Wireless Channel Model
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Radio Channel (1)

= Signal Fading
— large-scale component: Path Loss

— medium-scale slow varying component:
Shadowing

— small-scale fast varying component:
Multipath fading
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Radio Channel (2)
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LOS Path vs. NLOS Path

No Line-of-sight (NLOS)

Line-of-gight (LOS)
——
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Path Loss & Shadowing

® Path Loss

— caused by dissipation of the power radiated by the
transmitter

— depends on the distance between transmitter and receiver
= Shadowing

— caused by obstacles between the transmitter and receiver
that absorb power.
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Multipath fading

= short-term fluctuation of the received signal
caused by multipath propagation

= when mobile Is moving
®  Fading becomes fast as a mobile moves faster
= delay-power profile (delay spread)

Average

oower (dB) A Narrowband

fading  « Rayleigh distribution

Wideband fading
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Channel Model

Path Loss Alone
s Shadowing and Path Loss

K (dB TN
(dB) D Multipath, Shadowing, and Path Loss
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Simplified Pass Loss Model
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without resorting to complicated path loss models.
— Free-space, two-ray, Hata, COST extension to Hata are all of the same form

— K : constant which depends on antenna characteristics and the average channel
attenuation

= Free space path gain at distance d, assuming omni-directional antennas
= Empirical measurements at d,
— d,: reference distance
= generally valid only at d> d,
= dy:1-10m (indoor), 10-100m (outdoor)
— y : path loss exponent

=« at higher frequencies tend to be higher and at higher antenna heights tend
to be lower
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Empirical Path Loss Models

® Piecewise Linear Model

Pr (dB)

g log(dddg  logdzdg  log(didy

Figure 2.9: Piecewise Linear Model for Path Loss.

Indoor Attenuation Factors
— partition loss

Partition Type Partition Loss in dB

Cloth Partition 1.4
Double Plasterboard Wall 34
Foil Insulation 3.9
Concrete wall 13
Aluminum Siding 20.4

All Metal 26

— floor loss

— the building penetration loss

— It is difficult to find generic
models
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Shadowing (1)

m Statistical models

— The transmitted signal experiences random variation due to blockage
from objects in the signal path and changes in reflecting surfaces and
scattering objects.

= | og-normal shadowing

— Ratio of transmit-to-receive power ,, —p /p Isarandom variable
with a log-normal distribution

o)~ 0/In10 _ (10logyy - u,,)°
v N2rno, y 20"

VB

— Distribution of v (the dB value of ¥ ) is Gaussian with mean x,, and
standard deviationo,,

T W —H,, )
P(W) = \/EO' eXp|:_ dBZO'Z = }
VdB

VB
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Shadowing (2)

= Justification for the Gaussian model as the distribution of ¥4
— when shadowing is dominated by the attenuation from blocking object
— afttenuation of a signal as traveling through an obstacle with depth d

= s(d)=e™, where ¢ isan attenuation constant.
— attenuation of a signal as it propagates through the region d, =>"d,

= 5(d,) _g 2t _ et
— d, : Gussian r.v. (by the Central Limit Theorem)
— log,, s(d,) : Gussian r.v.

= Decorrelation distance:

— the distance at which autocovariance equals 1/e of its maximum value
— on the order of the size of the blocking objects or clusters of objects

Mobile Computing and Communication Lab. 10



Combined Path Loss and Shadowing

" Combined model

— average dB path loss: the path loss model
— shadow fading with mean of 0 dB: variations about the path loss

= Simplified path loss with log-normal shadowing

t

P d
Fr(dB) =10log,, K —10ylog,, d__H//dB

0

— w4 aGuassian r.v. with mean zero and variance
Vs

10logK

P/P,
(dB)

/S|OW

\ery slow
—10y
log d
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Outage Probability

® under the path loss and shadowing
— P_. - the minimum received power level

— outage probability: Pou(Fui.d)

=« the probability that the received power at a given distance d
falls below p__

u pout(Pmin’d) = p(Pr (d) < I:)min)

« for the combined path loss and shadowing (at slide 23)

(o2
Vs

o(P.(d) < P.o) :1—Q[ P_ (P +10log, K —10ylog,, (d /do)]
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Multipath

Multipath fading

— Constructive and destructive addition of different multipath components
introduced by a channel

Time-varying channel impulse response

— If a single pulse is transmitted over a multipath channel, the received
signal appears as a pulse train

— A multipath channel is modeled by a channel impulse response.

Characteristic of the multipath channel
— time delay spread

« Time delay between the arrivals of the first received signal component
and the last received component associated with a single transmitted pulse

— time-varying nature due to moving
Narrowband fading model

Wideband fading model
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Example of Multipath

Transmitted Transmitted
pulse pulse

N

Time
Received Recelved - poceiyed Received
LOS pulse multipath | 5g pulse multipath
DUlSES pulses
1ol Al an
Time
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Multipath Component (1)

Resolvable components:
if the delay difference

between two components
significantly exceeds the
inverse signal bandwidth

Reflector
Cluster

Reflector

™~

v

Nonresolvable components:
. these are combined into a
- single component.

Figure 3.1: A Single Reflector and A Retlector Cluster.
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Multipath Component (2)
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Figure 3.2: System Multipath at Two Different Measurement Times.
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Doppler Shift

When the transmitter is
moving, the received signal

has a Doppler shift

Doppler effect is on the order
of 100 Hz for typical vehicle
speed (75km/hr) and
frequencies (about 1GHz)
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Time-varying Channel Impulse Response

Equivalent lowpass time-varying channel impulse response at time t to an

impulse attimet—z: c(r,t)=Y"" &, ©)e *V5(r-17,(t))

— N(t): the number of multipath components
— For the nth component

t=t
= 7_(t): delay STty | (0g 9y Tp) 1
1 5 , T
« ¢ (t): phase shift P a0y
- ¢n (t) = 27chrn (t) _¢Dn t
= ¢, : Doppler phase shift Ot-9 | Nonstationary T ane
= o (t): amplitude c(T,H
= = = ] , o, ¢ .
Time-invariant channel: il
N (09 Tp)
c(r)=) a,e"5(r-1,) t=t,
n=0
L , —
‘EO ‘t1
Figure 3.3: Response of Nonstationary Channel.
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Transmit & Recelive Signal Models (1)

= Complex baseband representation
— The transmitted or received signals are actually real sinusoids
— The complex representations are used to facilitate analysis
=  Transmitted signal
— s(t) = Re{u(t)e!™™ |=s, (t) cos(2f t) — s, (t) sin(2xf. )
—u(t) =s, () + Jso(t)
= complex baseband signal with in-phase component s,(t) and
quadrature component sq(t)
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Transmit & Recelive Signal Models (2)

= Transmitted signal
— s(t) =Reju(t)e’?}

= Received signal

— r@)= Re{

= Req
= Rex

= Re/

'wwc(r,t)u(t—r)dr)ejzﬂfct}

: Nz(ti a, (1) e 10 5(7 - r () u(t-r)d TJ ejZ;szt}
Nz(ti (e U_Z 6(r—r,(t))u(t-7)d r)j ejz”fc‘}

([ N@ _ _
D o, (e u(t-r, (t»]e””fct}
n=0

—  rlt)= Re{(%)an ) e *Ou(t -7, (t))jejz”fct}
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Narrowband Fading Model




Narrowband Fading Model (1)

= Narrowband fading assumption

— Delay spread: T, <<%3

— The LOS and all multipath components are typically nonresolvable.
=  Received Signal

— u(t—z)~u(t) forall 7, .........._ channel
N (t) " characteristic

r(t) = Re{u(t)e‘z”ft (Za (t)e % o

multipath, u(t)=1
— Transmitted signal: s(t) = Re{e"z’“‘ct }z cos2rx f t
— Received signal:
N ) _ _
r(t) = Re{ [Zan (t)e % (t)je‘z”‘“ }: r(t)cos2zft+r,(t)sin27ft

n=0
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Narrowband Fading Model (2)

=  Received Signal
— r@t)=r(t)cos2zft+r,(t)sin2zft

N (t)

— in-phase component; I, (t) = >_a, (t)cosg, (t)
n=0
N (1)

— quadrature component: r,(t) = > a,(t)sing, (t)

n=0

" r(t) and ru(t) can be approximated as Gaussian random
processes

— 1F N(t) is large, and ¢, (t) and ¢,(t) are independent for different
components.

— when for small N(t) each ray has a Rayleigh distributed envelope
and uniform phase

— ry(t) and ry(t) are independent Gaussian process with the same
autocorrelation , a mean of zero, and a crosscorrelation of zero
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Autocorrelation and Cross Correlation (1)

= Assumption
— There i1s no dominant LOS component

— The amplitude, multipath delay and Doppler frequency shift are
changing slowly enough to be considered constant over the time
interval of interest

n o ()=a, r,(t)=7,, fo (t)= fo,
. @ (t) =2xf v, — 270 t
— ¢ (t) is uniform distributed on [-7, 7]

= this Is reasonable because f_ Is large and hence can go through a
360° rotation for a small change 7,

= The received signal r(t) is zero-mean Gaussian process
— E[r(t)]= ) Ela,]E[cos¢,(1)]=0
— E[r,(t)]= D Ele,]E[sing, (1)] =0
— E[r(t)]=0

(ELr (O, (1)]=0)

Mobile Computing and Communication Lab.
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Autocorrelation and Cross Correlation (2)

Autocorrelation
— A (AY)=E[r®)r(t+At)]= A (At)cos(2f At) - A (At)sin(2f At)

27vAL

o A (M) =E[r ®)r (t+A)]=0.5) E[aﬁ]cos{ :

cosd, j

27VAL

« A, (A)=E[n (t)rQ(t+At)]:—O.5ZE[af]Sin( =

cosd, j

— A uniform scattering environment assumption

=« The channel consists of many scatters

densely packed with respect to angle
6, =nA6 =2m/N

— Each component has the same received

power: E[a?]= 2P, /N
N

A (AD)= 2P—f > cos( AL s AQ]A@

7T n=1
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Autocorrelation and Cross Correlation (3)

" N >0, AQ@—>0 Antenna spacing of 0.4\:
the signal decorrelates over

A (At)= P IZnSin(ZﬂvAt cosHJdH a distance of 0.41
e 271 %0
=0
foAt=0.4 = vAt=0.44
A (At) = i Izncos(ZﬂVAt cosé’jdﬁ
' =
=PJ,(27f At) B
l 2w : :
_ jxcosé 4 jné
‘]”(X)_zﬂjnjo e e’"do
A (At) = A, (At)cos(27f,At) T e
Figure 3.5: Bessel Function versus f;7
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Power Spectral Density

S, (f)=25[S, (f —f,)+S, (f+f,)]
S, ()= F[PJ,(27f,7)]

S,(f)

Mobile Computing and Communication Lab.
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Envelope and Power Distributions without LOS

= Signal envelope

T2 =[r®)= (O +1,°®

— r,and ry are Gaussian random variables with mean zero and
variance 4?

— z(1) 1s Rayleigh disztributed

Z
, 7
p,(z2)=—e >, z>0
(02

= Power
— 22(t) =|r@)|’

— The received signal power is exponentially distributed with mean 252

X
|

P, (X) =

eaf, x>0

20°
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Signal Envelope over Channel having a LOS

= Signal envelope

— The received signal equals the superposition of a LOS component
and a complex Gaussian component

— The signal envelope z(t) has a Rician distribution.

(2%2+5s?)
Z = 2 ZS
O O — =
* 1,: the modified Bessel function

= Average received power
LOS component power

— Fading parameter : K =
. K =0 Rayleigh fadin§®
« K =o0:no fading (only a LOS component)
= the smaller K, the severer fading

2
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Nakagami Fading Channel

Nakagami fading distribution

More general fading distribution whose parameters (m) can be
adjusted to fit a variety of empirical measurements

2
mo2m-1 _MZ

2m-z 5
—————¢€
'(m)P.

p,(2) = m=>0.5

m = 1: Rayleigh fading
m = oo: no fading
m = (K +1)%/(2K +1): approximately Rician fading

Mobile Computing and Communication Lab.
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Wideband Fading




Intersymbol Interference

Two multipath components with delay z, and ¢, are resolvable

if |r,—7,|>>1/B,

Narrowband fading:
delay spread T, <<T

- There is little interference
with a subsequently
transmitted pulse.

Wideband fading: T, >>T

- The resolvable multipath
components interfere with
subsequently transmitted

pulses:
intersymbol interference (1SI)

Pulze 1 Pulsa 2
-l — -

T

t_

0

e E{.ﬂnﬁir—T L)) f——-

Figure 3.11: Multipath Resolution.

Mobile Computing and Communication Lab.
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Autocorrelation: Time Domalin

= Equivalent lowpass time-varying channel impulse response at time t to
an impulse at time t—r
_ (1) = Nz(t:)an e V5 -1 (1) . a com-plex zero-mean
=0 Gaussian random process
= The statistical characterization of ¢(r,t) is determined by its
autocorrelation function A (7, z,, t, At) = E[c(r,,t) c(z,, t + Ab)]
=  For the WSS channel, the autocorrelation is independent of t.
— Az, 7,, At) =E[c (r,,1) c(z,,t + Al)]
= For the WSS channel with uncorrelated scattering

— The channel response associated with a multipath component of delay 7,
Is uncorrelated with the response associated with a component of a
different delayz, = r, because they are caused by different scatters.

E[c” (z,,t)c(r,,t + At)] = A (z,, At)S(r, —17,) = A (7, At)

(r=7,=177)
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Autocorrelation: Frequency Domalin

Characteristics of the time-varying multipath channel at time t

— in frequency domain: C(f,t) = f c(z,t)e " dr

in time domain: c¢(z,t)

= A complex zero-mean Gaussian process

= C(f,t)iscompletely characterized by its autocorrelation.
Autocorrelation of C(f,t)

A.(f,, f,, t,At)=E[C (f,t)C(f,,t+At)]
the WSS channel: A_(f,, f,, At)=E[C"(f,t)C(f,,t+Atl)]

A(f,, f,, Ab) = EU”c*(rl,t)e”m‘molr1 j_wc(fz,t+At)e—J’2”fzfzdrz}

=[" A(zr,At)e 27 V7gg

_ -_oo AC('Z"At) e—j27z'AfZ'dz_
= A (AT, AY)

At =

= ._OO J-_OO E[C*(Tlat)c(z-z,t+At)e_j2ﬂf171e_j2ﬂfzrzdz_ld 2'2]

Ac(af)=[" A(r)e > de
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Power Delay Profile

= Power delay profile

— A () =E[c"(z,t)c(z,1)] (A, (z, At) when At = 0)

— Average power associated with a given multipath delay
| De'ay Spread o

— Average delay spread: 4, === = Relative power

([ A@dr—

— rms delay spread: \/
Or =

[ A@)dr

— the delay associated with a given multipath component is weighted
by its relative power

= The delay spread of the channel is roughly by the time delay T
where A (r)~0 forz>T

symbol period Mobile Computing and Communication Lab. 35



Coherence Bandwidth (1)

s A_(Af)=E[C (f,t)C(f +Af,1)]
describes the autocorrelation of the time-varying multipath channel in

frequency domain (coherence)

Coherence bandwidth of the channel

B. such that A. (Af)~0 forall Af > B,

By the Fourier transform relationship between A_(Af) and A ()

if A.(r)=0 forz>T, then A.(Af)~0 for Af >1/T

Flat fading and frequency selective fading

signal bandwidth: B

Flat fading: B << B,

= T,=1/B>>1/B ~o; = negligiblelSI
Frequency selective fading: B >> B_

= T,=1/B<<¥B ~o; = significantISI

=

Mobile Computing and Communication Lab.
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Coherence Bandwidth (2)

F Ac(4f)

> A Wideband Signal

{Frequency-Selective)
I
Narrowband Signal f"

(Flat-F n.ium..

L=

OTm r

Figure 3.13: Power Delay Profile, RMS Delay Spread, and Coherence Bandwidth.
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Coherence Time and Doppler Power Spectrum (1)

= Time variation of the channel which arise from transmitter or
receiver motion cause a Doppler shift

m A (A)=E[C(f,t)C(f,t+At)]

— describe the autocorrelation of the channel at a frequency over the time
(channel coherence over the time)

= Coherence time
— T, suchthat A.(At) =0 for At>T,

= Doppler power spectrum

= Sclp)=[ Ac(ate dAt

— p . Doppler shift

—  S,(p): the PSD of the received signal as a function of p
=  Doppler Spread: By

— the range of p such that |S_ (p)| >0

Mobile Computing and Communication Lab. 38



Coherence Time and Doppler Power Spectrum (2)

= Relationship between the coherence time and the Doppler spread
— By the Fourier transform relationship between A_(At) and S (p)

if A.(At)~0 for At>T,, then S (p)~0 for p>1T,| =B, z%

= |f the transmitter and reflector are stationary and the receiver is moving with

VeIOCIty V e Maximum Doppler shift

— By <v/A=if,

—  Remind that inthe narrowband fading model the signal decorrelates over the time
of 0.4/f

— Ingeneral, B, =~ k/T,, where k depends on the shape of S (p).
" |nsummary,

Bcz%Tm, Tcz}/BD
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