^2} + \frac{\partial^2 u_y}{\partial x \partial y} + \frac{\partial^2 u_z}{\partial x \partial z}\right) + \rho b_x = 0$$

$$G\left(\frac{\partial^2 u_y}{\partial x^2} + \frac{\partial^2 u_y}{\partial y^2} + \frac{\partial^2 u_y}{\partial z^2}\right) + (\lambda + G)\left(\frac{\partial^2 u_x}{\partial x \partial y} + \frac{\partial^2 u_z}{\partial y^2} + \frac{\partial^2 u_z}{\partial y \partial z}\right) + \rho b_y = 0$$

$$G\nabla^2 \mathbf{u} + (\lambda + G)\nabla\nabla \cdot \mathbf{u} + \rho \mathbf{b} = 0$$

$$G\left(\frac{\partial^2 u_x}{\partial x^2} + \frac{\partial^2 u_x}{\partial y^2} + \frac{\partial^2 u_x}{\partial z^2}\right) + (\lambda + G)\left(\frac{\partial^2 u_x}{\partial x \partial y} + \frac{\partial^2 u_z}{\partial y \partial z} + \frac{\partial^2 u_z}{\partial y \partial z}\right) + \rho b_z = 0$$

Three governing equations for three displacement components

$$\lambda = \frac{E\nu}{(1+\nu)(1-2\nu)}$$

2D & 3D elasticity Comparison with diffusion equation

SEOUL NATIONAL UNIVERSITY

• Diffusion equation

$$A\frac{\partial c}{\partial t} + \nabla \cdot (-D\nabla c) = R$$
$$k\left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2}\right) = \rho c \frac{\partial T}{\partial t}$$

- Time-dependent
- One parameter k is necessary for steady state behaviour 1D & steady

• Navier's equation

$$G\left(\frac{\partial^{2}u_{x}}{\partial x^{2}} + \frac{\partial^{2}u_{x}}{\partial y^{2}} + \frac{\partial^{2}u_{x}}{\partial z^{2}}\right) + (\lambda + G)\left(\frac{\partial^{2}u_{x}}{\partial x^{2}} + \frac{\partial^{2}u_{y}}{\partial x\partial y} + \frac{\partial^{2}u_{z}}{\partial x\partial z}\right) + \rho b_{x} = 0$$

$$G\left(\frac{\partial^{2}u_{y}}{\partial x^{2}} + \frac{\partial^{2}u_{y}}{\partial y^{2}} + \frac{\partial^{2}u_{y}}{\partial z^{2}}\right) + (\lambda + G)\left(\frac{\partial^{2}u_{x}}{\partial x\partial y} + \frac{\partial^{2}u_{y}}{\partial y^{2}} + \frac{\partial^{2}u_{z}}{\partial y\partial z}\right) + \rho b_{y} = 0$$

$$G\left(\frac{\partial^{2}u_{x}}{\partial x^{2}} + \frac{\partial^{2}u_{x}}{\partial y^{2}} + \frac{\partial^{2}u_{x}}{\partial z^{2}}\right) + (\lambda + G)\left(\frac{\partial^{2}u_{x}}{\partial x\partial z} + \frac{\partial^{2}u_{y}}{\partial y\partial z} + \frac{\partial^{2}u_{z}}{\partial z^{2}}\right) + \rho b_{z} = 0$$

- Not time-dependent
- Three coupled equations
- Two parameters (isotropy)

State
$$\sqrt{}$$

 $-\frac{d}{dx}\left(\alpha(x)\frac{dU(x)}{dx}\right) = f(x)$

SEOUL NATIONAL UNIVERSITY

• Here we stop digression and continue to talk about FEM.

1D Boundary Value Problem Elasticity

SEOUL NATIONAL UNIVERSITY

An elastic rod, in approximately a uniaxial stress state

- Balance Principle
 - Equilibrium Equation
- Constitutive Equation
 - Hooke's law
- Governing Equation

SEOUL NATIONAL UNIVERSITY

• In case of cylindrical rod, Elasticity Eq becomes;

$$-\frac{d}{dx}\left(E(x)\frac{du(x)}{dx}\right) = f(x)$$

- At least one of BC must be an essential BC. Why?

SEOUL NATIONAL UNIVERSITY

• General formulation

$$-\frac{d}{dx}\left(\alpha(x)\frac{dU(x)}{dx}\right) + \beta(x)U(x) = f(x)$$

- Elasticity

$$-\frac{d}{dx}\left(E(x)\frac{du(x)}{dx}\right) = f(x)$$

- Diffusion Equation (steady-state)

$$-\frac{d}{dx}\left(k(x)\frac{dT(x)}{dx}\right) + \frac{hl}{A}T(x) = Q(x) + \frac{hlT_{\infty}}{A}$$

SEOUL NATIONAL UNIVERSITY

Governing equation ← conservation principle + constitutive equation

- Boundary condition
 - Essential (Dirichlet) BC: specify the function U
 - Natural (Neumann) BC: specify the flux τ
- With two end points (x_a, x_b)

At
$$x = x_a$$
 $U(x_a) = U_a$ or $-\alpha \frac{dU}{dx}\Big|_{x=x_a} = \tau_a$

At
$$x = x_b$$
 $U(x_b) = U_b$ or $-\alpha \frac{dU}{dx}\Big|_{x=x_b} = \tau_b$

Finite Element Method Introduction

SEOUL NATIONAL UNIVERSITY

- A few analytical solution to the partial differential equation (Navier's equation or diffusion equation) → governing equations can be solved numerically (FEM, FDM, BEM)
- Invention?*
 - Precise moment of invention is not clear
 - Courant (1943) used piecewise linear polynomials for torsion problem
 - Much progress in 1960s (The name finite element appeared in Clough(1960)
- Methodology
 - Continuum is divided into a finite number of parts (elements), the behavior is specified by parameters
 - Solution of complete system as an assembly of its elements
- Mathematically speaking
 - FEM replaces solutions by simple equations such as polynomials
 - FDM replaced derivatives by differences

*30-32p, Burnett DS, Finite Element Analysis – From concepts to applications, 1987, Addison-Wesley Publishing Co.

Finite Element Method Introduction

- Essential characteristics of FEM is the special form of trial solution.
- Transforms unsolvable calculus problem → approximately equivalent but solve algebra problems.
- Mesh = node + element
- Mesh generation: defining the length, locations of the elements & nodes, assigning numbers to each node and element
- Element trial function = shape function
 - A trial function defined over one element
 - Basis function: piecing together shape functions in each element

Finite Element Method Principal operations

- Construction of trial solution for \tilde{U}
- Application of optimizing criterion to $\,\tilde{U}\,$
- Estimation of accuracy of $\ ilde{U}$

Finite Element Method Trial solutioin

SEOUL NATIONAL UNIVERSITY

unknown!

• Trial solution in the form of a finite sum of functions;

 $a_1, a_2, ..., a_N$ are undetermined parameters or degrees of freedom

- N degrees of freedom
- Residual (non-zero results after trial solution were substituted)

$$\frac{d}{dx}\left(x\frac{dU(x)}{dx}\right) = \frac{2}{x^2} \qquad 1 < x < 2$$

$$R(x;a) = \frac{d}{dx} \left(x \frac{d\tilde{U}(x)}{dx} \right) - \frac{2}{x^2} \neq 0 \qquad 1 < x < 2$$

Finite Element Method Galerkin's Method

- Two types of optimizing criteria
 - Methods of weighted residuals (MWR): differential governing equations
 - \mathfrak{A} The collocation method
 - ন্ধ The subdomain method
 - ন্ধ The least-squares method
 - ন্ধ The Galerkin Method
 - Ritz variational methods (RVM) : variational governing equations
 - ন্থ Produce identical solution with Galerkin method when trial solutions are the same
 - \approx Minimum of potential energy in solid mechanics

Finite Element Method Optimizing Criteria - Galerkin's Method

- The Collocation method
 - For each undetermined parameters ai, choose x_i and force the residual to be zero
- The Subdomain method
 - For each undetermined ai, choose an interval Δxi , and force the average of the residual to be zero
- The Least-Square method
 - For each undetermined ai, minimize the integral over the entire domain of the square of the residual

 $R(x_2;a) = 0$

$$\frac{1}{\Delta x_{1}} \int_{\Delta x_{1}} R(x;a) = 0$$

$$\frac{1}{\Delta x_{1}} \int_{\Delta x_{1}} R(x;a) dx = 0$$

$$\frac{1}{\Delta x_{2}} \int_{\Delta x_{2}} R(x;a) dx = 0$$

$$\dots$$

$$\frac{1}{\Delta x_{N}} \int_{\Delta x_{N}} R(x;a) dx = 0$$

$$\frac{\partial}{\partial a_1} \int_{1}^{2} R^2(x;a) dx = 0$$
$$\frac{\partial}{\partial a_2} \int_{1}^{2} R^2(x;a) dx = 0$$
$$\dots$$
$$\frac{\partial}{\partial a_n} \int_{1}^{2} R^2(x;a) dx = 0$$

Finite Element Method Galerkin's Method

- Galerkin's Method
 - For each parameter a_i we require that a weighted average of R(x;a) over the entire domain be zero.
 - <u>The weighting functions are the trial functions associated with each</u> <u>a_i</u>.

$$\int_{1}^{2} R(x;a)\phi_{1}(x)dx = 0$$
$$\int_{1}^{2} R(x;a)\phi_{2}(x)dx = 0$$
....
$$\int_{1}^{2} R(x;a)\phi_{N}(x)dx = 0$$

Finite Element Method Optimizing Criteria - Galerkin's Method

SEOUL NATIONAL UNIVERSITY

• Different weight functions for weighted residual methods

Finite Element Method Galerkin's Method

Finite Element Method Trial solutioin

SEOUL NATIONAL UNIVERSITY

• Trial solution in the form of a finite sum of functions;

$$\tilde{U}(x;a) = a_1\phi_1(x) + a_2\phi_2(x) + \dots + a_N\phi_N(x)$$

$$\phi_1(x), \phi_2(x), \dots \phi_N(x): \text{ trial functions(basis functions)}$$

$$a_1, a_2, \dots, a_N \text{ are undetermined parameters or degrees of freedom}$$

$$- \text{ N degrees of freedom}$$
Finite Element Method Optimization Criteria - Example

$$\frac{d}{dx}\left(x\frac{dU(x)}{dx}\right) = \frac{2}{x^2} \qquad 1 < x < 2, \quad U(1) = 2, \ \left(-x\frac{dU(x)}{dx}\right)_{x=2} = \frac{1}{2}$$

$$R(x;a) = \frac{d}{dx} \left(x \frac{d\tilde{U}(x)}{dx} \right) - \frac{2}{x^2} \neq 0 \qquad 1 < x < 2$$

Finite Element Method Solutioin procedure (12 steps)

- Theoretical development (1- 6 steps) + Numerical Computation(7-12 steps)
- Theoretical Development
 - Step 1: Write the Galerkin residual equations for a typical element
 - Step 2: Integrate by parts
 - Step 3: substitute the element trial solution into integrals (LHS)
 - Step 4: Develop specific expression for the element trial functions (shape function)
 - Step 5: Substitute the shape functions into the element equations
 - Step 6: prepare expression for the flux

Finite Element Method Solutioin procedure (12 steps)

- Numerical Computation(7-12 steps)
 - Step 7: Specify numerical data
 - Step 8: Evaluate the interior terms in the element equations for each element, and assemble the terms into system equations
 - Step 9: Apply Boundary Conditions
 - Step 10: Solve the system equations
 - Step 11: Evaluate the flux
 - Step 12: Display the solution and estimate its postprocessing accuracy

The Element Concept Image: Concept Concept Illustrative Problem - Problem description SEOUL NATIONAL UNIVERSITY

$$\frac{d}{dx}\left(x\frac{dU(x)}{dx}\right) = \frac{2}{x^2} \qquad 1 < x < 2$$

$$U(1) = 2$$
$$-x\frac{dU}{dx}\Big|_{x=2} = \tau(2) = \frac{1}{2}$$

SEOUL NATIONAL UNIVERSITY

- Step 1: Write the Galerkin residual equations
 - Trial solution $\tilde{U}(x;a) = a_1 \phi_1(x) + a_2 \phi_2(x) + ... + a_N \phi_N(x)$
 - The residual for the governing equation,

$$R(x;a) = \frac{d}{dx} \left(x \frac{d\tilde{U}(x)}{dx} \right) - \frac{2}{x^2}$$

- N Galerkin residual equations

$$\int_{x_{a}}^{x_{b}} R(x;a)\phi_{i}(x)dx = 0 \qquad i = 1, 2, ..., N$$
$$\int_{x_{a}}^{x_{b}} \left[\frac{d}{dx}\left(x\frac{d\tilde{U}(x)}{dx}\right) - \frac{2}{x^{2}}\right]\phi_{i}(x)dx = 0 \qquad i = 1, 2, ..., N$$

SEOUL NATIONAL UNIVERSITY

Step 2: Integrate by parts the highest derivative term

$$\int_{x_a}^{x_b} \frac{d}{dx} \left(x \frac{d\tilde{U}}{dx} \right) \phi_i dx = -\left[\left(-x \frac{d\tilde{U}}{dx} \right) \phi_i \right]_{x_a}^{x_b} - \int_{x_a}^{x_b} x \frac{d\tilde{U}}{dx} \frac{d\phi_i}{dx} dx \right]_{x_a}^{x_b} \int_{x_a}^{x_b} \frac{df}{dx} dx = [fg]_{x_a}^{x_b} - \int_{x_a}^{x_b} f \frac{dg}{dx} dx$$

- Residual equations become

$$\int_{x_a}^{x_b} x \frac{d\tilde{U}}{dx} \frac{d\phi_i}{dx} dx = -\int_{x_a}^{x_b} \frac{2}{x^2} \phi_i dx - \left[\left(-x \frac{d\tilde{U}}{dx} \right) \phi_i \right]_{x_a}^{x_b} \qquad i = 1, 2, \dots, N$$

SEOUL NATIONAL UNIVERSITY

• Step 3: Substitute the trial solution into interior integral

$$\int_{x_a}^{x_b} x \frac{d\tilde{U}}{dx} \frac{d\phi_i}{dx} dx = \int_{x_a}^{x_b} x \left(\sum_{j=1}^N a_j \frac{d\phi_j}{dx} \right) \frac{d\phi_i}{dx} dx = \sum_{j=1}^N \int_{x_a}^{x_b} \frac{d\phi_i}{dx} x \frac{d\phi_j}{dx} a_j$$

- Residual equation becomes

$$\sum_{j=1}^{N} \left(\int_{x_a}^{x_b} \frac{d\phi_i}{dx} x \frac{d\phi_j}{dx} dx \right) a_j = -\int_{x_a}^{x_b} \frac{2}{x^2} \phi_i dx - \left[\left(-x \frac{d\tilde{U}}{dx} \right) \phi_i \right]_{x_a}^{x_b} \qquad i = 1, 2, \dots, N$$

SEOUL NATIONAL UNIVERSITY

- Writing the residual equations in full

$$i = 1, \quad \left(\int_{x_a}^{x_b} \frac{d\phi_1}{dx} x \frac{d\phi_1}{dx} dx\right) a_1 + \left(\int_{x_a}^{x_b} \frac{d\phi_1}{dx} x \frac{d\phi_2}{dx} dx\right) a_2 \dots + \left(\int_{x_a}^{x_b} \frac{d\phi_1}{dx} x \frac{d\phi_N}{dx} dx\right) a_N = -\int_{x_a}^{x_b} \frac{2}{x^2} \phi_1 dx - \left[\left(-x \frac{d\tilde{U}}{dx}\right) \phi_1\right]_{x_a}^{x_b}$$
$$i = 2, \quad \left(\int_{x_a}^{x_b} \frac{d\phi_2}{dx} x \frac{d\phi_1}{dx} dx\right) a_1 + \left(\int_{x_a}^{x_b} \frac{d\phi_2}{dx} x \frac{d\phi_2}{dx} dx\right) a_2 \dots + \left(\int_{x_a}^{x_b} \frac{d\phi_2}{dx} x \frac{d\phi_N}{dx} dx\right) a_N = -\int_{x_a}^{x_b} \frac{2}{x^2} \phi_2 dx - \left[\left(-x \frac{d\tilde{U}}{dx}\right) \phi_2\right]_{x_a}^{x_b}$$

$$i = N, \quad \left(\int_{x_a}^{x_b} \frac{d\phi_N}{dx} x \frac{d\phi_1}{dx} dx\right) a_1 + \left(\int_{x_a}^{x_b} \frac{d\phi_N}{dx} x \frac{d\phi_2}{dx} dx\right) a_2 \dots + \left(\int_{x_a}^{x_b} \frac{d\phi_N}{dx} x \frac{d\phi_N}{dx} dx\right) a_N = -\int_{x_a}^{x_b} \frac{2}{x^2} \phi_N dx - \left[\left(-x \frac{d\tilde{U}}{dx}\right) \phi_N\right]_{x_a}^{x_b} dx$$

SEOUL NATIONAL UNIVERSITY

• In matrix form

 $\begin{bmatrix} \int_{x_a}^{x_b} \frac{d\phi_1}{dx} x \frac{d\phi_1}{dx} dx & \int_{x_a}^{x_b} \frac{d\phi_1}{dx} x \frac{d\phi_2}{dx} dx & \cdots & \int_{x_a}^{x_b} \frac{d\phi_1}{dx} x \frac{d\phi_N}{dx} dx \\ \int_{x_a}^{x_b} \frac{d\phi_2}{dx} x \frac{d\phi_1}{dx} dx & \int_{x_a}^{x_b} \frac{d\phi_2}{dx} x \frac{d\phi_2}{dx} dx & \cdots & \int_{x_a}^{x_b} \frac{d\phi_2}{dx} x \frac{d\phi_N}{dx} dx \\ \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \int_{x_a}^{x_b} \frac{d\phi_N}{dx} x \frac{d\phi_1}{dx} dx & \int_{x_a}^{x_b} \frac{d\phi_N}{dx} x \frac{d\phi_2}{dx} dx & \cdots & \int_{x_a}^{x_b} \frac{d\phi_N}{dx} x \frac{d\phi_N}{dx} dx \\ \int_{x_a}^{x_b} \frac{d\phi_N}{dx} x \frac{d\phi_1}{dx} dx & \int_{x_a}^{x_b} \frac{d\phi_N}{dx} x \frac{d\phi_2}{dx} dx & \cdots & \int_{x_a}^{x_b} \frac{d\phi_N}{dx} x \frac{d\phi_N}{dx} dx \\ \int_{x_a}^{x_b} \frac{d\phi_N}{dx} x \frac{d\phi_1}{dx} dx & \int_{x_a}^{x_b} \frac{d\phi_N}{dx} x \frac{d\phi_2}{dx} dx & \cdots & \int_{x_a}^{x_b} \frac{d\phi_N}{dx} x \frac{d\phi_N}{dx} dx \\ \int_{x_a}^{x_b} \frac{d\phi_N}{dx} x \frac{d\phi_1}{dx} dx & \int_{x_a}^{x_b} \frac{d\phi_N}{dx} x \frac{d\phi_2}{dx} dx & \cdots & \int_{x_a}^{x_b} \frac{d\phi_N}{dx} x \frac{d\phi_N}{dx} dx \\ \int_{x_a}^{x_b} \frac{d\phi_N}{dx} x \frac{d\phi_1}{dx} dx & \int_{x_a}^{x_b} \frac{d\phi_N}{dx} x \frac{d\phi_2}{dx} dx & \cdots & \int_{x_a}^{x_b} \frac{d\phi_N}{dx} x \frac{d\phi_N}{dx} dx \\ \int_{x_a}^{x_b} \frac{d\phi_N}{dx} x \frac{d\phi_1}{dx} dx & \int_{x_a}^{x_b} \frac{d\phi_N}{dx} x \frac{d\phi_2}{dx} dx & \cdots & \int_{x_a}^{x_b} \frac{d\phi_N}{dx} x \frac{d\phi_N}{dx} dx \\ \int_{x_a}^{x_b} \frac{d\phi_N}{dx} x \frac{d\phi_1}{dx} dx & \int_{x_a}^{x_b} \frac{d\phi_N}{dx} x \frac{d\phi_2}{dx} dx & \cdots & \int_{x_a}^{x_b} \frac{d\phi_N}{dx} x \frac{d\phi_N}{dx} dx \\ \int_{x_a}^{x_b} \frac{d\phi_N}{dx} x \frac{d\phi_1}{dx} dx & \int_{x_a}^{x_b} \frac{d\phi_N}{dx} x \frac{d\phi_2}{dx} dx & \cdots & \int_{x_a}^{x_b} \frac{d\phi_N}{dx} x \frac{d\phi_N}{dx} dx \\ \int_{x_a}^{x_b} \frac{d\phi_N}{dx} x \frac{d\phi_1}{dx} dx & \int_{x_a}^{x_b} \frac{d\phi_N}{dx} x \frac{d\phi_2}{dx} dx & \cdots & \int_{x_a}^{x_b} \frac{d\phi_N}{dx} dx \\ \int_{x_a}^{x_b} \frac{d\phi_N}{dx} dx & \int_{x_a}^{x_b} \frac{d\phi_N}{dx} dx & \int_{x_a}^{x_b} \frac{d\phi_N}{dx} dx \\ \int_{x_a}^{x_b} \frac{d\phi_N}{dx} dx \\ \int_{$

- Three benefits of integrating by parts
 - Order of trial functions lowed
 - Stiffness matrix is symmetric
 - A boundary term was created

$$K_{ij} = \int_{x_a}^{x_b} \frac{d\phi_i}{dx} x \frac{d\phi_j}{dx} dx$$
$$F_i = -\int_{x_a}^{x_b} \frac{2}{x^2} \phi_i dx - \left[\left(-x \frac{d\tilde{U}}{dx} \right) \phi_i \right]_{x_a}^{x_b}$$

SEOUL NATIONAL UNIVERSITY

- Step 4: Develop specific expressions for the trial functions
 - Let's consider a linear (interpolation) polynomial $\tilde{U}(x;\alpha) = \alpha_1 + \alpha_2 x$
 - Each parameter a_i must represent the value of the trial solution at a specific point in the element. Each such point is called *node*.

$$\tilde{U}(x_a;a) = a_1$$
$$\tilde{U}(x_b;a) = a_2$$

 $\tilde{U}(x;a) = a_1 \phi_1(x) + a_2 \phi_2(x)$

SEOUL NATIONAL UNIVERSITY

Trial solution and trial function

$$\tilde{U}(x;a) = a_1 \phi_1(x) + a_2 \phi_2(x)$$
$$\phi_1 = \frac{x_b - x}{x_b - x_a}$$
$$\phi_2 = \frac{x - x_a}{x_b - x_a}$$

- $\phi_1(x_a) = 1$ $\phi_2(x_a) = 0$ $\phi_1(x_b) = 0$ $\phi_2(x_b) = 1$
- With \mathbf{x}_1 for \mathbf{x}_a and \mathbf{x}_2 for \mathbf{x}_b , $\phi_j(x_i) = \delta_{ji}$

- Step 5: substitute the trial functions into stiffness and load terms, and transform the integrals into a form appropriate for numerical evaluation
 - Because the trial solution contain two trial function, and there is one element

$$\begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix} \begin{cases} a_1 \\ a_2 \end{cases} = \begin{cases} F_1 \\ F_2 \end{cases}$$

$$K_{ij} = \int_{x_a}^{x_b} \frac{d\phi_i}{dx} x \frac{d\phi_j}{dx} dx \qquad i = 1, 2 \text{ and } j = 1, 2$$

$$F_i = FI_i + FB_i = -\int_{x_a}^{x_b} \frac{2}{x^2} \phi_i dx - \left[\left(-x \frac{d\tilde{U}}{dx} \right) \phi_i \right]_{x_a}^{x_b}$$

$$\phi_1 = \frac{x_b - x_a}{x_b - x_a} \qquad \frac{d\phi_1}{dx} = -\frac{1}{x_b - x_a} \qquad K_{11} = \int_{x_a}^{x_b} \left(-\frac{1}{x_b - x_a} \right) x \left(-\frac{1}{x_b - x_a} \right) dx = \frac{1}{2} \frac{x_b + x_a}{x_b - x_a}$$

$$\phi_2 = \frac{x - x_a}{x_b - x_a} \qquad \frac{d\phi_2}{dx} = \frac{1}{x_b - x_a} \qquad K_{12} = K_{21} = -K_{11}$$

$$FI_{1} = -\int_{x_{a}}^{x_{b}} \frac{2}{x^{2}} \frac{x_{b} - x}{x_{b} - x_{a}} dx = -\frac{2}{x_{a}} + \frac{2}{x_{b} - x_{a}} \ln \frac{x_{b}}{x_{a}}$$
$$FI_{2} = \frac{2}{x_{b}} - \frac{2}{x_{b} - x_{a}} \ln \frac{x_{b}}{x_{a}}$$

$$FB_{1} = -\left(-x\frac{d\tilde{U}}{dx}\right)_{x_{b}}\phi_{1}(x_{b}) + \left(-x\frac{d\tilde{U}}{dx}\right)_{x_{a}}\phi_{1}(x_{a}) = \left(-x\frac{d\tilde{U}}{dx}\right)_{x_{a}}$$
$$FB_{2} = -\left(-x\frac{d\tilde{U}}{dx}\right)_{x_{b}}$$

SEOUL NATIONAL UNIVERSITY

• Step 6: Prepare expressions for flux

$$\tau(x) = \text{flux} = -x\frac{d\tilde{U}}{dx} = -x\left(a_1\frac{d\phi_1}{dx} + a_2\frac{d\phi_2}{dx}\right) = \frac{x}{x_b - x_a}(a_1 - a_2)$$

SEOUL NATIONAL UNIVERSITY

• From step 1 to step 6

$$\begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix} \begin{cases} a_1 \\ a_2 \end{cases} = \begin{cases} F_1 \\ F_2 \end{cases}$$

$$\begin{bmatrix} \frac{1}{2}\frac{x_b + x_a}{x_b - x_a} & -\frac{1}{2}\frac{x_b + x_a}{x_b - x_a} \\ -\frac{1}{2}\frac{x_b + x_a}{x_b - x_a} & \frac{1}{2}\frac{x_b + x_a}{x_b - x_a} \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} -\frac{2}{x_a} + \frac{2}{x_b - x_a}\ln\frac{x_b}{x_a} \\ \frac{2}{x_b} - \frac{2}{x_b - x_a}\ln\frac{x_b}{x_a} \end{bmatrix} + \begin{bmatrix} \left(-x\frac{d\tilde{U}}{dx}\right)_{x_a} \\ -\left(-x\frac{d\tilde{U}}{dx}\right)_{x_b} \end{bmatrix}$$

Residual equations for a single element (linear element) = element equations

- Step 7: Specify the numerical data for the problem
 - Geometry data $x_a = 1, x_b = 2$
 - Physical properties and applied loads \leftarrow already given in this example $\frac{d}{dx} \left(x \frac{dU(x)}{dx} \right) = \frac{2}{x^2} \qquad 1 < x < 2$
- Step 8. Evaluate the interior terms in the system equation

$$\begin{bmatrix} \frac{3}{2} & -\frac{3}{2} \\ -\frac{3}{2} & \frac{3}{2} \end{bmatrix} \begin{cases} a_1 \\ a_2 \end{cases} = \begin{cases} -2 + 2 \ln 2 \\ 1 - 2 \ln 2 \end{cases} + \begin{cases} \left(-x \frac{d\tilde{U}}{dx} \right)_{x=1} \\ -\left(-x \frac{d\tilde{U}}{dx} \right)_{x=2} \end{cases}$$

SEOUL NATIONAL UNIVERSITY

• Step 9. Apply the boundary condition

$$-x\frac{dU}{dx}\Big|_{x=2} = \frac{1}{2} \qquad \longrightarrow \begin{bmatrix} \frac{3}{2} & -\frac{3}{2} \\ -\frac{3}{2} & \frac{3}{2} \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} -2+2\ln 2 \\ 1-2\ln 2 \end{bmatrix} + \begin{bmatrix} \left(-x\frac{d\tilde{U}}{dx}\right)_{x=1} \\ -\frac{1}{2} \end{bmatrix}$$

$$U(1) = 2 \qquad \longrightarrow \qquad \tilde{U}(1;a) = a_1 \phi_1(1) + a_2 \phi_2(1) = 2 \qquad \longrightarrow \qquad a_1 = 2$$

• Step 10: Solve the system equations

$$a_2 = \frac{7}{3} - \frac{4}{3} \ln 2 = 1.409$$
$$\tilde{U}(x;a) = a_1 \phi_1(1) + a_2 \phi_2(1) = 2(2-x) + 1.409(x-1)$$

- Step 11: Evaluate the flux $\tilde{\tau}(x) = x(a_1 - a_2) = 0.591x$
- Step 12: Plot the solution and estimate its accuracy

SEOUL NATIONAL UNIVERSITY

Trial functions and node

• System equations

$K_{11}^{(1)}$	$K_{12}^{(1)}$	0	0	0	0	0	0	0	$\left(a_{i}\right)$	$\begin{bmatrix} F_1^{(1)} \end{bmatrix}$
$K_{21}^{(1)}$	$K_{22}^{(1)} + K_{22}^{(2)}$	$K_{23}^{(2)}$	0	0	0	0	0	0	$\begin{vmatrix} a_1 \\ a_2 \end{vmatrix}$	$F_2^{(1)} + F_2^{(2)}$
0	$K_{32}^{(2)}$	$K_{33}^{(2)} + K_{33}^{(3)}$	$K_{34}^{(3)}$	0	0	0	0	0	$\begin{vmatrix} a_3 \end{vmatrix}$	$F_3^{(2)} + F_3^{(3)}$
0	0	$K_{43}^{(3)}$	$K_{44}^{(3)} + K_{44}^{(4)}$	$K_{45}^{(4)}$	0	0	0	0	$ a_4 $	$F_4^{(3)} + F_4^{(4)}$
0	0	0	$K_{54}^{(4)}$	$K_{55}^{(4)} + K_{55}^{(5)}$	$K_{56}^{(5)}$	0	0	0	$\left\{a_{5}\right\} = -$	$F_5^{(4)} + F_5^{(5)}$
0	0	0	0	$K_{65}^{(5)}$	$K_{66}^{(5)} + K_{66}^{(6)}$	$K_{67}^{(6)}$	0	0	$ a_6 $	$F_6^{(5)} + F_6^{(6)}$
0	0	0	0	0	$K_{76}^{(6)}$	$K_{77}^{(6)} + K_{77}^{(7)}$	$K_{78}^{(7)}$	0	$ a_7 $	$F_7^{(6)} + F_7^{(7)}$
0	0	0	0	0	0	$K_{87}^{(7)}$	$K_{88}^{(7)} + K_{88}^{(8)}$	$K_{89}^{(8)}$	$ a_8 $	$F_8^{(7)} + F_8^{(8)}$
0	0	0	0	0	0	0	$K_{98}^{(8)}$	$K_{99}^{(8)} + K_{99}^{(9)}$	$\lfloor a_9 \rfloor$	$F_{9}^{(8)}$

-	11										
$\frac{17}{2}$	$-\frac{17}{2}$	0	0	0	0	0	0	0	a_1	$-2 + 16 \ln \frac{9}{8}$	$\left(-x \frac{d\tilde{U}^{(1)}}{dx}\right)_{x=1}$
$-\frac{17}{2}$	18	$-rac{19}{2}$	0	0	0	0	0	0	<i>a</i> ₂	$16 \ln \frac{80}{81}$	$\left(-x \frac{d\tilde{U}^{(2)}}{dx}\right)_{x=1.125} - \left(-x \frac{d\tilde{U}^{(1)}}{dx}\right)_{x=1.125}$
0	$-\frac{19}{2}$	20	$-\frac{21}{2}$	0	0	0	0	0	<i>a</i> ₃	$16 \ln \frac{99}{100}$	$\left(-x \frac{d\tilde{U}^{(3)}}{dx}\right)_{x=1.250} - \left(-x \frac{d\tilde{U}^{(2)}}{dx}\right)_{x=1.250}$
0	0	$-\frac{21}{2}$	22	$-\frac{23}{2}$	0	0	0	0	a_4	$16 \ln \frac{120}{121}$	$\left(-x \frac{d\tilde{U}^{(4)}}{dx}\right)_{x=1.375} - \left(-x \frac{d\tilde{U}^{(3)}}{dx}\right)_{x=1.375}$
0	0	0	$-\frac{23}{2}$	24	$-\frac{25}{2}$	0	0	0	$\left\{ a_{5} \right\} = \left\{ \left. \right\} \right\}$	$16 \ln \frac{143}{144} + \frac{1}{3}$	$\left(-x \frac{d\tilde{U}^{(5)}}{dx}\right)_{x=1.500} - \left(-x \frac{d\tilde{U}^{(4)}}{dx}\right)_{x=1.500}$
0	0	0	0	$-\frac{25}{2}$	26	$-\frac{27}{2}$	0	0	<i>a</i> ₆	$16 \ln \frac{168}{169}$	$\left(-x \frac{d\tilde{U}^{(6)}}{dx}\right)_{x=1.625} - \left(-x \frac{d\tilde{U}^{(5)}}{dx}\right)_{x=1.625}$
0	0	0	0	0	$-\frac{27}{2}$	28	$-\frac{29}{2}$	0	<i>a</i> ₇	$16 \ln \frac{195}{196}$	$\left(-x \frac{d\tilde{U}^{(7)}}{dx}\right)_{x=1,750} - \left(-x \frac{d\tilde{U}^{(6)}}{dx}\right)_{x=1,750}$
0	0	0	0	0	0	$-\frac{29}{2}$	30	$-\frac{31}{2}$	<i>a</i> ₈	$16 \ln \frac{224}{225}$	$\left(-x \frac{d\tilde{U}^{(8)}}{dx}\right)_{x=1,875} - \left(-x \frac{d\tilde{U}^{(7)}}{dx}\right)_{x=1}$
0	0	0	0	0	0	0	$-\frac{31}{2}$	$\frac{31}{2}$	a9	$1 - 16 \ln \frac{16}{12}$	$-\left(-\frac{d\tilde{U}^{(8)}}{d\tilde{U}^{(8)}}\right)$

- Global stiffness matrix
 - Most of the terms in global stiffness matrix are zero → sparse matrix
 - Stiffness matrix is banded
 - Bandwidth 3, half-bandwidth 2

SEOUL NATIONAL UNIVERSITY

• Depending on the boundary condition one or two of node displacement is automatically computed.

SEOUL NATIONAL UNIVERSITY

Governing Equation

$$-\frac{d}{dx}\left(\alpha(x)\frac{dU(x)}{dx}\right) + \beta(x)U(x) = f(x) \qquad x_a < x < x_b$$

- Boundary condition

At
$$x = x_a$$
 $U(x_a) = U_a$ or $-\alpha \frac{dU}{dx}\Big|_{x=x_a} = \tau_a$

At
$$x = x_b$$
 $U(x_b) = U_b$ or $-\alpha \frac{dU}{dx}\Big|_{x=x_b} = \tau_b$

- Element trial solution $\tilde{U}^{(e)}(x;a) = \sum_{j=1}^{n} a_j \phi_j^{(e)}(x)$ Linear element $\tilde{U}^{(e)}(x;a) = \sum_{j=1}^{2} a_j \phi_j^{(e)}(x)$
- Step1: Write the Galerkin Residual equation for a typical element

$$R(x;a) = -\frac{d}{dx} \left(\alpha(x) \frac{d\tilde{U}^{(e)}(x;a)}{dx} \right) + \beta(x)\tilde{U}^{(e)}(x;a) - f(x)$$

$$\int_{(e)} R(x;a)\phi_i^{(e)}(x)dx = 0 \qquad i = 1, 2, ..., n$$

$$\int_{(e)} \left[-\frac{d}{dx} \left(\alpha(x) \frac{d\tilde{U}^{(e)}(x;a)}{dx} \right) + \beta(x)\tilde{U}^{(e)}(x;a) - f(x) \right] \phi_i^{(e)}(x)dx = 0 \qquad i = 1, 2, ..., n$$

SEOUL NATIONAL UNIVERSITY

• Step2: Integrate by parts

$$\int_{(e)} \left[-\frac{d}{dx} \left(\alpha(x) \frac{d\tilde{U}^{(e)}(x;a)}{dx} \right) \right] \phi_i^{(e)}(x) dx = \left[-\alpha(x) \frac{d\tilde{U}^{(e)}}{dx} \phi_i^{(e)}(x) \right]^{(e)} + \int_{(e)} \alpha(x) \frac{d\tilde{U}^{(e)}(x;a)}{dx} \frac{d\phi_i^{(e)}(x)}{dx} dx \\ \int_{(e)} \left[\alpha(x) \frac{d\tilde{U}^{(e)}(x;a)}{dx} \frac{d\phi_i^{(e)}(x)}{dx} + \beta(x) d\tilde{U}^{(e)}(x;a) \phi_i^{(e)}(x) \right] dx \\ = \int_{(e)} f(x) \phi_i^{(e)}(x) dx - \left[\left(-\alpha(x) \frac{d\tilde{U}^{(e)}}{dx} \right) \phi_i^{(e)}(x) \right]^{(e)} \quad i = 1, 2, ..., n$$

 Step 3: Substitute the element trial solution into integrals on the LHS

$$\frac{d\tilde{U}^{(e)}(x;a)}{dx} = \sum_{j=1}^{n} a_j \frac{d\phi_j^{(e)}(x)}{dx}$$

$$\sum_{j=1}^{n} \left(\int_{(e)} \frac{d\phi_{j}}{dx} \alpha(x) \frac{d\phi_{j}}{dx} dx + \int_{(e)} \phi^{(e)}{}_{i}(x) \beta(x) \phi^{(e)}{}_{j}(x) dx \right) a_{j} = \int_{(e)} f(x) \phi^{(e)}{}_{i}(x) dx - \left[\left(-\alpha(x) \frac{d\tilde{U}^{(e)}}{dx} \right) \phi^{(e)}{}_{i}(x) \right]^{(e)} \qquad i = 1, 2, ..., n$$

$$\begin{bmatrix} K_{11}^{(e)} & K_{12}^{(e)} & \cdots & K_{1n}^{(e)} \\ K_{21}^{(e)} & K_{22}^{(e)} & \cdots & K_{2n}^{(e)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ K_{n1}^{(e)} & K_{n2}^{(e)} & \cdots & K_{nn}^{(e)} \end{bmatrix} \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ \vdots \\ a_{n} \end{bmatrix} = \begin{bmatrix} F_{1}^{(e)} \\ F_{2}^{(e)} \\ \vdots \\ F_{n}^{(e)} \end{bmatrix}$$

$$K_{ij}^{(e)} = \int_{(e)} \frac{d\varphi_i}{dx} \alpha(x) \frac{d\varphi_j}{dx} dx + \int_{(e)} \phi^{(e)}{}_i(x) \beta(x) \phi^{(e)}{}_j(x) dx$$
$$F_i^{(e)} = \int_{(e)} f(x) \phi^{(e)}{}_i(x) dx - \left[\left(-\alpha(x) \frac{d\tilde{U}^{(e)}}{dx} \right) \phi^{(e)}{}_i(x) \right]^{(e)}$$

SEOUL NATIONAL UNIVERSITY

• Step 4: Develop specific expressions for the shape function (element trial function)

- Linear element (n=2)

$$\tilde{U}^{(e)}(x;a) = \sum_{j=1}^{2} a_j \phi_j^{(e)}(x)$$

 $\phi_1^{(e)}(x) = \frac{x_2 - x_1}{x_2 - x_1}$
 $\phi_2^{(e)}(x) = \frac{x - x_1}{x_2 - x_1}$

—

- Follow the similar steps as before

Foundations of FEM Quadratic element

SEOUL NATIONAL UNIVERSITY

Quadratic element has quadratic basis function but it essentially end up with similar sparse matrix.

Foundations of FEM 1D elasticity example

SEOUL NATIONAL UNIVERSITY

v is test function. We chose test function that is same as element trial function (shape function).
Foundations of FEM 1D elasticity example

- BC: at y=0, u = 0 (Dirichlet) at y=2, $EA \frac{\partial u_y}{\partial y} = -5$ (Neumann)
 - Find the u_1 , u_2 , $u_3 \& F$

Foundations of FEM 1D elasticity example

- Global K & F matrix is formed through summation of element K and F matrix
- Same for whatever number of elements

Initial Boundary Value problem pure initial value problem

SEOUL NATIONAL UNIVERSITY

• "pure" initial value problem (with only one unknown fn, U(t))

$$c\frac{dU(t)}{dt} + kU(t) = f(t) \qquad t > t_0$$

$$IC: U(t_0) = U_0$$

$$\bigcup$$

$$U(t) = \frac{f}{k} + \left(U_0 - \frac{f}{k}\right)e^{-(k/c)(t-t_0)}$$

Semi-infinite domain characteristic of an IVP

 System of coupled 'n' ordinary differential equations, in matrix form (with unknowns, U₁(t), U₂(t), ,,,U_n(t))

$$[c] \left\{ \frac{dU(t)}{dt} \right\} + [k] \{ U(t) \} = \{ f(t) \} \qquad t > t_0$$

$$IC: \left\{ U(t_0) \right\} = \{ U_0 \}$$

Initial Boundary Value problem Problem statement (1D)

$$\mu(x)\frac{\partial U(x,t)}{\partial t} - \frac{\partial}{\partial x}\left(\alpha(x)\frac{\partial U(x,t)}{\partial x}\right) + \beta(x)U(x,t) = f(x,t)$$

domain : $x_a < x < x_b$ $t > t_0$
BC at $x_a : U(x_a,t) = U_a(t)$ or $\left(-\alpha(x)\frac{\partial U(x,t)}{\partial x}\right)_{x_a} = \tau_a(t)$
at $x_b : U(x_b,t) = U_b(t)$ or $\left(-\alpha(x)\frac{\partial U(x,t)}{\partial x}\right)_{x_b} = \tau_b(t)$
 IC at t_0 $U(x,t_0) = U_0(x)$

$$\rho(x)c(x)\frac{\partial T(x,t)}{\partial t} - \frac{d}{dx}\left(k(x)\frac{dT(x,t)}{dx}\right) + \frac{hl}{A}T(x,t) = Q(x,t) + \frac{hlT_{\infty}}{A}$$

Initial Boundary Value problem Trial functions (1D)

- Unknown U is a function of x and t $\tilde{U}^{(e)}(x,t;a) = \sum_{j=1}^{n} a_j \phi_j^{(e)}(x,t)$ $\tilde{U}^{(e)}(x,t;a) = \sum_{j=1}^{n} a_j(t) \phi_j^{(e)}(x)$
 - Parameters a_i is functions of time
 - Assembled system equations will be ordinary differential equations in time (not algebraic equation)
 - Initial boundary value problem \rightarrow pure initial value problem
 - Can be solved by time-stepping technique

SEOUL NATIONAL UNIVERSITY

 Step1: Write the Galerkin residual equations for a typical element

$$\int_{(e)} \left[\mu(x) \frac{\partial \tilde{U}^{(e)}(x,t;a)}{\partial t} - \frac{\partial}{\partial x} \left(\alpha(x) \frac{\partial \tilde{U}^{(e)}(x,t;a)}{\partial x} \right) + \beta(x) \tilde{U}^{(e)}(x,t;a) - f(x,t) \right] \phi_i^{(e)}(x) dx = 0$$

$$i = 1, 2, ..., n$$

• Step2: Integrate by parts

$$\int_{(e)} \phi^{(e)}{}_{i}(x)\mu(x) \frac{\partial \tilde{U}^{(e)}(x,t;a)}{\partial t} + \int_{(e)} \frac{\partial \phi^{(e)}{}_{i}(x)}{\partial x} \alpha(x) \frac{\partial \tilde{U}^{(e)}(x,t;a)}{\partial x} dx + \int_{(e)} \phi^{(e)}{}_{i}(x)\beta(x)d\tilde{U}^{(e)}(x,t;a)dx$$
$$= \int_{(e)} f(x,t)\phi^{(e)}{}_{i}(x)dx - \left[\left(-\alpha(x)\frac{\partial \tilde{U}^{(e)}(x,t;a)}{\partial x} \right) \phi^{(e)}{}_{i}(x) \right]_{x_{1}}^{x_{n}} \qquad i = 1, 2, ..., n$$
$$\left[\left(-\alpha(x)\frac{\partial \tilde{U}^{(e)}(x,t;a)}{\partial x} \right) \phi^{(e)}{}_{i}(x) \right]_{x_{1}}^{x_{n}} = \left[\tilde{\tau}^{(e)}(x,t;a) \phi^{(e)}{}_{i}(x) \right]_{x_{1}}^{x_{n}}$$

SEOUL NATIONAL UNIVERSITY

• Step3: Substitute the general form of the element trial solution into interior integrals

$$\frac{\partial \tilde{U}^{(e)}(x,t;a)}{\partial x} = \sum_{j=1}^{n} a_j(t) \frac{d\phi_j^{(e)}(x)}{dx} \quad \longleftrightarrow \quad \frac{\partial \tilde{U}^{(e)}(x,t;a)}{\partial t} = \sum_{j=1}^{n} \frac{da_j(t)}{dt} \phi_j^{(e)}(x)$$

$$\sum_{j=1}^{n} \left(\int_{(e)} \phi^{(e)}{}_{i}(x) \mu(x) \phi_{j}^{(e)}(x) dx \right) \frac{da_{j}(t)}{dt} + \sum_{j=1}^{n} \left(\int_{(e)} \frac{d\phi_{i}^{(e)}}{dx} \alpha(x) \frac{d\phi_{j}^{(e)}}{dx} dx \right) a_{j}(t) + \sum_{j=1}^{n} \left(\int_{(e)} \phi^{(e)}{}_{i}(x) \beta(x) \phi^{(e)}{}_{j}(x) dx \right) a_{j}(t) = \int_{(e)} f(x,t) \phi^{(e)}{}_{i}(x) dx - \left[\tilde{\tau}^{(e)}(x,t;a) \phi^{(e)}{}_{i}(x) \right]_{x_{1}}^{x_{n}} \qquad i = 1, 2, ..., n$$

Capacity matrix

$$\begin{bmatrix} c \end{bmatrix} \left\{ \frac{da(t)}{dt} \right\} + \begin{bmatrix} K \end{bmatrix} \{ a(t) \} = \{ F(t) \} \qquad t > t_0$$
(heat) Capacity integral $IC : \{ U(t_0) \} = \{ U_0 \}$
 $C_{ij}^{(e)} = \int_{(e)} \phi^{(e)}_{i}(x) \mu(x) \phi^{(e)}_{j}(x) dx$
 $K_{ij}^{(e)} = K \alpha_{ij}^{(e)} + K \beta_{ij}^{(e)} = \int_{(e)} \frac{d\phi^{(e)}_{i}}{dx} \alpha(x) \frac{d\phi^{(e)}_{j}}{dx} dx + \int_{(e)} \phi^{(e)}_{i}(x) \beta(x) \phi^{(e)}_{j}(x) dx$
 $F_i^{(e)}(t) = Ff_i^{(e)}(t) + F\tau_i^{(e)}(t) = \int_{(e)} f(x,t) \phi^{(e)}_{i}(x) dx - \left[\tilde{\tau}^{(e)}(x,t;a) \phi^{(e)}_{i}(x) \right]_{x_i}^{x_i}$

SEOUL NATIONAL UNIVERSITY

• Step 4: Develop specific expressions for the shape functions

- Step 5: Substitute the shape functions into the element equations, and transform the integrals into a form appropriate for numerical evaluation
 - Linear element

$$\phi_{1}^{(e)}(x) = \frac{x_{2} - x}{x_{2} - x_{1}}$$

$$C_{11}^{(e)} = \int_{(e)} \frac{x_{2} - x}{x_{2} - x_{1}} \mu(x) \frac{x_{2} - x}{x_{2} - x_{1}} dx = \frac{1}{3} \mu^{(e)} L$$

$$C_{12}^{(e)} = \int_{(e)} \frac{x_{2} - x}{x_{2} - x_{1}} \mu(x) \frac{x - x_{1}}{x_{2} - x_{1}} dx = \frac{1}{6} \mu^{(e)} L$$

SEOUL NATIONAL UNIVERSITY

• Step 6: Derive expression for the flux

$$\tilde{\tau}^{(e)}(x,t) = -\alpha(x) \frac{a_2(t) - a_1(t)}{x_2 - x_1}$$

$$[c] \left\{ \frac{dU(t)}{dt} \right\} + [K] \{ U(t) \} = \{ f(t) \} \qquad t > t_0$$

$$IC : \{ U(t_0) \} = \{ U_0 \}$$

e.g., when there is two trial functions. A system of coupled ordinary differential equations.

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} \begin{cases} \frac{da_1(t)}{dt} \\ \frac{da_2(t)}{dt} \end{cases} + \begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix} \begin{cases} a_1(t) \\ a_2(t) \end{cases} = \begin{cases} F_1(t) \\ F_2(t) \end{cases}$$

1D Boundary Value Problem Heat Conduction (diffusion eq.) – steady state

SEOUL NATIONAL UNIVERSITY

Heating conducting rod with convection from its lateral surface

1D Boundary Value Problem Heat Conduction (diffusion eq.) – steady state ational UNIVERSITY

$$qA + QAdx - (q + dq)A - hldx(T - T_{\infty}) = 0$$

$$-\frac{\partial}{\partial x}\left(k(x)\frac{\partial T(x)}{\partial x}\right) + \frac{hl}{A}T(x) = Q(x) + \frac{hl}{A}T_{\infty}$$

Initial Boundary Value problem Time-stepping method

- Time-stepping method
 - Time axis is divided into a succession of time steps Δt_i
 - Discrete a(t) at the end of each step
 - $\{a\}_0$ at time t_0 , $\{a\}_1$ at time t_1 , $\{a\}_n$ at time t_n

Initial Boundary Value problem Time-stepping method

$$\begin{bmatrix} c \end{bmatrix} \left\{ \frac{da(t)}{dt} \right\} + \begin{bmatrix} K \end{bmatrix} \left\{ a(t) \right\} = \left\{ F(t) \right\} \qquad t > t_0$$
$$IC : \left\{ U(t_0) \right\} = \left\{ U_0 \right\}$$

- Time stepping method
 - Time-stepping, time-marching,

$$[P]{a}_{n} + [Q]{a}_{n-1} = p{F}_{n} + q{F}_{n-1}$$
$$[P]{a}_{1} = p{F}_{1} + q{F}_{0} - [Q]{a}_{0}$$
$$[P]{a}_{2} = p{F}_{2} + q{F}_{1} - [Q]{a}_{1}$$

- 1) Backward difference method
- 2) Mid-difference method (central difference method)
- 3) Forward difference method
- 4) The θ method

Time-stepping method Backward difference method

$$\begin{bmatrix} c \end{bmatrix} \left\{ \frac{da}{dt} \right\}_{n} + \begin{bmatrix} K \end{bmatrix} \left\{ a \right\}_{n} = \left\{ F \right\}_{n}$$

$$\left\{ \frac{da}{dt} \right\}_{n} = \frac{\left\{ a \right\}_{n} - \left\{ a \right\}_{n-1}}{\Delta t_{n}} \qquad \left(\frac{da_{i}}{dt} \right)_{n} = \frac{\left(a_{i} \right)_{n} - \left(a_{i} \right)_{n-1}}{\Delta t_{n}} \quad i = 1, 2, \dots, N$$

$$\Delta t_{n} = t_{n} - t_{n-1}$$

Time-stepping method Backward difference method

- Use the same Gaussian elimination
- Equations are coupled, need matrix solver
- Unknown {a} is defined implicitly \rightarrow backward difference is implicit
- Accuracy : $O(\Delta t) \rightarrow$ asymptotic rate of convergence is dt. E.g., error decrease by one half if dt is one half.

Time-stepping method Mid-difference method

SEOUL NATIONAL UNIVERSITY

- Evaluate at the center of time step

$$[c]\left\{\frac{da}{dt}\right\}_{n-1/2} + [K]\{a\}_{n-1/2} = \{F\}_{n-1/2}$$

$$\left\{\frac{da}{dt}\right\}_{n-1/2} = \frac{\left\{a\right\}_n - \left\{a\right\}_{n-1}}{\Delta t_n} \qquad \left\{a\right\}_{n-1/2} = \frac{\left\{a\right\}_{n-1} + \left\{a\right\}_n}{2} \qquad \Delta t_n = t_n - t_{n-1}$$

$$\{a\} = (1-\theta)\{a\}_{n-1} + \theta\{a\}_n \qquad \theta = \frac{t-t_{n-1}}{\Delta t_n}$$

Time-stepping method Mid-difference method

$$\left(\frac{1}{\Delta t_n}[c] + \frac{1}{2}[K]\right) \{a\}_n = \{F\}_{n-1/2} + \left(\frac{1}{\Delta t_n}[c] - \frac{1}{2}[K]\right) \{a\}_{n-1} \qquad \{F\}_{n-1/2} = \frac{\{F\}_{n-1} + \{F\}_n}{2}$$

$$\begin{bmatrix} K_{eff} \end{bmatrix} = \frac{1}{\Delta t_n} [c] + \frac{1}{2} [K]$$
$$\begin{bmatrix} F_{eff} \end{bmatrix} = \{F\}_{n-1/2} + \left(\frac{1}{\Delta t_n} [c] - \frac{1}{2} [K]\right) \{a\}_{n-1}$$

- Accuracy: $O(\Delta t^2)$
 - asymptotic rate of convergence is dt²
 - Frequent oscillations with typical time-step

Time-stepping method Forward-difference method

SEOUL NATIONAL UNIVERSITY

• Evaluated at the backward end of the time step, t_{n-1}

$$\begin{split} \left[c\right] \left\{ \frac{da}{dt} \right\}_{n-1} + \left[K\right] \left\{a\right\}_{n-1} & \Delta t_n = t_n - t_{n-1} \\ \left\{ \frac{da}{dt} \right\}_{n-1} = \frac{\left\{a\right\}_n - \left\{a\right\}_{n-1}}{\Delta t_n} \\ \frac{1}{\Delta t_n} \left[c\right] \left\{a\right\}_n = \left\{F\right\}_{n-1} + \left(\frac{1}{\Delta t_n} \left[c\right] - \left[K\right]\right) \left\{a\right\}_{n-1} & \text{This can be diagonalized} \\ \left[K_{eff}\right] \left\{a\right\}_n = \left\{F_{eff}\right\}_n & \left[K_{eff}\right] = \frac{1}{\Delta t_n} \left[c\right] \\ \left[F_{eff}\right] = \left\{F\right\}_{n-1} + \left(\frac{1}{\Delta t_n} \left[c\right] - \left[K\right]\right) \left\{a\right\}_{n-1} \end{split}$$

Time-stepping method Forward-difference method

- Lumping
 - Techniques for diagonalizing [C]

$$CL_{ii}^{e} = \sum_{j=1}^{n} C_{ij}^{e}$$
 $n = 1, 2, ..., n$
 $CL_{ij}^{e} = 0$

- consistent capacity matrix: [C]^e (Not lumped)
- Lumped capacity matrix : [CL]^e
- Lumping can be interpreted as using a different set of shape functions for just the capacity integrals

Time-stepping method Forward-difference method

SEOUL NATIONAL UNIVERSITY

• Lumped capacity matrix

$$\begin{bmatrix} CL \end{bmatrix} = \begin{bmatrix} CL_{11} & .. & 0 \\ .. & CL_{22} & .. \\ 0 & .. & CL_{33} \end{bmatrix}$$

$$\{a\}_{n} = \{a\}_{n-1} + \Delta t_{n} [CL]^{-1} (\{F\}_{n-1} - [K]\{a\}_{n-1})$$

- Matrix inversion is unnecessary and {a}n can be evaluated explicitly.
- Much faster than backward or mid-difference method
- Accuracy: $O(\Delta t)$ asymptotic rate of convergence is dt
- Potentially unstable

Time-stepping method θ- method

SEOUL NATIONAL UNIVERSITY

Generalization of previous three methods – evaluate at a general location

$$[c]\left\{\frac{da}{dt}\right\}_{\theta} + [K]\left\{a\right\}_{\theta} = \left\{F\right\}_{\theta}$$

$$\theta = \frac{t - t_{n-1}}{\Delta t_n}$$
$$\{a\} = (1 - \theta) \{a\}_{n-1} + \theta \{a\}_n$$

$$\left\{\frac{da}{dt}\right\}_{\theta} = \frac{1}{\Delta t_n} \frac{d\left\{a\right\}_{\theta}}{d\theta} = \frac{\left\{a\right\}_n - \left\{a\right\}_{n-1}}{\Delta t_n}$$

Time-stepping method θ- method

$$\left(\frac{1}{\Delta t_n}[c] + \theta[K]\right) \{a\}_n = (1 - \theta) \{F\}_{n-1} + \theta \{F\}_n + \left(\frac{1}{\Delta t_n}[c] - (1 - \theta)[K]\right) \{a\}_{n-1}$$
$$\left[K_{eff}\right] = \frac{1}{\Delta t_n}[c] + \theta[K]$$
$$\left[F_{eff}\right] = (1 - \theta) \{F\}_{n-1} + \theta \{F\}_n + \left(\frac{1}{\Delta t_n}[c] - (1 - \theta)[K]\right) \{a\}_{n-1}$$

- $\theta = 0$: forward difference
- $\theta = 1/2$: mid-difference
- $\theta = 1$: backward difference
- We may choose something else which might perform better

SEOUL NATIONAL UNIVERSITY

• We can only accept the stable solution

SEOUL NATIONAL UNIVERSITY

- A single equation

$$C\frac{da(t)}{dt} + Ka(t) = F(t)$$

- For free response (when applied load F(t) vanishes)

$$C\frac{da(t)}{dt} + Ka(t) = 0$$

Exact solution

$$a(t) = Ae^{-\lambda t}$$
 eigenvalue, $\lambda = K / C$

$$\begin{pmatrix} \frac{1}{\Delta t_n} C + \theta K[K] \end{pmatrix} a_n = (1 - \theta) F_{n-1} + \theta F_n + \begin{pmatrix} \frac{1}{\Delta t_n} C - (1 - \theta) K \end{pmatrix} a_{n-1} \\ \bigvee Free \ response \\ \begin{pmatrix} \frac{1}{\Delta t_n} C + \theta K[K] \end{pmatrix} a_n = \begin{pmatrix} \frac{1}{\Delta t_n} C - (1 - \theta) K \end{pmatrix} a_{n-1}$$

• Single DOF
$$\frac{a_n}{a_{n-1}} = \frac{1 - (1 - \theta)\lambda\Delta t}{1 + \theta\lambda\Delta t}$$

- Multi DOF system $\frac{(A_i)_n}{(A_i)_{n-1}} = \frac{1 - (1 - \theta)\lambda_i \Delta t}{1 + \theta \lambda_i \Delta t} \quad i = 1, 2, ..., N$
- Condition for stability

$$\left|\frac{\left(A_{i}\right)_{n}}{\left(A_{i}\right)_{n-1}}\right| < 1 \quad i = 1, 2, ..., N$$

$$0 \le \theta < 1/2 : \lambda_{i} \Delta t < \frac{2}{1-2\theta} \quad i = 1, 2, ..., N \quad \longrightarrow \text{ Conditionally stable}$$

$$\theta \ge 1/2 : \lambda_{i} \Delta t > \frac{-2}{2\theta - 1} \quad i = 1, 2, ..., N \quad \longrightarrow \text{ Unconditionally stable}$$

SEOUL NATIONAL UNIVERSITY

• Critical time step: smallest time step of a system

$$\Delta t_{crit} \Box \frac{2}{d(1-2\theta)\pi^2} \left((\mu/\alpha)\delta^2 \right)_{\min}^e \quad 0 \le \theta < 1/2$$

$$\Delta t_{crit} \Box \frac{2}{d\pi^2} (\mu/\alpha)\delta_{\min}^2 \quad \theta = 0, \ \alpha, \mu \text{ are constants}$$
Approximated from 1D eigenproblem

Conservative low estimation - within a factor of 5 of the exact value (Burnett, 1987)

 δ : distance between two adjacent nodes in the element

$$\alpha \frac{\partial^2 U(x,t)}{\partial x^2} - \mu \frac{\partial U(x,t)}{\partial t} = 0$$

Initial Boundary Value problem Example

SEOUL NATIONAL UNIVERSITY

Initial conditions: $T(x,0) = 20^{\circ}C$ $0 \le x \le 100$

Example NUN (FROITY 7. °C S U x, cm 11 21 *x*, cm 1 11 21 Mesh Mesh (a) t=2 sec (b) t=20 sec $T_{\infty} = 20^{\circ}C$ Convective heat loss T, °C S F. q(0,t)-Steel Copper Steel T(100,t)x=0x = 40x = 60x = 100x, cm x, cm 1 11 21 20 40 50 30 40 50 11 21 Mesh Mesh (c) t=200 sec (d) t=2000 sec ô F. Û x, cm x, cm 1 11 21 30 40 2: Mesh Mesh (e) t=10,000 sec (f) $t=1.01\times10^{6}$ sec

Initial Boundary Value problem

Initial Boundary Value problem Example

Initial Boundary Value problem 1D Example

SEOUL NATIONAL UNIVERSITY

	Number of			
Interval	θ	Δt , sec	steps, n_s	Time span, sec
I	0	0.05	2	0 - 0.1
п	0	0.05	38	0.1 - 2
III	2/3	1	18	2 - 20
IV	2/3	10	18	20 - 200
V	2/3	100	18	200 - 2000
VI	2/3	500	16	2000 - 10,000
VII	1	10^{6}	1	$10,000 - 1.01 \times 10^{\circ}$
VIII	1	10^{6}	1	$1.01 \times 10^{6} - 2.01 \times 10^{6}$

Guidelines

- Use several time steps
- Very small time step during shock response
- Increase time step during transition stage
- At near steady state, use single very large time step.

Foundations of FEM 2D formulation

Foundations of FEM 2D formulation : 12-step procedures

SEOUL NATIONAL UNIVERSITY

• Step 1: Write the Galerkin residual equations for a typical element

$$R(x, y; a) = -\frac{\partial}{\partial x} \left(\alpha_x(x, y) \frac{\partial U(x, y)}{\partial x} \right) - \frac{\partial}{\partial y} \left(\alpha_y(x, y) \frac{\partial U(x, y)}{\partial y} \right) + \beta(x, y) U(x, y) - f(x, y)$$

$$\iint_{(e)} R(x, y; a) \phi_i^{(e)}(x, y) dx dy = 0 \qquad i = 1, 2, ..., n \quad \longleftarrow \text{ Integrate over the area of element}$$

$$\iint_{(e)} \left[-\frac{\partial}{\partial x} \left(\alpha_x(x, y) \frac{\partial U(x, y)}{\partial x} \right) - \frac{\partial}{\partial y} \left(\alpha_y(x, y) \frac{\partial U(x, y)}{\partial y} \right) + \beta(x, y) U(x, y) - f(x, y) \right] \phi_i^{(e)}(x, y) dx dy = 0$$

$$i = 1, 2, ..., n$$

Foundations of FEM 2D formulation : 12-step procedures

SEOUL NATIONAL UNIVERSITY

• Step 2: Integrate by parts

$$\frac{\partial}{\partial x} \left(\alpha_x \frac{\partial \tilde{U}^{(e)}}{\partial x} \right) \phi_i^{(e)} = \frac{\partial}{\partial x} \left(\alpha_x \frac{\partial \tilde{U}^{(e)}}{\partial x} \phi_i^{(e)} \right) - \left(\alpha_y \frac{\partial \tilde{U}^{(e)}}{\partial x} \right) \frac{\partial \phi_i^{(e)}}{\partial x} \\ \frac{\partial}{\partial y} \left(\alpha_y \frac{\partial \tilde{U}^{(e)}}{\partial y} \right) \phi_i^{(e)} = \frac{\partial}{\partial y} \left(\alpha_y \frac{\partial \tilde{U}^{(e)}}{\partial y} \phi_i^{(e)} \right) - \left(\alpha_y \frac{\partial \tilde{U}^{(e)}}{\partial y} \right) \frac{\partial \phi_i^{(e)}}{\partial y}$$

$$-\iint_{(e)} \left[\frac{\partial}{\partial x} \left(\alpha_x \frac{\partial \tilde{U}^{(e)}}{\partial x} \phi_i^{(e)} \right) + \frac{\partial}{\partial y} \left(\alpha_y \frac{\partial \tilde{U}^{(e)}}{\partial y} \phi_i^{(e)} \right) \right] dx dy \\ + \iint_{(e)} \left[\left(\alpha_x \frac{\partial \tilde{U}^{(e)}}{\partial x} \right) \frac{\partial \phi_i^{(e)}}{\partial x} + \left(\alpha_y \frac{\partial \tilde{U}^{(e)}}{\partial y} \right) \frac{\partial \phi_i^{(e)}}{\partial y} + \beta \tilde{U}^{(e)} \phi_i^{(e)} - f \phi_i^{(e)} \right] dx dy = 0 \qquad i = 1, 2, ..., n$$

Divergence theorem

 $\iint_{(e)} \left(\frac{\partial F}{\partial x} + \frac{\partial G}{\partial x} \right) dx dy = \iint_{(e)} \left(F n_x^{(e)} + G n_y^{(e)} \right) ds$

$$-\iint_{(e)} \left[\frac{\partial}{\partial x} \left(\alpha_x \frac{\partial \tilde{U}^{(e)}}{\partial x} \phi_i^{(e)} \right) + \frac{\partial}{\partial y} \left(\alpha_y \frac{\partial \tilde{U}^{(e)}}{\partial y} \phi_i^{(e)} \right) \right] dx dy \stackrel{\checkmark}{=} -\iint_{(e)} \left(\alpha_x \frac{\partial \tilde{U}^{(e)}}{\partial x} \phi_i^{(e)} n_x^{(e)} + \alpha_y \frac{\partial \tilde{U}^{(e)}}{\partial y} \phi_i^{(e)} n_y^{(e)} \right) dx dy$$

Foundations of FEM 2D formulation : 12-step procedures

SEOUL NATIONAL UNIVERSITY

• Finally, residual equations becomes

$$\iint_{(e)} \left[\left(\alpha_x \frac{\partial \tilde{U}^{(e)}}{\partial x} \right) \frac{\partial \phi_i^{(e)}}{\partial x} + \left(\alpha_y \frac{\partial \tilde{U}^{(e)}}{\partial y} \right) \frac{\partial \phi_i^{(e)}}{\partial y} + \beta \tilde{U}^{(e)} \phi_i^{(e)} \right] dx dy = \iint_e f \phi_i^{(e)} dx dy - \iint_{(e)} \tilde{\tau}_n^{(e)} \phi_i^{(e)} dx dy = \iint_e f \phi_i^{(e)} dx dy - \iint_e \tilde{\tau}_n^{(e)} \phi_i^{(e)} dx dy = \iint_e f \phi_i^{(e)} dx dy - \iint_e \tilde{\tau}_n^{(e)} \phi_i^{(e)} dx dy = \iint_e f \phi_i^{(e)} dx dy - \iint_e \tilde{\tau}_n^{(e)} \phi_i^{(e)} dx dy = \iint_e f \phi_i^{(e)} dx dy - \iint_e \tilde{\tau}_n^{(e)} \phi_i^{(e)} dx dy = \iint_e f \phi_i^{(e)} dx dy - \iint_e \tilde{\tau}_n^{(e)} \phi_i^{(e)} dx dy = \iint_e f \phi_i^{(e)} dx dy = \iint_e f \phi_i^{(e)} dx dy - \iint_e \tilde{\tau}_n^{(e)} \phi_i^{(e)} dx dy = \iint_e f \phi_i^{(e)} dx dy - \iint_e \tilde{\tau}_n^{(e)} \phi_i^{(e)} dx dy = \iint_e f \phi_i^{(e)} dx dy + \iint_e \tilde{\tau}_n^{(e)} \phi_i^{(e)} dx dy = \iint_e f \phi_i^{(e)} dx dy + \iint_e f \phi_i^{(e)} dx dy = \iint_e f \phi_i^{(e)} dx dy + \iint_e f \phi_i^{(e)} dx dy = \iint_e f \phi_i^{(e)} dx dy + \iint_e f \phi_i^{(e)} dx dy = \iint_e f \phi_i^{(e)} dx dy + \iint_e f \phi_i^{(e)$$

SEOUL NATIONAL UNIVERSITY

• Step 3: substitute the general form of the element trial solution into interior integrals in residual equations

$$\sum_{j=1}^{n} \left(\iint_{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial x} \alpha_{x} \frac{\partial \phi_{j}^{(e)}}{\partial x} dx dy + \iint_{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial y} \alpha_{y} \frac{\partial \phi_{j}^{(e)}}{\partial y} dx dy + \iint_{(e)} \phi_{i}^{(e)} \beta \phi_{j}^{(e)} dx dy \right) a_{j}$$

$$= \iint_{e} f \phi_{i}^{(e)} dx dy + \iint_{(e)} \tilde{\tau}_{-n}^{(e)} \phi_{i}^{(e)} ds \quad i = 1, 2, ..., n$$

$$\begin{bmatrix} K_{11}^{(e)} & K_{12}^{(e)} & \cdots & K_{1n}^{(e)} \\ K_{21}^{(e)} & K_{22}^{(e)} & \cdots & K_{2n}^{(e)} \\ \vdots & \vdots & \vdots & \vdots \\ \ddots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ K_{n1}^{(e)} & K_{n2}^{(e)} & \cdots & K_{nn}^{(e)} \end{bmatrix} \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ \vdots \\ a_{n} \end{bmatrix} = \begin{bmatrix} F_{1}^{(e)} \\ F_{2}^{(e)} \\ \vdots \\ F_{n}^{(e)} \end{bmatrix} \quad \underbrace{e.g., \\ \text{Linear element}}_{K_{21}^{(e)} & K_{22}^{(e)} & K_{33}^{(e)} \end{bmatrix} \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ K_{21}^{(e)} & K_{22}^{(e)} & K_{33}^{(e)} \end{bmatrix} \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ K_{21}^{(e)} & K_{22}^{(e)} & K_{33}^{(e)} \end{bmatrix} \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ K_{21}^{(e)} & K_{32}^{(e)} & K_{33}^{(e)} \end{bmatrix} \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ K_{31}^{(e)} & K_{32}^{(e)} & K_{33}^{(e)} \end{bmatrix} \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ K_{31}^{(e)} & K_{32}^{(e)} & K_{33}^{(e)} \end{bmatrix} \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ K_{31}^{(e)} & K_{32}^{(e)} & K_{33}^{(e)} \end{bmatrix} \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ K_{31}^{(e)} & K_{32}^{(e)} & K_{33}^{(e)} \end{bmatrix} \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ K_{31}^{(e)} & K_{32}^{(e)} & K_{33}^{(e)} \end{bmatrix} \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ K_{31}^{(e)} & K_{32}^{(e)} & K_{33}^{(e)} \end{bmatrix} \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ K_{31}^{(e)} & K_{32}^{(e)} & K_{33}^{(e)} \end{bmatrix} \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ K_{31}^{(e)} & K_{32}^{(e)} & K_{33}^{(e)} \end{bmatrix} \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ K_{31}^{(e)} & K_{32}^{(e)} & K_{33}^{(e)} \end{bmatrix} \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ K_{31}^{(e)} & K_{32}^{(e)} & K_{33}^{(e)} \end{bmatrix} \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ K_{31}^{(e)} & K_{32}^{(e)} & K_{33}^{(e)} \end{bmatrix} \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ K_{31}^{(e)} & K_{32}^{(e)} & K_{33}^{(e)} \end{bmatrix} \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ K_{31}^{(e)} & K_{32}^{(e)} & K_{33}^{(e)} \end{bmatrix} \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ K_{31}^{(e)} & K_{32}^{(e)} & K_{33}^{(e)} \end{bmatrix} \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ K_{31}^{(e)} & K_{32}^{(e)} & K_{33}^{(e)} \end{bmatrix} \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ K_{31}^{(e)} & K_{32}^{(e)} & K_{33}^{(e)} \end{bmatrix} \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ K_{31}^{(e)} & K_{32}^{(e)} & K_{33}^{(e)} \end{bmatrix} \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ K_{31}^{(e)} & K_{32}^{(e)} & K_{33}$$

$$K_{ij}^{(e)} = \iint_{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial x} \alpha_{x} \frac{\partial \phi_{j}^{(e)}}{\partial x} dx dy + \iint_{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial y} \alpha_{y} \frac{\partial \phi_{j}^{(e)}}{\partial y} dx dy + \iint_{(e)} \phi_{i}^{(e)} \beta(x) \phi_{j}^{(e)} dx dy$$
$$F_{i}^{(e)} = \iint_{(e)} f \phi_{i}^{(e)} dx dy + \iint_{(e)} \tilde{\tau}_{-n}^{(e)} \phi_{i}^{(e)} ds$$

- Step 4: Develop specific expressions for the shape functions
 - Complete linear polynomial $\tilde{r}(a)$

$$U^{(e)} = \mathbf{a} + \mathbf{b}x + \mathbf{c}y$$

$$a + bx_1 + cy_2 = a_1$$

 $a + bx_2 + cy_2 = a_2$
 $a + bx_3 + cy_3 = a_3$

$$\tilde{U}^{(e)}(x_{i}, y_{i}; a) = a_{i}$$
$$\tilde{U}^{(e)}(x, y; a) = \sum_{j=1}^{3} a_{j} \phi_{j}^{(e)}(x, y)$$

$$\phi_j^{(e)}(x, y) = \frac{\mathbf{a}_j + \mathbf{b}_j x + \mathbf{c}_j y}{2\Delta} \quad j = 1, 2, 3$$
$$\mathbf{a}_j = x_k y_l - x_l y_k$$
$$\mathbf{b}_j = y_k - y_l$$
$$\mathbf{c}_j = x_l - x_k$$
$$\Delta = \frac{1}{2} \begin{vmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \\ 1 & x_3 & y_3 \end{vmatrix} = \text{area of element}$$

$$\phi_1^{(e)}(x,y) = \frac{x_2 y_3 - x_3 y_2 + (y_2 - y_3)x + (x_3 - x_2)y}{2\Delta}$$

SEOUL NATIONAL UNIVERSITY

 Step 5: Substitute the shape functions into the element equations, and transform the integrals into a form appropriate for numerical evaluation

$$\frac{\partial \phi_j^{(e)}(x, y)}{\partial x} = \frac{\mathbf{b}_j}{2\Delta}$$
$$\frac{\partial \phi_j^{(e)}(x, y)}{\partial y} = \frac{\mathbf{c}_j}{2\Delta}$$

SEOUL NATIONAL UNIVERSITY

 $\zeta_1 + \zeta_2 + \zeta_2 = 1$

$$Ff_{i}^{(e)} = f^{(e)} \iint_{(e)} \phi^{(e)}_{i} dx dy = \frac{f^{(e)} \Delta}{3}$$

$$F\tau_{i}^{(e)} = \iint_{(e)} \tilde{\tau}_{-n}^{(e)} \phi_{i}^{(e)} ds = \begin{cases} \int_{1}^{2} \tilde{\tau}_{-n}^{(e)} \phi_{1}^{(e)} ds + \int_{2}^{3} \tilde{\tau}_{-n}^{(e)} \phi_{1}^{(e)} ds + \int_{3}^{1} \tilde{\tau}_{-n}^{(e)} \phi_{1}^{(e)} ds \end{cases}$$

$$\int_{1}^{2} \tilde{\tau}_{-n}^{(e)} \phi_{2}^{(e)} ds + \int_{2}^{3} \tilde{\tau}_{-n}^{(e)} \phi_{2}^{(e)} ds + \int_{3}^{1} \tilde{\tau}_{-n}^{(e)} \phi_{2}^{(e)} ds \end{cases}$$

SEOUL NATIONAL UNIVERSITY

• Step 6: Prepare expressions for the flux

$$\tilde{\tau}_{x}^{(e)}(x,y) = -\alpha_{x}(x,y) \frac{\partial \tilde{U}^{(e)}(x,y;a)}{\partial x}$$
$$\tilde{\tau}_{y}^{(e)}(x,y) = -\alpha_{y}(x,y) \frac{\partial \tilde{U}^{(e)}(x,y;a)}{\partial y}$$

$$\frac{\partial \tilde{U}^{(e)}(x, y; a)}{\partial x} = \sum_{j=1}^{3} a_j \frac{\partial \phi_j^{(e)}(x, y)}{\partial x} = \sum_{j=1}^{3} a_j \frac{\mathbf{b}_j}{2\Delta}$$
$$\frac{\partial \tilde{U}^{(e)}(x, y; a)}{\partial y} = \sum_{j=1}^{3} a_j \frac{\partial \phi_j^{(e)}(x, y)}{\partial y} = \sum_{j=1}^{3} a_j \frac{\mathbf{c}_j}{2\Delta}$$

$$\tilde{\tau}_x^{(e)}(x,y) = -\alpha_x(x,y) \sum_{j=1}^3 a_j \frac{\mathbf{b}_j}{2\Delta}$$
$$\tilde{\tau}_y^{(e)}(x,y) = -\alpha_y(x,y) \sum_{j=1}^3 a_j \frac{\mathbf{c}_j}{2\Delta}$$

SEOUL NATIONAL UNIVERSITY

• Nodal flux

- Higher order triangular element
 - 3, 6, 10, 15,...
 - 4, 5 are possible but...Sides may be curved
 - Nodes nonuniformly distributedued

Foundations of FEM 12-step procedures: higher order element

Foundation of FEM 12-step procedures: higher order element

2D Initial boundary value problem

to

$$\mu(\mathbf{x}) \frac{\partial U(\mathbf{x}, \mathbf{y}; t)}{\partial t} - \frac{\partial}{\partial \mathbf{x}} \left(\alpha_{\mathbf{x}}(\mathbf{x}, \mathbf{y}) \frac{\partial U(\mathbf{x}, \mathbf{y}, t)}{\partial \mathbf{x}} \right) - \frac{\partial}{\partial \mathbf{y}} \left(\alpha_{\mathbf{y}}(\mathbf{x}, \mathbf{y}) \frac{\partial U(\mathbf{x}, \mathbf{y}, t)}{\partial \mathbf{y}} \right) + \beta(\mathbf{x}, \mathbf{y}) U(\mathbf{x}, \mathbf{y}, t) = f(\mathbf{x}, \mathbf{y}, t)$$

$$\left[c \right]^{(e)} \left\{ \frac{da(t)}{dt} \right\} + \left[K \right]^{(e)} \left\{ a(t) \right\} = \left\{ F(t) \right\}^{(e)}$$

$$\int_{(e)}^{e} \int_{(e)}^{e} \phi^{(e)}_{i} \mu \phi^{(e)}_{j} dx dy$$

$$\int_{(e)}^{e} \int_{(e)}^{e} \frac{\partial \phi_{i}}{\partial \mathbf{x}} \alpha_{\mathbf{x}} \frac{\partial \phi_{j}}{\partial \mathbf{x}} dx dy + \iint_{(e)}^{e} \frac{\partial \phi_{j}}{\partial \mathbf{y}} dx dy + \iint_{(e)}^{e} \phi^{(e)}_{i} \beta \phi^{(e)}_{j} dx dy$$

$$\int_{(e)}^{e} \int_{(e)}^{e} \int_{(e)}^{e} \int_{(e)}^{e} \int_{(e)}^{e} \frac{\partial \phi_{i}}{\partial \mathbf{x}} \alpha_{\mathbf{x}} \frac{\partial \phi_{j}}{\partial \mathbf{x}} dx dy + \iint_{(e)}^{e} \int_{(e)}^{\phi} \frac{\partial \phi_{j}}{\partial \mathbf{y}} dx dy + \iint_{(e)}^{e} \int_{(e)}^{e} \int_{(e)}^{e$$

Time-stepping method Comparison of performances

SEOUL NATIONAL UNIVERSITY

 Critical time step: smallest time step of a system (p.476-479, Burnett, 1987)

$$\Delta t_{crit} = \frac{2}{d(1-2\theta)\pi^2} \left((\mu/\alpha)\delta^2 \right)_{\min}^e \quad 0 \le \theta < 1/2$$

$$\Delta t_{crit} = \frac{2}{d\pi^2} (\mu/\alpha)\delta_{\min}^2 \quad \theta = 0, \ \alpha, \mu \text{ are constants}$$
Approximated from 1D eigenproblem

 Conservative low estimation - within a factor of 5 of the exact value (Burnett, 1987)

 δ : distance between two adjacent nodes in the element

$$\alpha \frac{\partial^2 U(x,t)}{\partial x^2} - \mu \frac{\partial U(x,t)}{\partial t} = 0$$

FEM - 2D Linear Elasticity Governing equations

$$\frac{E}{1-\nu^2}\frac{\partial^2 u}{\partial x^2} + \frac{E}{2(1-\nu)}\frac{\partial^2 v}{\partial x \partial y} + \frac{E}{2(1+\nu)}\frac{\partial^2 u}{\partial y^2} = -f_x$$
$$\frac{E}{1-\nu^2}\frac{\partial^2 v}{\partial y^2} + \frac{E}{2(1-\nu)}\frac{\partial^2 u}{\partial x \partial y} + \frac{E}{2(1+\nu)}\frac{\partial^2 v}{\partial x^2} = -f_y$$

FEM - 2D Linear Elasticity Constitutive equations

SEOUL NATIONAL UNIVERSITY

2D Plane stress (isotropic)

$$\begin{cases} \sigma_x \\ \sigma_y \\ \tau_{xy} \end{cases} = \frac{E}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1-\nu & \nu & 0 \\ \nu & 1-\nu & 0 \\ 0 & 0 & \frac{1}{2}-\nu \end{bmatrix} \left(\begin{cases} \varepsilon_x \\ \varepsilon_y \\ \gamma_{xy} \end{cases} - \begin{cases} (1+\nu)\alpha\Delta T \\ (1+\nu)\alpha\Delta T \\ 0 \end{cases} \right)$$

FEM - 2D Linear Elasticity Trial solutions

$$\begin{split} \tilde{u}^{(e)}(x,y;a) &= \sum_{j=1}^{n} u_{j} \phi_{j}^{(e)}(x,y) \\ \left\{ \tilde{U} \right\}^{(e)} &= \left[\Phi \right]^{(e)} \left\{ a \right\} \\ \tilde{v}^{(e)}(x,y;a) &= \sum_{j=1}^{n} v_{j} \phi_{j}^{(e)}(x,y) \\ \left\{ \frac{\tilde{U}}{2^{\times 1}} \right\}^{(e)} &= \left\{ \frac{\tilde{u}^{(e)}}{\tilde{v}^{(e)}} \right\} \\ \left\{ \frac{\Phi}{2^{\times 2n}} \right\}^{(e)} &= \left[\frac{\phi_{1}^{(e)} \quad 0 \quad \phi_{2}^{(e)} \quad 0 \quad \dots \quad \phi_{n}^{(e)} \quad 0 \\ 0 \quad \phi_{1}^{(e)} \quad 0 \quad \phi_{2}^{(e)} \quad \dots \quad 0 \quad \phi_{n}^{(e)} \end{bmatrix} \\ \end{split}$$

FEM - 2D Linear Elasticity Trial solutions

SEOUL NATIONAL UNIVERSITY

• Step 1: Write the Galerkin residual equations for a typical element $R = \frac{\partial \tilde{\sigma}_x^{(e)}}{\partial \tilde{\tau}_{xy}^{(e)}} + f$

$$R_{x} = \frac{\partial x}{\partial x} + \frac{\partial y}{\partial y} + y_{x}$$

$$R_{y} = \frac{\partial \tilde{\tau}_{xy}^{(e)}}{\partial x} + \frac{\partial \tilde{\sigma}_{y}^{(e)}}{\partial y} + f_{y}$$

$$\iint_{(e)} R_{x} \phi_{i}^{(e)} dx dy = 0 \qquad i = 1, 2, ..., n$$

$$\iint_{(e)} R_{y} \phi_{i}^{(e)} dx dy = 0 \qquad i = 1, 2, ..., n$$

$$\left[\partial \tilde{\tau}^{(e)} - \partial \tilde{\tau}^{(e)}$$

$$\iint_{(e)} \left[\frac{\partial \tilde{\sigma}_{x}^{(e)}}{\partial x} + \frac{\partial \tilde{\tau}_{xy}^{(e)}}{\partial y} + f_{x} \right] \phi_{i}^{(e)} dx dy = 0 \qquad i = 1, 2, ..., n$$
$$\iint_{(e)} \left[\frac{\partial \tilde{\tau}_{xy}^{(e)}}{\partial x} + \frac{\partial \tilde{\sigma}_{y}^{(e)}}{\partial y} + f_{y} \right] \phi_{i}^{(e)} dx dy = 0 \qquad i = 1, 2, ..., n$$

SEOUL NATIONAL UNIVERSITY

Step 2: Integrate by parts

$$\iint_{(e)} \left[\tilde{\sigma}_{x}^{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial x} + \tilde{\tau}_{xy}^{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial y} \right] dx dy = \iint_{(e)} \left[\frac{\partial}{\partial x} \left(\tilde{\sigma}_{x}^{(e)} \phi_{i}^{(e)} \right) + \frac{\partial}{\partial y} \left(\tilde{\tau}_{xy}^{(e)} \phi_{i}^{(e)} \right) \right] dx dy \\
+ \iint_{(e)} f_{x} \phi_{i}^{(e)} dx dy \quad i = 1, 2, ..., n \\
\iint_{(e)} \left[\tilde{\tau}_{xy}^{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial x} + \tilde{\sigma}_{y}^{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial y} \right] dx dy = \iint_{(e)} \left[\frac{\partial}{\partial x} \left(\tilde{\tau}_{xy}^{(e)} \phi_{i}^{(e)} \right) + \frac{\partial}{\partial y} \left(\tilde{\sigma}_{y}^{(e)} \phi_{i}^{(e)} \right) \right] dx dy \\
+ \iint_{(e)} f_{y} \phi_{i}^{(e)} dx dy \quad i = 1, 2, ..., n$$

Divergence theorem

$$\iint_{(e)} \left[\tilde{\sigma}_{x}^{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial x} + \tilde{\tau}_{xy}^{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial y} \right] dx dy = \bigoplus_{(e)} \left(\tilde{\sigma}_{x}^{(e)} n_{x}^{(e)} + \tilde{\tau}_{xy}^{(e)} n_{y}^{(e)} \right) \phi_{i}^{(e)} ds$$
$$+ \iint_{(e)} f_{x} \phi_{i}^{(e)} dx dy \qquad i = 1, 2, ..., n$$
$$\iint_{(e)} \left[\tilde{\tau}_{xy}^{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial x} + \tilde{\sigma}_{y}^{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial y} \right] dx dy = \bigoplus_{(e)} \left(\tilde{\tau}_{xy}^{(e)} n_{x}^{(e)} + \tilde{\sigma}_{y}^{(e)} n_{y}^{(e)} \right) \phi_{i}^{(e)} ds$$
$$+ \iint_{(e)} f_{y} \phi_{i}^{(e)} dx dy \qquad i = 1, 2, ..., n$$

SEOUL NATIONAL UNIVERSITY

$$\iint_{(e)} \left[\tilde{\sigma}_{x}^{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial x} + \tilde{\tau}_{xy}^{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial y} \right] dx dy = \int_{(e)}^{(n)} \tau_{x} \phi_{i}^{(e)} ds + \iint_{(e)} f_{x} \phi_{i}^{(e)} dx dy \qquad i = 1, 2, ..., n$$
$$\iint_{(e)} \left[\tilde{\tau}_{xy}^{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial x} + \tilde{\sigma}_{y}^{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial y} \right] dx dy = \int_{(e)}^{(n)} \tau_{y} \phi_{i}^{(e)} ds + \iint_{(e)} f_{y} \phi_{i}^{(e)} dx dy \qquad i = 1, 2, ..., n$$

• Step 3: Substitute the general form of the element trial solution into interior integrals in residual equations

$$\tilde{\varepsilon}_{x}^{(e)} = \frac{\partial \tilde{u}^{(e)}}{\partial x} = \sum_{j=1}^{n} u_{j} \frac{\partial \phi_{j}^{(e)}}{\partial x} \qquad \left\{ \tilde{\varepsilon} \right\}^{(e)} = \begin{bmatrix} B \end{bmatrix}^{(e)} \left\{ a \right\} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)} = \begin{bmatrix} B \end{bmatrix}^{(e)} \left\{ a \right\} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)} = \begin{bmatrix} B \end{bmatrix}^{(e)} \left\{ a \right\} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)} = \begin{bmatrix} B \end{bmatrix}^{(e)} \left\{ a \right\} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)} = \begin{bmatrix} B \end{bmatrix}^{(e)} \left\{ a \right\} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)} = \begin{bmatrix} B \end{bmatrix}^{(e)} \left\{ a \right\} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)} = \begin{bmatrix} B \end{bmatrix}^{(e)} \left\{ a \right\} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)} = \begin{bmatrix} B \end{bmatrix}^{(e)} \left\{ a \right\} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)} = \begin{bmatrix} B \end{bmatrix}^{(e)} \left\{ a \right\} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)} = \begin{bmatrix} B \end{bmatrix}^{(e)} \left\{ a \right\} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)} = \begin{bmatrix} B \end{bmatrix}^{(e)} \left\{ a \right\} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)} = \begin{bmatrix} B \end{bmatrix}^{(e)} \left\{ a \right\} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)} = \begin{bmatrix} B \end{bmatrix}^{(e)} \left\{ a \right\} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)} = \begin{bmatrix} B \end{bmatrix}^{(e)} \left\{ a \right\} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)} = \begin{bmatrix} B \end{bmatrix}^{(e)} \left\{ a \right\} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)} = \begin{bmatrix} B \end{bmatrix}^{(e)} \left\{ a \right\} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)} = \begin{bmatrix} B \end{bmatrix}^{(e)} \left\{ a \right\} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)} = \begin{bmatrix} B \end{bmatrix}^{(e)} \left\{ a \right\} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)} = \begin{bmatrix} B \end{bmatrix}^{(e)} \left\{ a \right\} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)} = \begin{bmatrix} B \end{bmatrix}^{(e)} \left\{ a \right\} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)} = \begin{bmatrix} B \end{bmatrix}^{(e)} \left\{ a \right\} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)} = \begin{bmatrix} B \end{bmatrix}^{(e)} \left\{ a \right\} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)} = \begin{bmatrix} B \end{bmatrix}^{(e)} \left\{ a \right\} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)} = \begin{bmatrix} B \end{bmatrix}^{(e)} \left\{ a \right\} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)} = \begin{bmatrix} B \end{bmatrix}^{(e)} \left\{ a \right\} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)} = \begin{bmatrix} B \end{bmatrix}^{(e)} \left\{ a \right\} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)} = \begin{bmatrix} B \end{bmatrix}^{(e)} \left\{ a \right\} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)} = \begin{bmatrix} B \end{bmatrix}^{(e)} \left\{ a \right\} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)} = \begin{bmatrix} B \end{bmatrix}^{(e)} \left\{ a \right\} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)} = \begin{bmatrix} B \end{bmatrix}^{(e)} \left\{ a \right\} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)} = \begin{bmatrix} B \end{bmatrix}^{(e)} \left\{ a \right\} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)} = \begin{bmatrix} B \end{bmatrix}^{(e)} \left\{ a \right\} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)} = \begin{bmatrix} B \end{bmatrix}^{(e)} \left\{ a \right\} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)} = \begin{bmatrix} B \end{bmatrix}^{(e)} \left\{ a \right\} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)} = \begin{bmatrix} B \end{bmatrix}^{(e)} \left\{ a \right\} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)} = \begin{bmatrix} B \end{bmatrix}^{(e)} \left\{ a \right\} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)} = \begin{bmatrix} B \end{bmatrix}^{(e)} \left\{ a \right\} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)} = \begin{bmatrix} B \end{bmatrix}^{(e)} \left\{ a \right\} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)} = \begin{bmatrix} B \end{bmatrix}^{(e)} \left\{ a \right\} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)} = \begin{bmatrix} B \end{bmatrix}^{(e)} \left\{ a \right\} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)} = \begin{bmatrix} B \end{bmatrix}^{(e)} \left\{ a \right\} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)} = \begin{bmatrix} B \end{bmatrix}^{(e)} \left\{ a \right\} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)} = \begin{bmatrix} B \end{bmatrix}^{(e)} \left\{ a \right\} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)} = \begin{bmatrix} B \end{bmatrix}^{(e)} \left\{ a \right\} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)} = \begin{bmatrix} B \end{bmatrix}^{(e)} \left\{ a \right\} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)} = \begin{bmatrix} B \end{bmatrix}^{(e)} \left\{ a \right\} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)} = \begin{bmatrix} B \end{bmatrix}^{(e)} \left\{ a \right\} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)} \\ \left\{ \tilde{\varepsilon} \right\}^{(e)}$$

$$\begin{split} \underbrace{\prod_{(e)} \left[\tilde{\sigma}_{x}^{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial x} + \tilde{\tau}_{xy}^{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial y} \right] dx dy}_{(e)} = \int_{(e)}^{(e)} \tilde{\tau}_{x} \phi_{i}^{(e)} dx + \iint_{(e)} f_{x} \phi_{i}^{(e)} dx dy \quad i = 1, 2, ..., n \end{split} \\ \begin{cases} \tilde{\sigma}_{x}^{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial x} + \tilde{\sigma}_{y}^{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial y} \right] dx dy = \int_{(e)}^{(e)} \tilde{\tau}_{y} \phi_{i}^{(e)} ds + \iint_{(e)} f_{y} \phi_{i}^{(e)} dx dy \quad i = 1, 2, ..., n \end{cases} \\ \begin{cases} \tilde{\sigma}_{x}^{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial x} + \tilde{\tau}_{xy}^{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial y} \\ \tilde{\tau}_{xy}^{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial x} + \tilde{\tau}_{xy}^{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial y} \\ \tilde{\tau}_{xy}^{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial x} + \tilde{\tau}_{yy}^{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial y} \\ \tilde{\tau}_{xy}^{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial x} + \tilde{\tau}_{xy}^{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial y} \\ \\ \tilde{\tau}_{xy}^{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial x} + \tilde{\tau}_{xy}^{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial y} \\ \tilde{\tau}_{xy}^{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial x} + \tilde{\tau}_{xy}^{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial y} \\ \\ \tilde{\tau}_{xy}^{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial x} + \tilde{\tau}_{xy}^{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial y} \\ \\ \tilde{\tau}_{xy}^{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial x} + \tilde{\tau}_{xy}^{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial y} \\ \\ \tilde{\tau}_{xy}^{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial x} + \tilde{\tau}_{xy}^{(e)} \frac{\partial \phi_{i}^{(e)}}}{\partial y} \\ \\ \tilde{\tau}_{xy}^{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial x} + \tilde{\tau}_{xy}^{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial y} \\ \\ \tilde{\tau}_{xy}^{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial x} + \tilde{\tau}_{xy}^{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial y} \\ \\ \tilde{\tau}_{xy}^{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial x} + \tilde{\tau}_{xy}^{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial y} \\ \\ \tilde{\tau}_{xy}^{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial x} + \tilde{\tau}_{xy}^{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial y} \\ \\ \tilde{\tau}_{xy}^{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial x} \\ \\ \tilde{\tau}_{xy}^{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial x} \\ \\ \tilde{\tau}_{xy}^{(e)} \frac{\partial \phi_{i}^{(e)}}{\partial y} \\ \\ \tilde{\tau}_{x$$

- Step 4: Develop specific expressions for the shape functions
- Step 5: substitute the shape functions into the element equations, and transform the integrals into a form appropriate for numerical evaluation

$$\begin{bmatrix} B \\ 3 \times 6 \end{bmatrix}^{(e)} = \begin{bmatrix} \frac{\mathbf{b}_1}{2\Delta} & 0 & \frac{\mathbf{b}_2}{2\Delta} & 0 & \frac{\mathbf{b}_3}{2\Delta} & 0 \\ 0 & \frac{\mathbf{c}_1}{2\Delta} & 0 & \frac{\mathbf{c}_2}{2\Delta} & 0 & \frac{\mathbf{c}_3}{2\Delta} \\ \frac{\mathbf{c}_1}{2\Delta} & \frac{\mathbf{b}_1}{2\Delta} & \frac{\mathbf{c}_2}{2\Delta} & \frac{\mathbf{b}_2}{2\Delta} & \frac{\mathbf{c}_3}{2\Delta} & \frac{\mathbf{b}_3}{2\Delta} \end{bmatrix}$$

$$\begin{bmatrix} K \\ _{6\times 6}^{(e)} = \iint_{(e)} \begin{bmatrix} B \\ _{6\times 3}^{(e)^{T}} \begin{bmatrix} C \\ _{3\times 3}^{(e)} \begin{bmatrix} B \\ _{3\times 6}^{(e)} \end{bmatrix}_{(e)}^{(e)} dxdy$$

FEM - 2D Linear Elasticity 12-step procedures: Final element K matrix

 $\begin{bmatrix} \frac{\partial \phi_{1}^{(e)}}{\partial x} & 0 & \frac{\partial \phi_{1}^{(e)}}{\partial y} \\ 0 & \frac{\partial \phi_{1}^{(e)}}{\partial y} & \frac{\partial \phi_{1}^{(e)}}{\partial x} \\ \frac{\partial \phi_{2}^{(e)}}{\partial x} & 0 & \frac{\partial \phi_{2}^{(e)}}{\partial y} \\ 0 & \frac{\partial \phi_{2}^{(e)}}{\partial x} & 0 & \frac{\partial \phi_{2}^{(e)}}{\partial y} \\ 0 & \frac{\partial \phi_{2}^{(e)}}{\partial y} & \frac{\partial \phi_{2}^{(e)}}{\partial x} \\ \frac{\partial \phi_{3}^{(e)}}{\partial x} & 0 & \frac{\partial \phi_{3}^{(e)}}{\partial y} \\ 0 & \frac{\partial \phi_{3}^{(e)}}{\partial x} & 0 & \frac{\partial \phi_{3}^{(e)}}{\partial y} \\ 0 & 0 & \frac{1}{2}(1-\nu) \end{bmatrix} \begin{bmatrix} \frac{\partial \phi_{1}^{(e)}}{\partial x} & 0 & \frac{\partial \phi_{2}^{(e)}}{\partial x} & 0 & \frac{\partial \phi_{3}^{(e)}}{\partial x} & 0 \\ 0 & \frac{\partial \phi_{1}^{(e)}}{\partial y} & 0 & \frac{\partial \phi_{2}^{(e)}}{\partial y} & 0 & \frac{\partial \phi_{3}^{(e)}}{\partial y} \\ \frac{\partial \phi_{3}^{(e)}}{\partial x} & 0 & \frac{\partial \phi_{3}^{(e)}}{\partial y} & \frac{\partial \phi_{3}^{(e)}}{\partial y} \\ 0 & 0 & \frac{\partial \phi_{3}^{(e)}}{\partial x} & \frac{\partial \phi_{3}^{(e)}}{\partial y} & \frac{\partial \phi_{3}^{(e)}}{\partial x} & \frac{\partial \phi_{3}^{(e)}}{\partial y} & \frac{\partial \phi_{3}^{(e)}}{\partial x} \\ \end{bmatrix}$

Final K in an element is a 6x6 matrix Global K matrix is formed by summation of all elemental K

Structure of elemental 'K' matrix (linear & triangular element)

1D elasticity & diffusion	$\begin{bmatrix} K \\ 2 \times 2 \end{bmatrix}^{(e)} = \int_{(e)} \begin{bmatrix} B \\ 2 \times 1 \end{bmatrix}^{(e)^{T}} \begin{bmatrix} C \\ 1 \times 1 \end{bmatrix}^{(e)} \begin{bmatrix} B \\ 1 \times 2 \end{bmatrix}^{(e)} dx$	Number of column = 2 node x 1 DOF = 2
2D diffusion	$\begin{bmatrix} K \\ 3 \times 3 \end{bmatrix}^{(e)} = \iint_{(e)} \begin{bmatrix} B \\ 3 \times 2 \end{bmatrix}^{(e)^{T}} \begin{bmatrix} C \\ 2 \times 2 \end{bmatrix}^{(e)} \begin{bmatrix} B \\ 2 \times 3 \end{bmatrix}^{(e)} dxdy$	3 x 1= 3
2D elasticity	$\begin{bmatrix} K \\ 6 \times 6 \end{bmatrix}^{(e)} = \iint_{(e)} \begin{bmatrix} B \\ 6 \times 3 \end{bmatrix}^{(e)^{T}} \begin{bmatrix} C \\ 3 \times 3 \end{bmatrix}^{(e)} \begin{bmatrix} B \\ 3 \times 6 \end{bmatrix}^{(e)} dxdy$	3 x 2= 6
3D diffusion	$\begin{bmatrix} K \\ 4 \times 4 \end{bmatrix}^{(e)} = \iiint_{(e)} \begin{bmatrix} B \\ 4 \times 3 \end{bmatrix}^{(e)^{T}} \begin{bmatrix} C \\ 3 \times 3 \end{bmatrix}^{(e)} \begin{bmatrix} B \\ 3 \times 4 \end{bmatrix}^{(e)} dx dy dz$	4 x 1= 4
3D elasticity	$\begin{bmatrix} K \\ 12 \times 12 \end{bmatrix}^{(e)} = \iiint_{(e)} \begin{bmatrix} B \\ 12 \times 6 \end{bmatrix}^{(e)^{T}} \begin{bmatrix} C \\ 6 \times 6 \end{bmatrix}^{(e)} \begin{bmatrix} B \\ 6 \times 12 \end{bmatrix}^{(e)} dx dy dz$	4 x 3= 12

SEOUL NATIONAL UNIVERSITY

• Step 6: Prepare expressions for the flux (i.e., stresses)

 $\left\{\tilde{\sigma}\right\}_{3\times 1}^{(e)} = \left[C\right]_{3\times 3}^{(e)} \left(\left[B\right]_{3\times 2n}^{(e)} \left\{a\right\} - \left\{\alpha\right\}_{3\times 1}^{(e)} \Delta T\right)$

- Step 7: Specify numerical data for a particular problem
- Step 8: Evaluate the interior terms in the element equations for each element, and assemble the terms into system equations

K ⁽¹⁾	K ⁽¹⁾	$K_{12}^{(1)}$	$K_{14}^{(1)}$			K ⁽¹⁾ ₁₉	$\kappa_{1,10}^{(1)}$		7	(a1)	ſ	F ₁ ⁽¹⁾
	K(1)	K(1)	K ⁽¹⁾			K ⁽¹⁾ ₂₉	$K_{2,10}^{(1)}$			a ₂		F ₂ ⁽¹⁾
	1.22	$K_{23}^{(1)} + K_{23}^{(2)}$	$K_{34}^{(1)} + K_{34}^{(2)}$	K ⁽²⁾ ₃₅	$K_{36}^{(2)}$	$K_{39}^{(1)} + K_{39}^{(2)}$	$K_{3,10}^{(1)} + K_{3,10}^{(2)}$	$K_{3,11}^{(2)}$	K ⁽²⁾ 3.12	a3		$F_3^{(1)} + F_3^{(2)}$
			$K_{44}^{(1)} + K_{44}^{(2)}$	K ⁽²⁾ 45	$K_{46}^{(2)}$	$K_{49}^{(1)} + K_{49}^{(2)}$	$K_{4,10}^{(1)} + K_{4,10}^{(2)}$	$K^{(2)}_{4,11}$	K ⁽²⁾ 4,12	a4		$F_4^{(1)} + F_4^{(2)}$
				K ⁽²⁾ 55	$K_{56}^{(2)}$	K ⁽²⁾ 59	K ⁽²⁾ 5,10	$K_{5,11}^{(2)}$	K ⁽²⁾ 5.12	a5		F ⁽²⁾ ₅
					$K_{66}^{(2)}$	$K_{69}^{(2)}$	K ⁽²⁾ _{6,10}	$K_{6,11}^{(2)}$	K ⁽²⁾ 6.12	a ₆	_	F ₆ ⁽²⁾
										a7		
										a ₈		
					Υ.	$K_{99}^{(1)} + K_{99}^{(2)}$	$K_{9,10}^{(1)} + K_{9,10}^{(2)}$	$K_{9,11}^{(2)}$	$K_{9,12}^{(2)}$	a ₉		$F_{9}^{(1)} + F_{9}^{(2)}$
			Symmetric				$K_{10,10}^{(1)} + K_{10,10}^{(2)}$	K ⁽²⁾ _{10,11}	$K_{10.12}^{(2)}$	a ₁₀		$F_{10}^{(1)} + F_{10}^{(2)}$
								K ⁽²⁾ _{11,11}	$K_{11,12}^{(2)}$	a11		F ⁽²⁾ ₁₁
									K ⁽²⁾ _{12,12}	a ₁₂		F ⁽²⁾
										[:]		[:]

- Step 9: Apply the BCs, including the natural interelement BCs, to the system equations
- Step 10: Solve the system equations
- Step 11: Evaluate the flux
- Step 12: Display the solution and estimate its accuracy
 - In order to improve accuracy we could either use finer mesh (hrefinement) or use higher-order element (p-refinement)

- Burnett DS, Finite Element Analysis From concepts to applications, 1987, Addison-Wesley Publishing Co.
- Becker EB et al., Finite Elements An introduction, Vol.I, 1981, Prentice-Hall