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Introduction 

 Channel capacity limit 
− The maximum channel rates that can be transmitted over the 

wireless channel with asymptotically small error probability, 
assuming no constraints on the delay or complexity of the 
encoder/decoder 

 Scope of this chapter 
− Capacity of a single-user wireless channel where the transmitter 

and/or receiver has a single antenna 
■ a time-invariant additive white Gaussian Noise (AWGN) channel 
■ a flat fading channel 
■ a frequency selective fading channel 

 
 



Capacity of  AWGN Channel  
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 Shannon Capacity  

−    
  
−   

■ Received signal-to-noise ratio (SNR) 
■ P : the transmitted signal power 
■ Nose power: 2 x two-sided noise PSD (N0/2) x B  or  one-sided PSD (N0) x B 

− Upper bound on the data rates that can be achieved under the real system 
constraints 

− On AWGN radio channel, turbo codes have come within a fraction of a 
decibel of Shannon capacity limit  
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Capacity in AWGN 



Wireless Networks Lab. 4 

Capacity of discrete time-invariant channel 

 Mutual information 
− The average amount of information received over the channel 

per symbol  
−   

■ H(X): the average amount of information transmitted per 
symbol (entropy) 

■ H(X|Y): the average uncertainty about a transmitted 
symbol when a symbol is received, and the average 
amount of information lost over noisy channel per symbol 

■   
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Channel Capacity of a Continuous Channel 

 Entropy of X: 
 Mutual Information I(X;Y) 
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Channel Capacity of a Continuous Channel 

 Entropy of Z: 

 Maximum entropy of Z, for a given E[Z2]  
− The maximum entropy is obtained when the distribution of Z is 

Gaussian 
■   

 
■   

 
 

dzzpzp )(
1

log)(H(Z) ∫
∞

∞−
=

   )(      where,
2

1
)( 22222

∫
∞

∞−

−
== dzzpzezp

z
σ

πσ
σ

)2log(2
1

(Z)H
2

max σπe=



Wireless Networks Lab. 7 

Capacity of a Band-limited AWGN Channel (1) 

 Channel capacity   
− Maximum amount of mutual information I(X;Y) per second 
− Two steps 

■ the maximum mutual information per sample 
■ 2B samples (Nyquist’s sampling theory) 

 Maximum mutual information per sample  
− x, n, y: samples of the transmitted signal, noise, and received signal 
− H(y|x) 

■   
 
 
 

■ Because y=x+n, for a given x, y is equal to n plus a constant. The 
distribution of y is identical to that of n except for a translation by x 
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Capacity of a Band-limited AWGN Channel (2) 

−   
 
 

−   
 
 

− I(x;y)=H(y) - H(n)  
 Entropy of a band-limited white Gaussian noise with PSD N0/2 

− Noise power: N= N0B 
 

−    

 When the signal power is S and the noise power is N, and the signal s(t) and 

noise n(t) are independent, the mean square value of y is    

 

)2log(2
1

H(n) eNπ=

)n()(
1

log)(                                                 

)(
1

log)()|(
1

log)|(

Hduupup

dyxypxypdyxypxyp

nn

nn

==

−−=

∫

∫∫
∞

∞−

∞

∞−

∞

∞−

H(n))(H(n))(H(n)                  

)|(
1

log)|()(x)|H(y

===

=

∫∫

∫∫
∞

∞−

∞

∞−

∞

∞−

∞

∞−

dxxpdxxp

dydxxypxypxp

NSE +=]y[ 2



Wireless Networks Lab. 9 

Capacity of a Band-limited AWGN Channel (3) 

− H(y) will be maximum if y is Gaussian  
−   

 

   
 
 
 

 

 Channel capacity: 
 
 

 Reference :B. P. Lathi, Modern Digital and Analog 
Communication System, 3rd Ed., Oxford. (Chapter 15) 
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Capacity of  Flat-Fading Channels  
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Capacity of  Flat-Fading Channels 

 The channel capacity depends on the information about g[i]  
− Channel distribution information (CDI) of g[i] known to the transmitter and 

receiver (**) and Channel side information (the value of g[i]) known to the 
receiver 

− CSI known to the receiver and transmitter, and (**) 
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 The rate transmitted over the channel is constant (The transmitter 
cannot adapt its transmission strategy relative to the CSI) 

 Shannon (ergodic) capacity 
−   

 
− Shannon capacity for AWGN channel averaged over the 

distribution of   
−   

 
− Capacity-achieving code must be sufficiently long that a 

received codeword is affected by all possible fading states => 
This can result in significant delay 

− If the receiver CSI is not perfect, capacity can be significantly 
decreased 
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CSI at Receiver (2) 

 Capacity with outage 
− The transmitter fixes a minimum received SNR          and 

encodes for a fixed data rate 
− For the received SNR below        , the received bits cannot be 

decoded correctly (outage) 
− Outage probability: 
− Capacity: 
− The outage probability is a design parameter 
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CSI at Receiver (3) 

dB 20][E =γ

Rayleigh fading 
channel with          
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CSI at Transmitter and Receiver (1) 

 
 
 
 
 
 
 

 For fixed transmission power, the same capacity as when 
only receiver knows fading 
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CSI at Transmitter and Receiver (2) 

 Transmission power as well as rate can be adapted. 
 Adaptation of transmission power        to the received 

SNR      subject to an average power constraint 
 average power constraint:  
 The fading channel capacity with average power 

constraint 
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CSI at Transmitter and Receiver (3) 

 The range of fading values is quantized to a finite set 
 For each      ,  an encoder-decoder pair for an AWGN channel with SNR 
 The input xj for encoder  has average power            and data rate Cj where 

Cj is the capacity of time-invariant AWGN channel with received SNR  ΦjjtP γγ )(

A time diversity system   
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CSI at Transmitter and Receiver (4) 

 Optimal power allocation  
− Lagrangian 

 
 

− Differentiate the Lagrangian and set the derivate to zero 
 
 
 

− Solve for          with the constraint  that 
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CSI at Transmitter and Receiver (5) 

 Capacity 
 
 
− Time-varying data rate : the rate corresponding to the 

instantaneous SNR     is 
− Transmission power adaption 

■ Optimal power allocation (Water filling) 

∫
∞









=

0

)(log
0

2γ
γγ

γ
γ dpBC

( )02log γγBγ





<
≥−

=
Φ 0

00

0
11)(

γγ
γγγγγtP



Wireless Networks Lab. 20 

CSI at Transmitter and Receiver (6) 
 Water filling 
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CSI at Transmitter and Receiver (7) 

 Channel inversion and zero outage 
− The transmitter controls the transmission power using CSI so 

as to maintain a constant received power (inverts the channel 
fading) 

− The channel appears to the encoder and decoder as a time-
invariant AWGN channel 

− transmission power: 
■    

 

− Fading channel capacity with channel inversion is equal to    
the AWGN channel capacity with SNR 
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CSI at Transmitter and Receiver (8) 

 Channel inversion and zero outage 
− A fixed data rate regardless of channel condition 
− Encoder and decoder are designed for an AWGN channel with 

SNR     => the simplest scheme to implement 
− zero outage:  

■ Should maintain a constant data rate in all fading states  
■ Zero outage capacity is significantly smaller than Shannon 

capacity on fading channel  
− In Rayleigh fading, the zero outage capacity is zero 

− Channel inversion is common in spread-spectrum system with 
near-far interference imbalances 

 
 

σ



Wireless Networks Lab. 23 

CSI at Transmitter and Receiver (9) 
 Truncated channel inversion 

− Suspending transmission in bad fading states 
− Truncated channel inversion 

■ Power adaptation policy that compensates only for fading above a 
cutoff 

■   
 

■     
■ Outage capacity for a given       and corresponding cutoff 

 
−   
 

■ Maximum outage capacity  
−   
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Capacity Comparison 



Capacity of                                          
frequency-selective fading channel 
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Time-invariant Channel (1) 

 Total power constraint: P 
 A time-invariant channel with 

frequency response H(f) that is 
known to both transmitter and 
receiver 

 Block fading 
− Frequency is divided into 

subchannels of bandwidth B with 
constant frequency response Hj over 
each subchannel 

− Pj: Tx power on the jth subchannel  
− A set of AWGN channels in parallel 

with SNR (|Hj|2Pj/N0B) on the jth 
channel 

− Power constraint: ∑ ≤
j j PP

  Analysis is like that of flat fading channel with frequency axis 
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Time-invariant Channel (2) 

 Capacity under block fading 
−   
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Time-invariant Channel (3) 

 Continuous H(f) 
−   
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Time-varying Channel (1) 

  Channel division 

Time-varying flat fading channel 
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Time-varying Channel (2) 
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the instantaneous SNR on the jth subchannel  
assuming the total power Φ is allocated to the frequency 
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