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1. Steepest Descent Method (1/6)

= Step 1: The search direction (d) is taken as the negative of the gradient of the objective
function (f) at current iteration since the objective function decreases mostly rapidly
toward that direction.
The direction of gradient vector of f, Vf(x), is the direction of maximum increase of f at x.
i Search direction d=-c=-Vf(x) i

= Step 2: Iterate successively to find the optimum design point.

Ex) Minimize the objective function
X2

1. Steepest Descent Method (2/6): Example

M By using the steepest descent method, find the minimum design
point for the following function of 2-variables.

Given: Starting design point x® = (0, 0), convergence tolerance &=0.001
Find: x®, x@

e e . =» Optimization problem with
Minimize f(X,,%X,) =X, — X, +2X> +2XX + X2 two u ’

2 two unknown variables

WA

> A: True minimum design point |
0 X, =-1.0,x," =15, f (x;", x,/) =-1.25

A NN\

X,
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N
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1. Steepest Descent Method (3/6): Example

Minimize f (X, X,) =X, — X, +2X} +2X/X, + X; Starting design point x® = (0, 0)

f f 1+4x, +2Xx, §To minimize f (x"),
Vi(x)=VI(x,x,)= : m _
v _1+2X1+2X2 of (x ):Za—2:0 - a=1.0 '.'Xm:[ 1j
da 1
m Iteration: Find x(M '\, How can we differentiate f with respectto o ?

HANY
Vi (x) =Vf Oy _[I+dx+2x ) (1) Xz
0) \~1+2x+2x,) \~-1)i 2 \
X0 =x© — g OV (x©) 15 x
: 0
= 0 —a 1 — - Replacing o to a forE 1 X
0 -1 a convenience :

0.5

Substituting x" = (-a,«) into the objective

function : 0 (0)
fxM=—a-a+2a” -2 +a’ : X
=a’-2a i 08 \
: -1
E -2 -15 -1 -0.5 0 0.5 xl 1

1. Steepest Descent Method (4/6): Example

Minimize f (X, X,) = X, = X, +2X} +2XX, + X, _Staring design ponc 0 = 0,0

m 2nd |teration: Find x®

Vi (x) = vf -1 _ 1+4x, +2X, _ -1
1 —142x, +2X, -1

2 1 1 1
X():X()_a()vf(x()) xzz
— (_ 1] _ 0{_ IJ — (_ 1+ OIJ Replacipg aVto a for \
1 _1 1+ o convenience 15
He X >
Substituting x? = (-1+a,1+a) into the objective ; X
function
@y _ g2
f(x)=5a"-2a-1 05
To minimize f (x?), 0

(2) X
) 0g-2-0 - a=02

da 05
x® = 08 \
1.2 -1
-2 )
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1. Steepest Descent Method (5/6): Example

Minimize f (X, X,) =X, — X, +2X} +2X/X, + X; Starting design point x® = (0, 0)

m 3rd |teration: Find x®

-0.8 1+4x, +2X 0.2
Vi (x?) = Vf = e

1.2 —14+2X +2X, -0.2

X(3) — X(Z) _a(2)vf (X(Z))

X2
~08) (02 ) (-0.8-02a 2
= - = Replacing o"
1.2 -0.2 1.2+02a Jto a for

convenience 15

Substituting x'¥ =(-0.8-0.2¢,1.2+0.2a) into the
objective function

f(x®)=0.040>-0.08c —1.2

To minimize f (x?),

1

0.5

o

3)
a7 0.08¢-0.08=0 — a=1.0
da -05

xP = -
1.4 -1

1. Steepest Descent Method (6/6): Example

Minimize f (X, X,) = X, = X, +2X} +2XX, + X, _Staring design ponc 0 = 0,0

B 4t [teration: Find the minimum design point.
To obtain the minimum design point, we have to iterate.

If [x*"-x"|<e, then stop the iterative process because x*) can be
assumed as the minimum design point.

2014-09-01



[Reference] Differentiation of Function of x with Respect to
the Another Variable

........................................................ A SN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
.

- f (X] R Xz) =f (X) : f is the function of x.
E ;yX(l) = (—a’ G{) : x® is the function of a

» Substituting x® into £, f is, then, a function
of a and can be differentiated with respect to
a.

In the similar way, we can consider the followings:

* | To minimize f(x +Ax),
t | The second-order Taylor series expansion of f(x" +Ax)
f(x"+Ax) = f(x’)+cTAx+%AxTH(x') AX

f(x"+Ax)— f(x”):cTAH%AxTH(x”) Ax

f (x(l)) ——a—-a+ 20!2 _ 2(12 + 0(2 § In ?he above equation, we assume that
= | x*is a constant and Ax is a variable.
= a2 —2a E f(Ax):cTAer%AxTH(x') Ax

. . . . T L. . .
To minimize f (x"), : Od?‘l(lzl;;uef

o 1 : =c+H(x) Ax=0
T 26220 > a=10 :x‘”:[ j 3 dax )
da 1 = H(') Ax=—c¢
; o I ety i . .
°9) How can we differentiate f with respectto o? : =! Ax=-H(x')'c¢ 1 ‘Newton’s method
Y E _________ ° 11

2. Conjugate Gradient Method (1/5)

M This method requires only a simple modification to the
steepest descent method and dramatically improves the
convergence rate of the optimization process.

M The current steepest descent direction is modified by
adding a scaled direction used in the previous iteration.

B Step 1: Estimate a starting design point as x©. Set the iteration
counter k = 0. Also, specify a tolerance ¢ for stopping criterion.
Calculate

d© = —¢© = _vf (x?)

Check stopping criterion. If [¢”|<z, then stop. Otherwise, go
to Step 4.

It is noted that Step 1 of the conjugate gradient method and
steepest descent method is the same.

12
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2. Conjugate Gradient Method (2/5)

B Step 2: Compute the gradient of the objective function as ¢ =vi x").
If [¢*|<&, then stop; otherwise continue.

B Step 3: Calculate the new search direction as

<H ‘“H/H - ”H>

The current search direction is calculated by adding a scaled direction used in the previous iteration.

B Step 4: Compute a step size a= g, to minimize f{x®+ad®).

B Step 5: Change the design point as follows, then set k = k+I and go
to Step 2. XD = 500 4 g g

13
Computer Aided Ship Design, 1:3 | ined Qptimization Method, Fall 2013, Myung: 1l Roh @E_

2. Conjugate Gradient Method (3/5): Example

Minimize T (X,X,) =X, = X, +2X} +2X,X, + X; Starting design point x = (0, 0

144X, +2X { 1o minimize f(x"
Vi (x) = Vf (X, %,) = 1 2 : To minimize f (x"),
—1+2X +2X, df (x™)
. . i ——=20-2=0 > a=1.0
M 1st Iteration: Find x» i da 1
O E ote: Ste of the conjugate gradient method - - ® =
d(o) = —c«” = —Vf (X(O)) = —Vf J E ?n; s.tz:.-ppe:t d:.-:i‘ent mjet?wtd igt:e s;me. thod X (1 J
0 : Xz,
1+4%, +2%, 1y (-1 i \\
T o-1e2x 2%, ) \=1) L : 15 (i}
: )
(1) _ (0 (0) : X
=X +0l0d Replacing &, to @ for- !
0 _1 —a convenience H
= ta = 05
(Oj [ 1 j { a ] :
Substituting x" =(-a,a) into the objective 0 )
function : X
fx")=—a-a+2a*-2a° +a* : -05
=a’-2a . \
-2 -5 -1 -05 0 05 x; 1
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2. Conjugate Gradient Method (4/5): Example

o e 2 2
Minimize f (X, X,) =X =X, +2X +2X,X;, + X;

m 2nd Jteration: Find x@
Compute the gradient of the objective function as
e = vf (xV)

_ v -1 1+4x+2x, ) (-1
- 1) (—1+2x+2x,) (-1

Calculate the new search direction as

d” =-vf (x©)= [;lj

k) — _ k) (k-1
d" =—c"+4d

A= (e el

X0 = x®) 4 g, 4

2
d(l) — _c(l) +ﬁd(0) — _c(l) + "Vf (X(l))" d(O)
‘ vt (x)
S50
=— +— =
-1) 21 2
opics in Ship Design it Fall 2014, Myung:| ILRoh
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2. Conjugate Gradient Method (5/5): Example

X =x® 4 g,d®

Substituting x® =(-1,1+2a) into the objective function
f(x?)=4a" -2a-1
To minimize f(x"),

2)
A gr-2-0 = =025
da 1

Check stopping criterion.

e -wt(s) w1 1) (1)

"c(z)" =0<e& —Stop!

= -1 +a 0 = -1 Replacing @, to o for convenience
1 2 1+2a

o e . 2 2
Minimize T (X;,X,) =X, — X, +2X; +2X,X, + X,

X0 = x® 4 g, d®

1+4x +2X,
—142% +2X,

Vf(x):Vf(x,,xz):(

Computer Aided Ship Design, 1:3 L ined Optimization Method, Fall 2013, Myung: Il Roh
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3- NEWton’S MEthOd (1/9) —| Assume that f{x) has minimum at x **D = x® + Ax®,

2

k=k+1

Given: f (x) Consider the quadratic approximation of the
. function f{x) at x = x® using the second-order Taylor
Find: x* which minimizes f (X) expansion.
df (x¥ 1d*f(x® 2 3
f(X(k)+AX‘k)): f(X(k))+ (dx )Ax‘“+2 diz )(Ax‘“) +0 1k)))
S T
In this equation, x® is a constant and Ax® is a variable.
® So, the following equation is a quadratic function in
e : terms of Ax®. o N
: f(x‘k’+Ax‘k)):f(x‘”)+L(X )Ax‘“’+17d~f(x )(Ax‘k’)2
dx 2 d¢
Differentiate this equation with respect to Ax®.
o df (X + AX) _ df (X)) | AP Y) 0 _ s i
f(x( )) ,,,,,,,,,,,,,,,,,,,,,, f dAx® dx ax? function
T U !
S > ! Calculate the small change Ax® in design.
0 X" x(kt1) x®x
x(k+2)

A = _df (x*) y d’f(x*)
dx dx*

NO

YES

Set x* =x®*D and stop the iteration. 17

D

3. Newton’s Method (2/9): Exampl

Assume that f{x) has minimum at x® =x© + Ax©®,

Given: f(Xx)=x>—2Xx+2
Starting design point x© =3

Find: x* which minimizes f (X)

Consider the quadratic approximation of the
function f{x) at x = x( using the second-order Taylor
expansion. df (0 L) )
FXO+AX) = £ (x)+ AX” 4 5 (Ax‘“‘)'
dx 2 dx

¥

fx) k=0

| S

In this equation, x©® is a constant and Ax©® is a variable.
So, the following equation is a quadratic function in
terms of Ax©.

FOX@+AXO) = £ (x) +

df (X(O)) A0 4 1d>f (x) /Ax(m)z
dx 2 A
Differentiate this equation with respect to Ax(©.

OF (X4 AX®) _df (X)) o) _ s e cesmes condtion
dAX(O) dX dXZ function
fx®) T
Calculate the small change Ax® in design.
(0) 2 (0)
. AXO = _dfr(x®) / d f(>2< )
dx dx
= (72)(Jr 2)x:3 /(Z)X:S =-2
k=k+1 NO
=0+1=1
komputer Aided ship Design 1:3 L ined Qotimization Method, Fall 2013, Myung-Il Roh @E’l

2014-09-01



3. Newton’s Method (3/9): Example

Assume that f{x) has minimum at x ® =x® + Ax©®,

. 4

Given: f(X)=Xx"—2Xx+2
Starting design point x© =3

Find: x* which minimizes f (X)

Consider the quadratic approximation of the
function f{x) at x =x® using the second-order Taylor
expansion.

df (x

(1) 2 (1)
( Dy _ £ (y® ), 1ATFOXET) e
£(xXO +AXD) = (X )+TA>< +§T(AX )

L 2

In this equation, x is a constant and Ax(" is a variable.
So, the following equation is a quadratic function in
terms of Ax(®.
df (x) 1d°f(x?) >
FOXO+axD) = F(xO) +—— A + = — (X
( )=106 dx 2 ( )
Differentiate this equation with respect to Ax(®.
df 0+ A _ lt (D) | POy _ g > ormemiioneri
dAXm dx dXZ function

Sx®)

=

Is it possible to find the x* which minimizes a

cubic function at once?

2
Calculate the small change Ax® in design.

(1) 2 (1)
AXD = 7df(X ) / d f()z( )
dx dx

=(-2x+2) _,/(2),,=0

YES
Set x* =x® and stop the iteration. o

D

3. Newton’s Method (4/9): Exampl

Assume that f{x) has minimum at x® =x©® + Ax©®,

T

ii’) Is it possible to find the x* which
minimizes a cubic function at once?

Given: f (x) =X’ —3%* +2x

Consider the quadratic approximation of the
function f{x) at x = x® using the second-order Taylor
expansion.

df (x©) 1d°f(x?) 2 3
(0) 0y _ 0y (0) ( Ay 0)
f(XO +AX") = £(xX?)+ & AX +2 (A ) +0O( A ))

Starting design point x© =3

L 2

Find: x* which minimizes f (X)

fix) k=0

) /

In this equation, x© is a constant and Ax©® is a variable.
So, the following equation is a quadratic function in
terms of Ax(®. o (<O L (x®

(X9 +AX0) = £ (x) + (X )AX‘O) al ()2< )(Ax<o1)2

dx 2 dx
Differentiate this equation with respect to Ax©.
df (< + AXT) _df(X) | dZFOCY) o) st e
dAX(O) dX dXZ function

@
S \ ............... (05 x0 =3

v
Calculate the small change Ax® in design.

A =[7 df(x‘“)J/[dzf(x‘O’)j

=0+1=1

\/ x‘”:Zi . dx dx? ;
12 = (-3¢ +6x-2) _/(6x-6), =—1
k=k+1 NO

opics in Ship Design Fall 2014, Myvung:Il Roh

ndlab »
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3. Newton’s Method (5/9): Example_{ assume that fix) has minimum at x@ = x® + Ax®,

’ y
i Is it possible to find the x* which Consider the quadratic approximation of the
minimizes a cubic function at once? function f{x) at x = x( using the second-order Taylor
expansion. 260y (D)
Given: f (X) _ X3 _ 3X2 +2x £ 4 XY = f(xu>)+df(x )Ax“)-#%%(m“”)z +O( ;))3
X
Starting design point x© =3 T

Find: x* which minimizes f (X) In this equation, x® is a constant and Ax( is a variable.

So, the following equation is a quadratic function in
S k = terms of Ax®.
1d2f(x) >
f(X“)+AX”)): f(x(l))+ A+ 2 v (AX‘”)
X
Differentiate this equatlon with respect to Ax(®.

df(X)

fx®) o P+ AxBy _ df (D) | D) i _ g >t mmmammonorie”
dAX“J dX dX function
: ¥
Al \ _____________ / 3 Calculate the small change Ax®" in design.

, o[ dfex™) (a2
) \;7)-6‘(2/)_);“7’52083 . A3 ‘[ e / a2

=(-3x* +6x— 2)r /(6x —6)% =-0.388

0
7
@, —
i.; Why is it not possible to k=k+1 NO
find the x* which minimizes —1+1=2
a cubic function at once? - —

> Since the second-order Taylor expansion is just an approximation for f(x) at the point x© or x(,
X or x® will probably not be the precise minimum design point of f(x). 21

3. Newton’s Method (6/9): Example of Function of
Two Variables

Minimize f (x) = f(X,,X,) = X, = X, +2X} +2X,X, + X;,, Starting design point x = (0, 0

o' f o* f
f, 1+4X, +2X x> OX,0X 4 2
VE@ =VEoux) =] = T L =] T TR
f, ) (=1+2x+2x, o' f o' f 22

B 15t |teration: Find x®
Assume that f(x) has minimum at x® = x©® + Ax©®,

Consider the quadratic apprommatmn of the function f(x) at x = x® usmg the
second-order Taylor expansion.

How?
f(x@ +Ax @) = £ (x®)+ Vf (x@) Ax® + = (Ax“”) H(x)Ax® iwt’w

In this equation, x© is a constant and Ax® is a variable. So, the following
equation is a quadratic function in terms of Ax©®.

(x4 Ax ) = £(x®)+ VF(x) Ax© + %(Ax“)))T H(x")Ax"

dlalb
opics in Ship Design ion, Fall 2014, Myung-Il Roh ‘!_____
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3. Newton's Method (7/9): Example of Function of
Two Variables

Minimize f (x) = f(X,,X,) = X, — X, +2X} +2X,X, + X;, Starting design point x = (0, 0

W 15t lteration: Find x® . PO )= ) T 0 G
. . . . . How? T LR L i
Differentiate this equation with respect to Ax®. L’.‘; > [f] [71+2x.+2x:)

O] O]

M =Vix?)+HE)Ax” =0 —— The necessary condition for
o(Ax) minimization of function f(x,, x,)

X2
Calculate the small change Ax® in design. 2 \

OV Ax©® _ () )

H(Ex™)Ax"™ = -V (") 15

Ax® = HE®)VEEY)
| [ tinen|

[AXEO)J (4 Zj] (_1] [AX(IO)j £_1] |
(0) = _) (0) =
sz 2 2 1 sz 1.5 0 ©)
XY =x0 4 Ax? = 0 + -l = -l 05
0) \15) (1.5 \

-2 =15 -1 -0.5 0 0.5 X; 1

3. Newton's Method (8/9): Example of Function of
Two Variables

Minimize f (x) = f(X,,X,) = X, = X, +2X} +2X,X, + X;,, Starting design point x = (0, 0

R . -1
m 2 |teration: Find x® x"’:[ j
In the same way as 15t Iteration,

Assume that f(x) has minimum at x® = x® + Ax®,

Consider the quadratic approximation of the function f(x) at x = x® using the
second-order Taylor expansion.

Fx+Ax?) = £ (x ")+ VE(x?) AxV + %(Ax(l))T H(x")Ax"

In this equation, x is a constant and Ax" is a variable. So, the following
equation is a quadratic function in terms of Ax®.

f(xV+Ax) = F(xP)+ VEED) AxD + %(Ax(”)T H(x")Ax"

Differentiate this equation with respect to Ax®.

of (xD + Ax" The necessary condition
( O} ) =Vf(x")+H(x")Ax" =0 —— for minimization of
o(Ax) function f(x,, x,)

dlal
opics in Ship Design jon, Fall 2014, Myung:| Il Roh ‘!_____
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3. Newton's Method (9/9): Example of Function of
Two Variables

Minimize f (x) = f(X,,X,) = X, — X, +2X} +2X,X, + X;, Starting design point x = (0, 0

. . -1
m 2nd Jteration: Find x® x‘”=[L5J
Calculate the small change Ax® in design. ;
VEG) = V(%) =| = 1+4x +2X,
H(x")Ax" = —vf (xM) S U3 R WA

Ax® = [H)]'VF (x )

l lw)[g], )| 2 ][ ;]] 2,
xox, O 2) (1 \
Ax!" [4 2]‘(0) Ax{" (Oj s
o |= - m |~
Ax, 22 0 Ax, 0
L@ Z oy A = -1 n 0y _(-1
1.5 0 1.5 05

—Optimal design point

Check stopping criterion.

X
|Ax<”| =0<¢
-0.5
—Stop! \
-1

-2 -15 -1 -0.5 0 0.5 X; 1

3. Modified Newton’'s Method (1/3)

M In this method, we treat Ax® = [H(x")]"'Vvi(x"“) of the Newton’s
method as the search direction and use any of the one
dimensional search methods to calculate the step size in the
search direction.

B Step 1: Estimate a starting design point x©®.
Set iteration counter k = 0. Specify a tolerance ¢ for the stopping
criterion.

B Step 2: Calculate ¢ =of (x')/0x; fori=1to n. If [¢¥|<¢, then
stop the iterative process. Otherwise, continue.

B Step 3: Calculate the Hessian matrix H® at current design point

x®), o

H(xm):{axax } P=Lee; j=1en
i

dlalb
opics in Ship Design jon, Fall 2014, Myung:| Il Roh ‘!_____
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3. Modified Newton’'s Method (2/3)

B Step 4: Calculate the search direction as follows:

HIN(3 k -1 (ks i
Ed( )= Ax® = —H ¢! )\ When f(x'+Ax):f(x')+cTAx+%AxTH(x’)Ax,

df (Ax)/dAx =c+H(x")Ax =0
= H(x) Ax=-c= Ax=-H(x")"¢

B Step 5: Update the design point as x*™) = x® + gd®, where « is
calculated to minimize f{x® + ad®). Any one dimensional search
method may be used to calculate a.

B Step 6: Set k=k+1 and go to Step 2.

opics in Ship Design i Fall 2014, Myung:| 1l Roh ‘ b 27

: the necessary condition for minimization of this function is as follows:

3. Modified Newton’s Method (3/3)
- Disadvantages of the Newton’s Method

The Newton’s method is not very useful in practice, due to
following features of the method:

1. It requires the storing of the nxn matrix H(x®).

2. It becomes very difficult and sometimes, impossible
to compute the elements of the matrix H(x®).

3. It requires the inversion of the matrix H(x®) at each
iteration.

4. It requires the evaluation of the quantity H(x®)1Vf(x®)
at each iteration.

dlalb
opics in Ship Design ion, Fall 2014, Myung:Il Roh ‘!_____
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4. Davidon-Fletcher-Powell (DFP) Method (1/6)

M This method builds an approximation for the inverse of
the Hessian matrix of f{(x) using only the first derivatives.

B Step 1: Estimate a starting design point x©.

Choose a symmetric positive definite nxn matrix A® as an
approximation for the inverse of the Hessian matrix of the
objective function. In the absence of more information, A® =1
may be chosen. Also, specify a tolerance ¢ for the stopping
criterion. Set k£ =0 and compute the gradient vector
as d” = =-vix?).

B Step 2: Calculate the norm of the gradient vector as HC(k)H.

If [lc® ‘ < g, then stop the iterative process. Otherwise, continue.
It is noted that Step 1 and 2 of this method and the steepest
descent method are the same.

pics in Ship Design i Fall 2014, Myung:| 1l Roh ‘ b 29

4. Davidon-Fletcher-Powell (DFP) Method (2/6)

B Step 3: Calculate the search direction as follows:

Newton’s method

;d(k) — _A®e® A - (R ()
....................... d® Oy e

Here, the matrix A is used as an estimate for the inverse of
the Hessian matrix H' of the objective function.

B Step 4: Compute optimum step size o= @, to minimize f(x® + ad®).

B Step 5: Update the design point as x**) = x® + g, d®.

dlalb
pics in Ship Design jon, Fall 2014, Myung:| Il Roh ‘!_____
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4. Davidon-Fletcher-Powell (DFP) Method (3/6)

B Step 6: Update the matrix A® - approximation for the inverse of
the Hessian matrix of the objective function - as follows:

A = A© LB 1 CY . nxn matrix

where, the correction matrices B® and C® are calculated as

below.
(K)o (k)T k), (k)"
K SS . K _ 2 Z .
B% = ; NXN matrix c® = o > XN matrix
s“y vy z
s =qa® © nx1 matrix
d® : search direction
k k k .
y( ) = c( D _ c( ) Nnx1 matrix " : optimum step size
D — vf (X(k”)) : Nx1 matrix
2 = AWy® : [nxn][nx1]=[nx1] matrix

B Step 7: Set k=k+1 and go to Step 2.

opics in Ship Design i Fall 2014, Myung:| 1l Roh ‘ b 3l

4. Davidon-Fletcher-Powell (DFP) Method (4/6): Example

Minimize f (x) = f(X,,X,) = X, = X, +2X} +2X,X, + X;,, Starting design point x = (0, 0

1+4x, +2X, . Substitute x" =(-a.) into the objective
Vi (x) =VIi(x,X,) = : function
—1+2X +2X, f(x(”):az—2a
B 15t Iteration: Find x® $ To minimize f x),
: m -1
X(O):(EJ’ A(O):I § df(’; ):20—2:0 - a=1.0 .'.X(l):[]

Check stopping criterion.

0.5

||c<"’| =P+ (=1} =2>¢
d® = _A©e® — _1e® = _o© —

1
0
X =x© 4+ g, d©

: 2
O = (x0) = 1+4-0+2-0 _ 1 X, \
-142-0+2-0) \-1) i 15 Q

0 -1 -a lacing & 05
= +a = ;toerp cicr::gnie:)\cteo “ :
0 1 a :

: -1

-2 -5 -1 -05 0 05x,
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4. Davidon-Fletcher-Powell (DFP) Method (5/6)! Example 2+«

f(x,X,)=

1+4x, +2x, j

Minimize f (x) = f(X,,X,) = X, — X, +2X} +2X,X, + X;, Starting design point x = (0, 0

B 2" |teration: Find x® P o 22O
Update the matrix A® - approximation } c"= o O
for the inverse of the Hessian matrix of : -y z
the objective function - as follows: A0 (1 ©
AD Z AO® L BO L O o
B© — 55’ 20 = AOy© :(—2)
O0Ty© ] 0
| yO 720 =4
A s = qd® =T
(1 ) 20707 :(4 0)
o _ 1 e (71) b 00
-1/ -1 _(—l 0)
) 100
y(o) _c(l) c(O) _(0 )
AD =A® L BO® L c®
RURDY :(1_1—11) (1 o} [ 05 —0.5}(—1 oj
O G0 _ 9 01 -0.5 0.5 0 0
vy 0.5 0.5
_ (0.5 —0.5) -
-0.5 0.5 -05 15 =
1+4x +2x,
4. Davidon-Fletcher-Powell (DFP) Method (6/6): Exam EZXu“Xz)

B 2 [teration: Find x®
Check stopping criterion.

||c‘”|| -2>¢

dV = _ADOeD = (Oj
1

x(2) — x(l) + ald(l)

— -1 +a 0 _ -1 Replacing &, toa;
1 1 1+ a for convenience :

Substitute ¥ =(-L1+a) into the objective
function

fx?)=a’-a-1
To minimize f(x?),

2)
ST g 120 = a=05
da

L@ -1 :
’ 1.5 | ~Optimal design point :

Minimize f (x) = f(X,,X,) = X, = X, +2X} +2X,X, + X;,, Starting design point x = (0, 0

F e = Vi (x?) = [

1+4-(-1)+2-1

! Check stopping criterion.
||c(2)|| =0<¢
—Stop!

5 (0
-14+2-(-D)+2-1.5) (o0
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5. Broyden-Fletcher-Goldfarb-Shanno (BFGS) Method (1/6)

M This method updates the Hessian matrix rather than its
inverse at every iteration.

B Step 1: Estimate a starting design point x©. .
Choose a symmetric positive definite nxn matrix H” as
an approximation for the Hessian matrix of the objective function.
In the absence of more information, let H” =1 . Specify
a tolerance ¢ for the stopping criterion. Set £ =0, and compute
the gradient vector as ¢” = vf (x*).

u SteT) 2: Calculate the norm of the gradient vector as Hc(k)H.

If |ic® ‘ < ¢, then stop the iterative process. Otherwise, continue.
It is noted that Step 1 and 2 of this method and the steepest
descent method are the same.

pics in Ship Design i Fall 2014, Myung:| 1l Roh ‘ b 33

5. Broyden-Fletcher-Goldfarb-Shanno (BFGS) Method (2/6)

B Step 3: Solve the linear system of the following equation to

obtain the search direction. Newton's method
PRLP AL LLLLL]) T ILLL L L . Ax© = —[H(X(k))TI \vai (x(k))
Ed(k) — _(H(k))—lc(k)E o :7(H(k))’]c(k)

This equation looks like d*) = —(H"")"'¢*’ of the Newton’s method,
but HY is an approximated Hessian matrix H*) comprised of the
first order derivatives.

B Step 4: Compute optimum step size o= ¢, to minimize f(x® + ad®).

B Step 5: Update the design point as x**D = x® + g, d®.

dlal
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5. Broyden-Fletcher-Goldfarb-Shanno (BFGS) Method (3/6)

B Step 6: Update the matrix H - approximation for the Hessian
matrix of the objective function - as follows:

H*Y =H® +D® +E® . nxn matrix
where, the correction matrices D® and E® are given as below.

(K (K () (0T
po-Y Y . Eo-¢ ¢ .
T b
y(k) s kK’ ¢ g®
s = Olkd(k) : change in design

d® : search direction
K — o+ _ oK) : change in gradient

y
c(k+1) — vf (X(k+l))

a™ : optimum step size

B Step 7: Set k=k+1 and go to Step 2.
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5. Broyden-Fletcher-Goldfarb-Shanno (BFGS) Method (4/6): Example

Minimize f (x) = f(X,,X,) = X, = X, +2X} +2X,X, + X;,, Starting design point x = (0, 0

1+ 4% +2x . Substitute x" =(-2.a) into the objective
Vi (x) =V (x,X,)= ( ' ? J  function
—1+2X +2X, f(x")=a’ -2a
B 1%t Iteration: Find x® ET%fT;mr)mze T S50 = (‘1J
: =20-2=0 - a=10 " 1
<O = [0} A0 =1 i da
0 : X,

1440420 1 \
M=via)=| - : e Q
-1+2-0+2-0 -1 : X

Check stopping criterion.

||c(°)||—«/ +(-1)? =2>¢ 05

d© = (H“”) 1@ = 1@ = _¢® = -1
1 (0)
X0 =x 4 g, d?

(0] (—1] [—GJ Replacing & to & § \
= +a = for convenience H -
0 1 a :

-2 -15 -1 -0.5 0 0.5x1 1

2014-09-01

19



1+4x, +2x, j
X x)

le2x +2x

5. Broyden-Fletcher-Goldfarb-Shanno (BFGS) Method (Vé E)

Minimize f (x) = f(X,,X,) = X, — X, +2X} +2X,X, + X;, Starting design point x = (0, 0

m 20 |teration: Find x® o —€2eT
Update the matrix H'” - approximation : = ROPT
for the Hessian matrix of the objective : M
function - as follows: e _[1 RO
a® :I:I(O)+D(°)+E(°’ : -1) 1
(0) 4, (O : o1 21
po-Y Y : O _
ymﬂ (0) : -1 1
M S(O) =ad(0) =(1_1) ; Il c(n)Td(O) =2
¢© :(1 J ¢ =(2) 05 05
- “los 05
©) _ o) _ o0 =(—2) :
y =c¢’-¢ 0 o -
: H(l) :H(0)+D(0)+E(0)
Oy O _ 40 : 1 0 2 0 -0.5 0.5
y y 0 0 . = + +
oo 0 1) (o o) {05 -05
yoso=2 P (25 05
(20 05 05
00 : 30
144X, +2X, j
5. Broyden-Fletcher-Goldfarb-Shanno (BFGS) Method (é%) Exam le2x+2x

Minimize f (x) = f(X,,X,) = X, = X, +2X} +2X,X, + X;,, Starting design point x = (0, 0

m 2" |teration: Find x® ® Z Vi (x®) = 1+4-(=D+2-1.5 0
Check stopping criterion. : —1+2-(-1)+2-15 0
||c(”|| =\2>¢ i Check stopping criterion.
HOAD = _¢® g = (H(l)) e ||c(2)|| =0<¢
(25 05y oy _[(0) : —Stop!
H :(0,5 0.5]‘ d()_(2) ¢ :(-i) Xz, P

X =x" 4 gd®

:[_1J+a(0j—[_l ]Replacmg a, toa
1 2 1+ 2 |for convenience i

Substitute x® =(-1,1+2a) into the objective
function
f(x?) =40’ -2a-1

To minimize f (x®),

2)
IMET) gy 220 o a=025
da

@ -1 :
’ 1.5 | ~Optimal design point :
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Reference Slides
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[Review] Taylor Series Expansion for the Function of J
Two Variables

Taylor series expansion for the function of two variables f (X ,X,) at (Xl* , X;)

o o Of . of .
f(x,X,)= f(xl,x2)+a—X](x, —x,)+%(x2—x2)

1(o°f X o f N .. O°f X
+ [ (xl—x,)2+27(x1—xl)(xz—x2)+ﬁ(xz—xz)zj+R
2

2 ox} OX,0%,
¥ Each term can be represented as follows:
8f T
af ., of o [T e
e TS0 =) LZ_X; =i (x-x)
1(o’f . o' f . 1| o%f .o .0 .o f L x—x
—| = (X =X )" +2—— (X, = X )X, = X,) +—5 —| ==X = X))+ (% =%X,) —— (X =X )+ (X, =X, .
z[axfm 2 o (X0 ) z[ax(m D o (278 g () + 2 ')L—xz
ot o' f
Ip e X XX, | XX
- 2 [XI XL XZ XZ azf 5:f |:XZ _ X‘}

OX,0% 0%,

:%(x—x’)T H(x')(x—x’)
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[Summary] Optimality Conditions for Function of J
Several Variables

* The Taylor series expansion of f{x), which is the function of » variables, gives

f(x)=f(x)+Vix)d+ %dTH(x*)d +R

* From this equation, the change in the function at x7, i.e., Af(x) = f(x) - fix"), is given as
* 1 *
Af =Vf(x )Td+5dTH(x Yd+R
= If we assume a local minimum is at x*, then Af must be positive.

1) the first-order necessary condition:

oy . (X))
”Vﬂxf—&L&,aK

maximum, or inflection point).

=0, (i=12,---n), x* is a stationary point (minimum,

2) the sufficient condition:
If d’TH(x")d >0, then the stationary point (VAx")7=0 % Vf(x") = 0)
is a local minimum.

To be d"H(x")d > 0, H(x") must be positive definite.
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