Plane Wave Diffraction

» Consider a plane wave propagation along y and incident on an
absorbing half-screen
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Plane Wave Diffraction

( 0, v, z ) observation point

Area element
for integration

= In order to carry out the X’ integration, recognize that for y>>X, the area giving a
significant contribution will have width along x that is small compared to y.
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where ,z)lz\/y2+(z—z')2
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Plane Wave Diffraction
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Plane Wave Diffraction

In order to carry out the integration in the above equation, we

observe that p, - y* +(z-2)* will have a stationary point when the
derivative of p, with respect to z’ vanishes

0:d’0|1: —(z-12") o
dz \/y2+(z—z')2 \
at z=12' — \_/

1 N2
~y+—(2-1
PRy 2y( )

Z Z'

We identify three cases

(1) The stationary point is well above the end point z’=0 of the
Integral

(2) The stationary point is well below the end point
(3) The stationary point is near the end point
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Plane Wave Diffraction

» Case 1.z >0 by a large amount

Re e - Jkpl

I
L T s
Interrupted  “~. _-<" Cancelation of

cancelation e - alternate half cycles

stationary point

# The imaginary part of the integrand will have a similar variation. To account for
me interrupted cancellation of alternate Y2 cycle at z’=0., we will com compute an
end point contribution in the following way.
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Plane Wave Diffraction

= The first integral gives the stationary point contribution, which can be
find using the approximation

= At the stationary point, @, =0 and \/p, =y in the denominator.
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Plane Wave Diffraction

= The second integral comprises the end point contribution.
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P : excluding singular point i.e. x=0
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Plane Wave Diffraction

= Stationary + end point contribution

“1+cosqa e

{ksing Je

_[OOH COSA ki gy

End point contribution

for z>0
jn/4 / ) | ikp
E, (O, Y, z) = Je kE, 2 NS .1+(-:OSa e
227 \/E ksina \/;
. J”/4 jkp
—Ee M _E, 1+cosa e
\/ 7k 2sina \/;
e_jkp

Jp . cylindrical wave form

1;(?050‘ : singular at o=0 (w.r.t z=z;) i.e. on shadow boundary
SIna

Wireless channel modeling



Plane Wave Diffraction

= First term : incident plane wave
= Second term : cylindrical wave emitting from the edge

.

v
a=0
Superposition of incident and diffracted wave
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Plane Wave Diffraction

» Case 2.z <0 by a large amount
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In this case, we have only the end point contribution.
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Plane Wave Diffraction
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= Cylindrical wave emanating from the edge.
= The plane wave is blocked for z<O0.
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Plane Wave Diffraction

» Case 3.znear 0
For this case, z and z’ are both small compared to y so that & =0 on ﬁ ;\N

1 N2
plzy+ﬁ(z—z) (2) For z>0,
k
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E, E.e J'WJ'_\FZ e it* dt E, =E0e"‘Wu(z)—Eoejwf(\/%\zqsgn(z)
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(1) For z <0, sgn(2) = ~1 forz <0
Iwk e‘“zdtz_[\/w? e 1V dt i
. —|z| e o2
\E 2y f(x)= e M du
0=
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Plane Wave Diffraction

For small z, cf)
J:Oe‘juzdu
_ _ L " =Iw e‘juzdu—jxe‘juzdu
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:ﬁe_j%—chosuzdu—jxsinuzdu}
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Ty / 22,17, - ju?
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“E,=Ee U (z)-Ee ‘p 50N (Z
Fresnel Integral

# The above equation applies for |z | within some region about the shadow
boundary y>0, z=0.

= We anticipate that this region will be the Fresnel zone. |z| = /yA in width.

Fresnel Integral
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Plane Wave Diffraction

2| =+y4 I
1k, 1k 7 T yA

=— |—|Z|l=— |— /I = —_ ',//
-2 -2 - il .
Outside the transition, ﬁ\/”

~174 - jkp
- e l+cosa e
E,=E,e W -E, : Transition
V2zk 2sina ([p region

~17 —jkp
e 1+cosa e

I 0 - 0
Tk 2sina \/; (sina < z<0)

_ .
e 17 14 cosa e

N2k 2sina \/;

or E, =-E,

E, =E.e Mu(z)-E,

= The first term : the incident field E; in the illuminated region z>0, and is zero In

the shadow region z<0, as would be given by geometric optics.

% The second term : the cylindrical wave emanating from the edge with pattern

function 1%«
2sina

Wireless channel modeling

14



Diffraction coefficient

» Diffraction coefficient

D (a)=- \/71;;2805&
E=E,U (2)+E,° AN D ()
NE)
» Inside the transition region
E=E,U (2)+E e et ()

D, (a)-— e 74 JpF (¢£)sgn (z)
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F ()=
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Diffraction coefficient

» QOutside transition region
U? =22 +V ,U=+/2E%+ v

duzll—zdv
J2&EP + v
o _iu? o0 _i2£2  _iy dv
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% S0 that outside the Fresnel zone the term  and higher decreases rapidly leaving
only the first term in the series.
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Diffraction coefficient

» For large 7|,

: J\/7 125 s —j2§2
D; ()= - JZﬁée sgn(z)
e=1 e
DT (a); ysgn( ) 2 _ 1 Sgn(z)

V-2 K|z N2k [7)/{py

» For small |z|.

y = p and
sgn(z) _sgn(z) 1 1+cosa

2|/py — zl/p “Sing  2sina
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Diffraction coefficient

~ 1 l+cosa _ 1 sgn(2) f 1
D(a)= Tk 2sina < D (a)= 2ok 2oy or |z| sma
1 1 sgn(z)

D = ——e'7 [pF D. (a)=- f |
() > ¢ pF (&)sgn(z) < D, () 2k il dpy or |z| large
|3(a) . new diffraction coefficient that is uniformly valid for all z

A 1 sgn(z)
D =D D

(a) (0!)+ T(a)+ /27Z'k |Z|/ /py

For z (or o) large : the last tow term cancel = [A)(a): D(a)
For z (or o) small : the first and last cancel = D(a)=D;(a)

B o Tag-ikp
~E=EU(2)+E, D (a)

N
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Diffraction coefficient

% More rigorous treatments of diffraction lead to the same result as the above

equation with somewhat different value of D(«).
<= A useful solution for an absorbing screen given by Felson is

1 1 }
—+
a 2r-«

-1
D (a) B 2k

-1
D (a) B 27k

I
T |0-D| z+|D-D
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Diffraction coefficient

% For a conducting screen, there is a reflected wave that has its own shadow
boundary. The diffraction coefficient in this case is different for two
vertical and horizontal polarizations and is given by

Incident Shadow
1 1 Reflection ,Boundary

-1 1
- + :
V2rk 2 cosq)_zq) coscDJ;q) SB

D(a)=

where + is for E // edge axis (horizontal)

- is for H // edge axis (vertical) a=r=(9-9)

<= |n this case the second term blows up along the reflection shadow
boundary $+®’=x . To cancel this infinity, two more terms are required.
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