

Wha Sook Jeon

Mobile Computing and Communications Lab.

Introduction (1)

- The idea behind diversity is to send the same data over independent fading paths
- Macro-diversity
 - Diversity to mitigate the effects of shadowing
 - is generally implemented by combining signals received by several base stations or access points
 - requires coordination among the different base stations, which is implemented as a part of networking protocols in infrastructurebased wireless networks

Introduction (2)

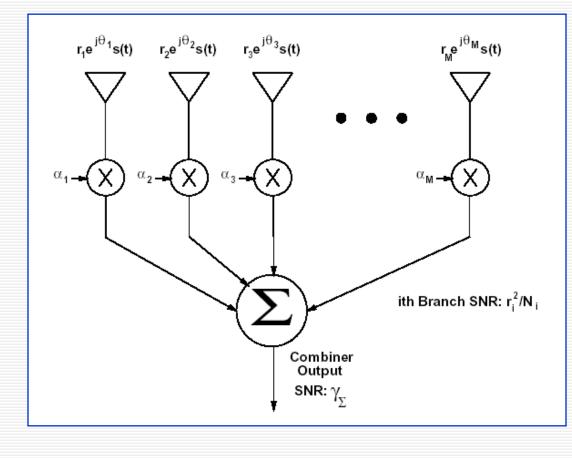
- Micro-diversity
 - Diversity techniques that mitigate the effect of multipath fading
 - Space diversity: by using multiple transmit or receive antennas
 - Angle (or directional) diversity: with smart antennas which are antenna array with adjustable phase at each antenna element
 - Frequency diversity: by transmitting the same narrowband signal at different carrier frequencies
 - Path diversity: spread spectrum with RAKE receiver
 - Time diversity: by transmitting the same date at different time (coding or interleaving)

Scope of This Chapter

- We focus on space diversity
- Receiver Diversity
 - Combining Techniques
 - Selection Combining
 - Threshold Combining
 - Maximal Ratio Combining
 - Equal Gain Combining
- Transmitter Diversity
 - Channel known at transmitter
 - Channel unknown at transmitter
 - Space Time Transmit Diversity (STTD)

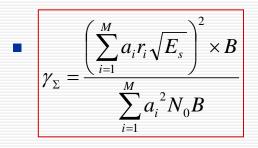
Receiver Diversity

System model for Receiver Diversity (1)



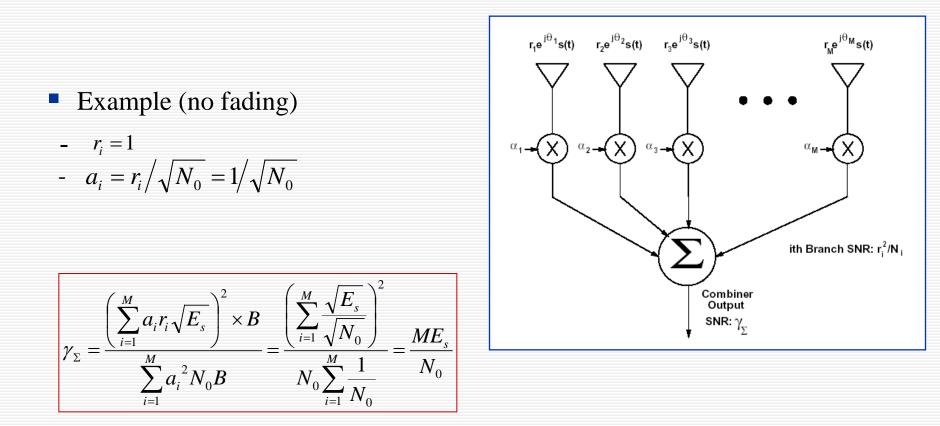
• Co-phasing:

Removal of phase through multiplication by $\alpha_i = a_i e^{-j\theta_i}$



• Identical noise PSD $N_0/2$ on each branch and pulse shaping such that $BT_s=1$

System model for Receiver Diversity (2)



Diversity Gain

- With fading, the combining of multiple independent fading path leads to a more favorable distribution for γ_{Σ}
- Performance of a diversity system
 - Average symbol error probability

•
$$\overline{P}_s = \int_0^\infty P_s(\gamma) p_{\gamma_{\Sigma}}(\gamma) d\gamma$$

where $P_{s}(\gamma)$ is a symbol error probability in AWGN channel with SNR γ

Outage probability

•
$$P_{out} = p(\gamma_{\Sigma} \le \gamma_0) = \int_0^{\gamma_0} p_{\gamma_{\Sigma}}(\gamma) d\gamma$$

- Diversity Gain
 - Performance advantage in \overline{P}_s and P_{out} as a result of diversity combining

Selection Combining (1)

The combiner outputs the signal on the branch with the highest SNR

Cumulative distribution function (cdf) of γ_{Σ}

$$- P_{\gamma_{\Sigma}}(\gamma) = p(\gamma_{\Sigma} < \gamma) = P(\max[\gamma_{1}, \gamma_{2}, ..., \gamma_{M}] < \gamma) = \prod_{i=1}^{M} p(\gamma_{i} < \gamma)$$

- For *M*-branch diversity with uncorrelated Rayleigh fading amplitude,
 - On *i*th branch: $p(\gamma_i) = \frac{1}{\overline{\gamma_i}} e^{-\gamma_i/\overline{\gamma_i}}$, $P_{out}(\gamma_0) = 1 e^{-\gamma_0/\overline{\gamma_i}}$

- Outage probability of the selection combiner for target γ_0

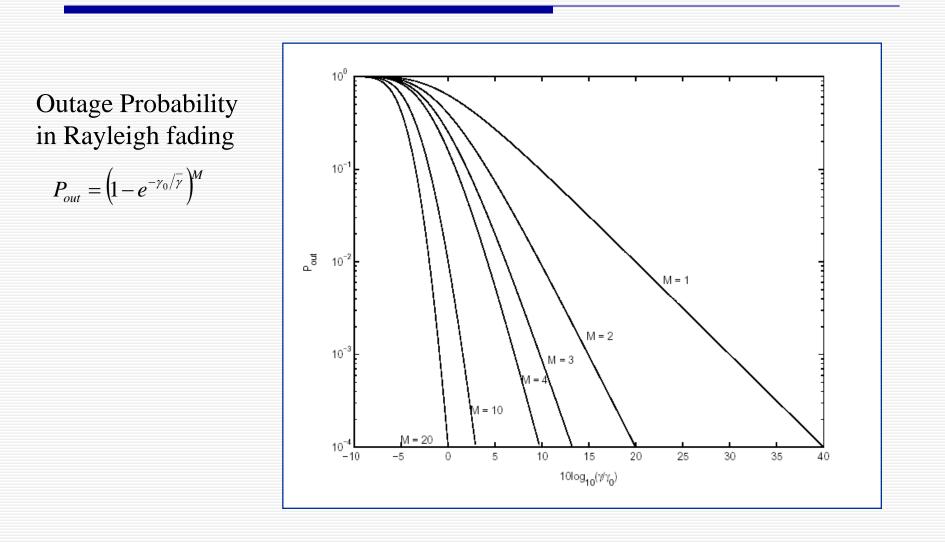
• $P_{out}(\gamma_0) = p(\gamma_{\Sigma} < \gamma_0) = \prod_{i=1}^{M} (1 - e^{-\gamma_0/\gamma_i}) = [1 - e^{-\gamma_0/\gamma_i}]^M$ The average SNR for all branches are the same

•
$$p_{\gamma_{\Sigma}}(\gamma) = \frac{M}{\overline{\gamma}} [1 - e^{-\gamma/\overline{\gamma}}]^{M-1} e^{-\gamma/\overline{\gamma}}$$

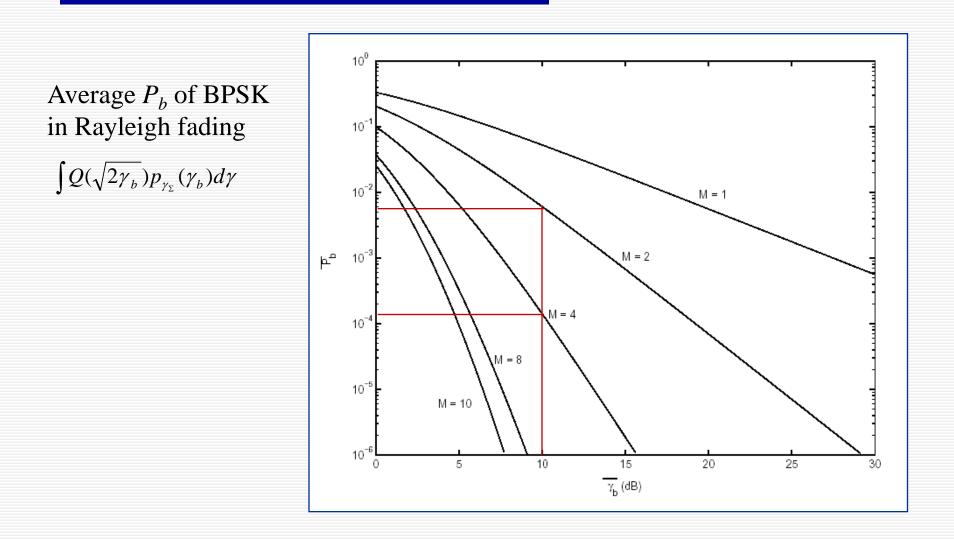
- Average SNR óf combiner output:

$$\overline{\gamma}_{\Sigma} = \int_{0}^{\infty} \gamma \ p_{\gamma_{\Sigma}}(\gamma) d\gamma = \int_{0}^{\infty} \frac{\gamma \ M}{\overline{\gamma}} [1 - e^{-\gamma/\overline{\gamma}}]^{M-1} e^{-\gamma/\overline{\gamma}} d\gamma = \overline{\gamma} \sum_{i=1}^{M} \frac{1}{i}$$

Selection Combining (2)

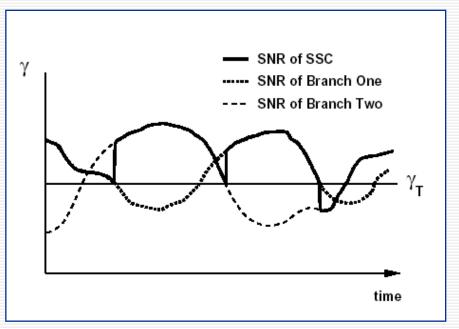


Selection Combining (3)



Threshold Combining (1)

- The combiner scans each branch in sequential order and outputs the first signal whose SNR is above a given threshold γ_T
- Co-phasing is not required because only one branch output is used at a time
- Switch-and-stay combining (SSC)
 - Once a branch is chosen, the combiner outputs that signal as long as the SNR on that branch remains the desired threshold.



two branches

Threshold Combining (2)

• Cdf of γ_{Σ} , the SNR of the combiner output with two branches:

$$P_{\gamma_{\Sigma}}(\gamma) = \begin{cases} P_{\gamma_{1}}(\gamma_{T})P_{\gamma_{2}}(\gamma) & \gamma < \gamma_{T}, \\ p(\gamma_{T} \leq \gamma_{1} \leq \gamma) + P_{\gamma_{1}}(\gamma_{T})P_{\gamma_{2}}(\gamma) & \gamma \geq \gamma_{T} \end{cases}$$

• For Rayleigh fading of each branch with $\bar{\gamma}$

$$P_{\gamma_{\Sigma}}(\gamma) = \begin{cases} 1 - e^{-\gamma_{T}/\bar{\gamma}} - e^{-\gamma/\bar{\gamma}} + e^{-(\gamma_{T}+\gamma)/\bar{\gamma}} & \gamma < \gamma_{T}, \\ 1 - 2e^{-\gamma/\bar{\gamma}} + e^{-(\gamma_{T}+\gamma)/\bar{\gamma}} & \gamma \geq \gamma_{T}. \end{cases}$$

- Outage probability for a given γ_0 : $P_{out}(\gamma_0) = P_{\gamma_{\Sigma}}(\gamma_0)$

- Probability density function

$$P_{\gamma_{\Sigma}}(\gamma) = \begin{cases} (1 - e^{-\gamma_{T}/\bar{\gamma}})(1/\bar{\gamma})e^{-\gamma/\bar{\gamma}} & \gamma < \gamma_{T} \\ (2 - e^{-\gamma_{T}/\bar{\gamma}})(1/\bar{\gamma})e^{-\gamma/\bar{\gamma}} & \gamma \geq \gamma_{T} \end{cases}$$

- Average symbol (bit) error probability for DPSK:

$$\overline{P}_{b} = \int_{0}^{\infty} \frac{1}{2} e^{-\gamma} p_{\gamma_{\Sigma}}(\gamma) d\gamma = \frac{1}{2(1+\overline{\gamma})} (1 - e^{-\gamma_{T}/\overline{\gamma}} + e^{-\gamma_{T}} e^{-\gamma_{T}/\overline{\gamma}})$$

Maximal Ratio Combining (1)

Combiner Output SNR

$$\gamma_{\Sigma} = \frac{r^{2}}{N_{tot}} = \frac{1}{N_{0}} \frac{\left(\sum_{i=1}^{M} a_{i} r_{i} \sqrt{E_{s}}\right)^{2}}{\sum_{i=1}^{M} a_{i}^{2}}$$

$$\text{Envelope of combiner output: } r = \sum_{i=1}^{M} a_{i} r_{i} \sqrt{E_{s}}$$

$$\text{Total noise PSD: } N_{tot} / 2 = \sum_{i=1}^{M} a_{i}^{2} N_{0} / 2$$

$$\gamma_{\Sigma} = \frac{1}{N_{0}} \frac{\left(\sum_{i=1}^{M} a_{i} r_{i} \sqrt{E_{s}}\right)^{2}}{\sum_{i=1}^{M} a_{i}^{2}} \le \sum_{i=1}^{M} \frac{r_{i}^{2} E_{s}}{N_{0}} = \sum_{i=1}^{M} \gamma_{i} \quad \text{since} \left(\sum_{i=1}^{M} a_{i} r_{i}\right)^{2} \le \sum_{i=1}^{M} a_{i}^{2} \sum_{i=1}^{M} r_{i}^{2}$$

• The goal is to choose the a_i to maximize γ_{Σ}

- when
$$a_i^2 = r_i^2 / N_0$$

- $\gamma_{\Sigma} = \frac{1}{N_0} \frac{\left(\sum_{i=1}^M a_i r_i \sqrt{E_s}\right)^2}{\sum_{i=1}^M a_i^2} = \sum_{i=1}^M \frac{r_i^2 E_s}{N_0} = \sum_{i=1}^M \gamma_i$

Maximal Ratio Combining (2)

• Distribution of γ_{Σ}

- Assume i.i.d Rayleigh fading on each branch with the same average SNR $\overline{\gamma}$
- pdf of γ_{Σ} : *M*-stage Erlang distribution with mean $M\bar{\gamma}$ and variance $M\bar{\gamma}^2$

•
$$p_{\gamma_{\Sigma}}(\gamma) = \frac{\gamma^{M-1}e^{-\gamma/\bar{\gamma}}}{\bar{\gamma}^{M}(M-1)!}$$
 $\gamma \ge 0$

- Outage probability for a given γ_0

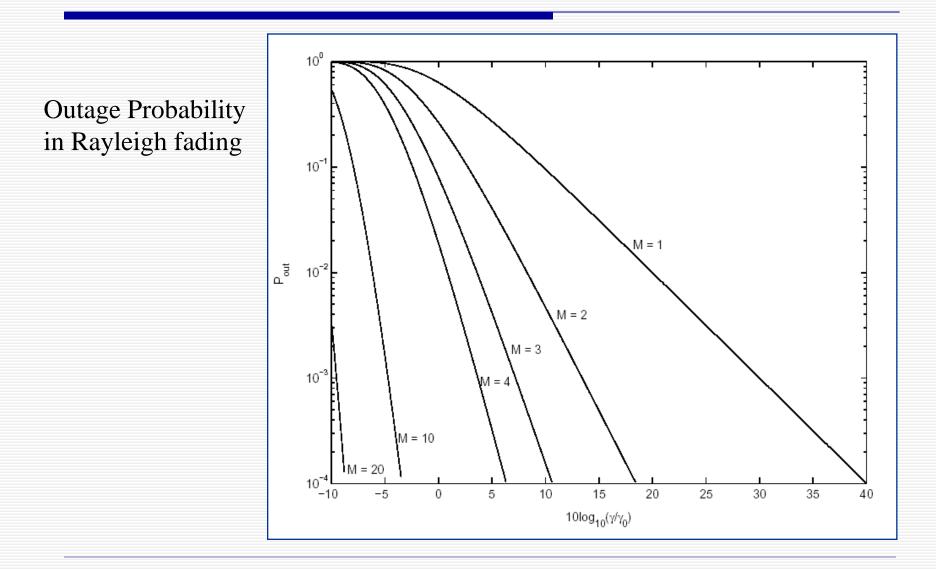
•
$$P_{out} = p(\gamma_{\Sigma} < \gamma_0) = \int_0^{\gamma_0} p_{\gamma_{\Sigma}}(\gamma) d\gamma = 1 - e^{-\gamma/\overline{\gamma}} \sum_{k=1}^M \frac{(\gamma_0/\overline{\gamma})^{k-1}}{(k-1)!}$$

- Average symbol (bit) error probability for BPSK modulation

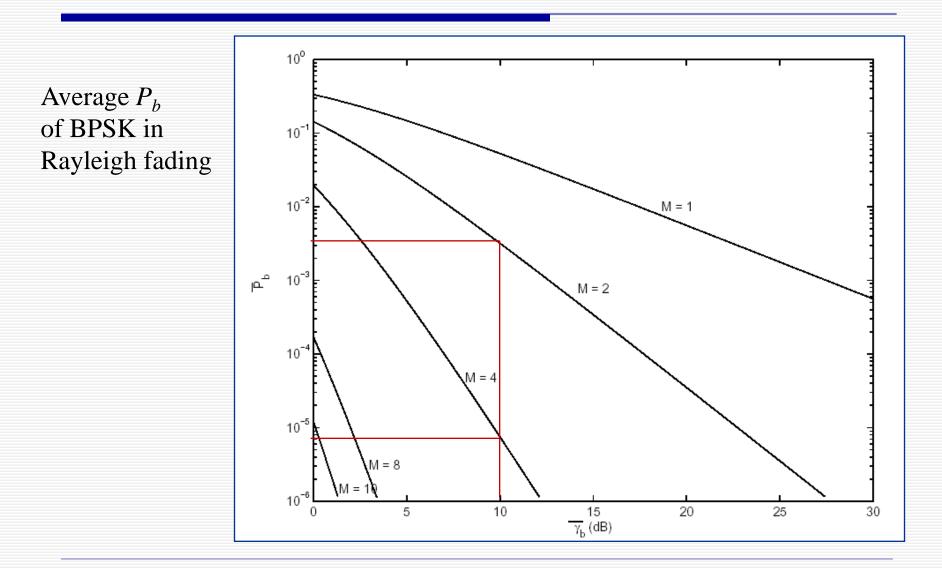
•
$$\overline{P}_{b} = \int_{0}^{\infty} Q(\sqrt{2\gamma}) p_{\gamma_{\Sigma}}(\gamma) d\gamma = \left(\frac{1-\Gamma}{2}\right)^{M} \sum_{m=0}^{M-1} \binom{M-1+m}{m} \left(\frac{1+\Gamma}{2}\right)^{m}$$

where $\Gamma = \sqrt{\overline{\gamma}/(1+\overline{\gamma})}$

Maximal Ratio Combining (3)



Maximal Ratio Combining (4)



Equal Gain Combining

- Simple technique which co-phases the signal on each branch and then combines them with equal weighting, $\alpha_i = e^{-j\theta_i}$
- Combiner output SNR γ_{Σ} , assuming the same noise PSD $N_0/2$ in each branch

$$- \gamma_{\Sigma} = \frac{1}{N_0 M} \left(\sum_{i=1}^M r_i \sqrt{E_s} \right)^2$$

For i.i.d. Rayleigh fading with two branches having average branch SNR $\overline{\gamma}$

- Cdf of
$$\gamma_{\Sigma}$$
: $P_{\gamma_{\Sigma}}(\gamma) = 1 - e^{-2\gamma/\overline{\gamma}} - \sqrt{\pi\gamma/\overline{\gamma}} e^{-\gamma/\overline{\gamma}} \left\{ 1 - 2Q\left(\sqrt{2\gamma/\overline{\gamma}}\right) \right\}$

- Outage Probability: $P_{out} = P_{\gamma_{\Sigma}} (\gamma_0)$

- Pdf of
$$\gamma_{\Sigma}$$
: $p_{\gamma_{\Sigma}}(\gamma) = \frac{1}{\bar{\gamma}} e^{-2\gamma/\bar{\gamma}} - \sqrt{\pi} e^{-\gamma/\bar{\gamma}} \left(\frac{1}{\sqrt{4\gamma\bar{\gamma}}} - \frac{1}{\bar{\gamma}} \sqrt{\frac{\gamma}{\bar{\gamma}}} \right) \left(1 - 2Q\left(\sqrt{\frac{2\gamma}{\bar{\gamma}}}\right) \right)$

- Average bit error rate for BPSK

$$\overline{P}_{b} = \int_{0}^{\infty} Q(\sqrt{2\gamma}) p_{\gamma_{\Sigma}}(\gamma) d\gamma = 0.5 \left(1 - \sqrt{1 - \left(1 + \overline{\gamma}\right)^{-2}}\right)$$

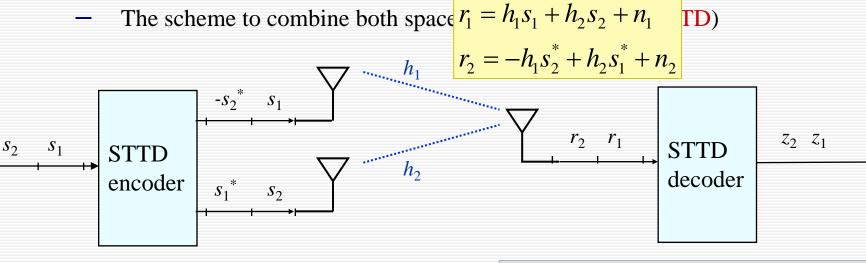
Transmit Diversity

Channel Known at Transmitter

- A transmit diversity system with *M* transmit antennas and one receive antenna is considered
- We assume that the path gain $r_i e^{j\theta_i}$ of the *i*th antenna is known at transmitter.
- The signal is multiplied by $\alpha_i = a_i e^{-j\theta_i}$ and then sent through the *i*th antenna.
- Because the symbol energy E_s in the transmitted signal s(t) is a constant, $\sum_{i=1}^{M} a_i^2 = 1$
- Received signal: $r(t) = \sum_{i=1}^{M} a_i r_i s(t)$
- The weights a_i to achieve the maximum SNR: $a_i = \frac{r_i}{\sqrt{\sum_{i=1}^M r_i^2}}$ The resulting SNR: $\gamma_{\Sigma} = \frac{E_s}{N_0} \sum_{i=1}^M r_i^2 = \sum_{i=1}^M \gamma_i$
 - When the channel gains are known at transmitter, the transmit diversity is similar to the receiver diversity with MRC
 - If all antennas has the same gain $r_i = r$, $\gamma_{\Sigma} = Mr^2 E_s / N_0$
 - There is an array gain of *M* corresponding to an *M*-fold increase in SNR over a single antenna transmitting with full power

Channel Unknown at Transmitter-Alamouti Scheme

- The transmitter no longer knows the channel gain
 - If the transmit energy is divided equally among antenna, no performance advantage is obtained
- Alamouti Scheme
 - This scheme is designed for a digital communication system with two antennas



$$z_{1} = h_{1}^{*}r_{1} + h_{2}r_{2}^{*} = (|h_{1}|^{2} + |h_{2}|^{2})s_{1} + h_{1}^{*}n_{1} + h_{2}n_{2}^{*}$$
$$z_{2} = h_{2}^{*}r_{1} - h_{1}r_{2}^{*} = (|h_{1}|^{2} + |h_{2}|^{2})s_{2} + h_{2}^{*}n_{1} - h_{1}n_{2}^{*}$$

STTD-Alamouti Scheme

• Channel estimation with known data (x_1, x_2)

$$\hat{h}_{1} = r_{1}x_{1}^{*} - r_{2}x_{2} = (|x_{1}|^{2} + |x_{2}|^{2})h_{1} + n_{1}x_{1}^{*} - n_{2}x_{2}$$
$$\hat{h}_{2} = r_{1}x_{2}^{*} - r_{2}x_{1} = (|x_{1}|^{2} + |x_{2}|^{2})h_{2} + n_{1}x_{2}^{*} - n_{2}x_{1}$$

- Diversity gain of 2 $z_1 \neq (|h_1|^2 + |h_2|^2)s_1 + \tilde{n}_1$ $z_2 = (|h_1|^2 + |h_2|^2)s_2 + \tilde{n}_2$
- Array gain of 1
 - The symbols s_1 and s_2 are transmitted simultaneously with energy $E_s/2$.
 - The received SNR for z_i

$$\gamma_{i} = \underbrace{ \begin{pmatrix} h_{1} \\ \\ \end{pmatrix}^{2} + \begin{pmatrix} h_{2} \\ \\ \end{pmatrix}^{2}}_{2} \times \frac{E_{s}}{N_{0}}$$