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Overview of Code Design (1) 

 Main reason to apply error correction coding in wireless systems 
− To reduce the bit error or block error probability 

 Amount of error reduction provided by a given code 
− Coding gain in AWGN 
− Diversity gain in fading 

 Coding gain in AWGN 
− the amount of SNR or Eb/N0 that can be reduced under the coding 

technique for a given error probability 
■ Sometime, negative coding gain at low SNRs, due to spreading the bit 

energy over multiple coded bits. 
− Capacity curve 

■ It is associated with the SNR (or Eb/N0) where the data rate of the 
system equals the Shannon capacity Blog2(1+SNR) 

■ The capacity-achieving code has an error probability of zero, at rates 
up to capacity  

■ Best performance that the practical code can achieve 
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Coding Gain in AWGN Channels 

Capacity 
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Overview of Code Design (2) 

 Performance enhancement under the coding scheme at the 
cost of  
− a decrease in data rate 
− an increase in signal bandwidth 
− the increased complexity 

 A joint design of the code and modulation for obtaining a 
coding gain without bandwidth expansion 

 Codes designed for AWGN do not well work in fading 
channel due to the burst errors 
− Combining AWGN channel codes with interleaving 

■ The interleaver spreads out the burst errors over time (time 
diversity) 



6 

Linear Block Codes 
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Binary Linear Block Codes (1) 

 Linear block codes are conceptually simple codes that are 
basically an extension of single bit parity check codes for error 
detection 

 (n,k) binary block code 
− A codeword of n symbols from k information bits 
− Each k bit information block is mapped to one of 2k codewords. 
− A code rate: Rc = k/n 
− linear if the 2k length-n codewords of the code form a subspace S of 

the set of all binary n-tuples Bn  
 Hamming distance between two codewords Ci and Cj: dij 
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Binary Linear Block Codes (2) 

 The weight of Ci: w(Ci) 
− The number of 1-bits in Ci: 
− Hamming distance d0i from the all-zero codeword 

   
 The minimum distance of code: 
 Encoding operation 

−                          : k information bits encoded into 
−   
− Matrix representation:   
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Systematic Linear Block Codes (1) 

 The first k codeword symbols equal to the the information bits 
and remaining codeword symbols equals to the parity bits 

 Generator matrix 
 
 
 
 
 

 Codeword from a systematic encoder  
 
 

 Parity bits 
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Systematic Linear Block Codes (2) 

 Example 
− Find the corresponding 

implementation for generating a 
(7,4) binary code with the 
generator matrix 

− Solution 
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Systematic Linear Block Codes (3) 

 Parity check matrix 
− is used to decode linear block codes with generator matrix G 
− Parity-check matrix H corresponding to G=[Ik|P]   

 
 

− Since GHT = 0k,n-k (an all-zero k x (n-k) matrix), 
 

 Syndrome testing 
− R: the received codeword resulting from transmission of cordword C 
− R = C+e, where e is the error vector 
− Syndrome of R: S = RHT 

− The syndrome is a function only of the error pattern e 
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Cyclic Codes (1) 

 Linear block codes 
 Generator polynomial 

 
 Message polynomial 

 
 Codeword 

 
 
− A valid codeword for a cyclic code with generating polynomial 

g(X) if and only if g(X) divides c(X) with no remainder,   
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Cyclic Codes (2) 

 A cyclic code can be put in systematic form 
− Multiplying the message polynomial by Xn-k 
− Dividing Xn-k u(X) by g(X) to get the remainder 

polynomial p(X) 
− Adding p(X) to Xn-k u(X)  
− Then, the codeword is c(X)= Xn-k u(X) + p(X)  
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Hard Decision Decoding (HDD) (1) 
 Each code symbol is demodulated individually as 0 or 1 

− This form of demodulation removes information that can be used by the 
channel decoder 

 Hard decision decoding  
− Minimum distance decoding based on Hamming distance 

■    
 

■ If there is more than one codeword with the minimum distance, one 
of these are randomly chosen 

− Maximum likelihood decoder chooses the codeword Cj 

■   

− The minimum distance criterion is equivalent to the maximum 
likelihood criterion in an AWGN channel 
■ since most probable error event in AWGN  is the event with the 

minimum number of errors needed to produce the received codeword 
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Hard Decision Decoding (HDD) (2) 

 2mindt =Maximum 
likelihood decoding 

- The decoder can correct    
   up to t errors 

- The decoder can detect 
   all error patterns of  
   dmin-1 



16 

Probability of Error for HDD in AWGN (1) 

 A received codeword may be decoded in error  if it contains more than 
t errors. Since the bit errors in a codeword occur independently on an 
AWGN channel, 

                                                                               : upper bound 
 
− p corresponds to the error probability associated with uncoded 

modulation for the given energy per codeword symbol 
− When a codeword symbols are sent via a coherent BPSK modulation, 

 

− Powerful block codes with a large number of parity bits reduce the 
energy per symbol (Ec = k Eb/n ) 
■ The error probability in demodulating the codeword symbol is increased. 
■ At high SNR, the high correction capability compensates for this reduction. 
■ At low SNR, a higher probability than uncoded modulation (negative coding 

gain)  
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Probability of Error for HDD in AWGN (2) 

 At high SNR, the most likely way to make a codeword error is 
to mistake a codeword for one of its nearest neighbors 
− Lower bound: one nearest neighbor at distance dmin 

 
 
 

− Upper bound: all of the other 2k-1 codewords are at distance dmin 
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Probability of Error for HDD in AWGN (3) 

 A tighter upper bound 
− The probability of decoding the all-zero codeword as the jth 

codeword with weight wj: p(wj) 
 

 
− Since the probability of decoding error is upper bounded by the 

probability of mistaking the all-zero codeword for any other 
codeword, 
 
 

− A simple , slightly looser bound by using dmin instead of the 
individual weights 
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Soft Decision Decoding (SDD) 

 Soft decision decoding 
− The distance between the received symbol and the transmitted 

constellation point (output from the demodulator) is used in the 
channel decoder 

− For BPSK, if the jth symbol of the transmitted codeword is a 1, the 
received symbol from the demodulator is                        ; if it is a 0, 

 
 The decoder forms a correlation metric C(R, Ci) for a received 

codeword R=[r1,…, rn] and each codeword Ci=(ci1,…, cin), and chooses 
the codeword Ci with the highest correlation metric. 

                                                                        if cij=0, 2cij -1= -1 

                                                                        if cij=1, 2cij -1=1 

− At very high SNR, if Ci is transmitted,  

jcj nEr +=

jcj nEr +−=

( ) ( )∑
=

−=
n

j
jiji rcCRC

1
12,

ci EnC ≈)C,R(



20 

Probability of Error for SDD in AWGN 

 Assume that the all-zero codeword C0 is transmitted. 
− To correctly decode R, C(R, C0) > C(R, Ci) for all i (≠0) 
− C(R, Ci) is an Gaussian random variable with mean                                  

and variance nN0/2. 
− The probability Pe(Ci) = p(C(R, C0) < C(R, Ci))  is equal to the 

probability that a Gaussian random variable with mean            
and variance nN0 is larger than 0 

 

 
 
 

− By union bound: 
 

− Simplification by noting that wi>dmin: 
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Common Linear Block Codes (1) 

 Binary Block Codes 
− Hamming (n, k) code 

■ redundant bits m = n – k 
■ n  = 2m – 1,  k = 2m – m – 1 
■ dmin = 3, t = 1 (not powerful) 

■ Perfect code:  

− Golay and Extended Golay 
■ Golay (23,12): dmin = 7, t = 3  
■ Extended Golay (24,12): adding a single parity bit to Golay (23,12) 

− Error capability is not changed between two codes 
− Simple implementation (the bit rate is half the code rate)  
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Common Linear Block Codes (2) 

 Binary Block Codes 
− BCH (n, k) code 

■ Cyclic code 
■ Outperform all other block codes with the same n, k at 

moderate and high SNRs 

 Nonbinary Block Codes 
− Reed Solomon code 

■ Similar to the binary codes in that it has K information 
symbols mapped into codeword of length N 

■ Each symbol of a codeword is not binary but is chosen from a 
nonbinary alphabet of size q 
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Convolutional Code 
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Convolutional Encoder 

 The encoder generates a codeword of length n for k-bit input sequence  
− a shift register: K stages with k bits per stage (k-bits shift at a time) 
− n binary addition operator 
− Constraint length: kK bits 
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Trellis Diagram (1) 
 the most common characterization of a convolutional code 
 Convolutional encoder example (n=3, k=1, K=3)  

Encoder state S = S2S3 

S1 

Systematic code 
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Trellis Diagram (2) 

C1=S1,   C2 =S1+ S2+S3,   C3=S1+S3 
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Maximum Likelihood Decoding (1) 

 For a received sequence R, the decoder decides that coded symbol 
sequence C* was transmitted if 

 

 For an AWGN channel, which noise affects each symbol 
independently, and for a convolutional code of rate 1/n and a path of 
length L through the trellis 
 
 
 
 
 
 

 Branch metric: 
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Maximum Likelihood Decoding (2) 

 HDD  
− If R and C are N symbols long and differ in d places, and p is a 

symbol error probability in demodulation 
 
 
 
 

− Note that p < 0.5.  
− When d is minimized, p(R|C) is maximized. 
− The coded sequence C with minimum Hamming distance to the 

received sequence R corresponds to the maximum likelihood 
decoding. 
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Maximum Likelihood Decoding (3) 

 SDD 
− For example, if the Cij is sent via BPSK over an AWGN channel 

with a 1 mapped to        and a 0 mapped to          , 
 

 

■ nij is a Gaussian noise with mean zero and variance  

 

 

− The equivalent branch metric obtains the same maximum 

likelihood output 
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Maximum Likelihood Decoding (4) 

 HDD 
− R=100110111 

 
−   

 
 

−    

 SDD 
− R=(0.8, -0.35, -0.15, 1.35, 1.22, -0.62, 0.87. 1.08, 0.91) 

−   

 
−   

. . . .

. . . .

. . . .

. . . .

00

01

10

11

t0 t1 t2 t3000 000 000

111

010

011

Example                                  (C0=000000000, C1=111010011) 

( )
( )pp

CRPM
i j

ijij

−+=

=∑∑
= =

1log3log6       

log
2

0

3

1
0

( )ppM −+= 1log5log41

∑ ∑∑∑∑
= = ===

−=−=−==
2

0

2

0

3

1

3

1

2

0
0 11.5)12(

i i j
ij

j
ijij

i
i RCRM µ

91.11 =M



31 

Viterbi Algorithm (1) 

 discards all paths entering a given node N except the 
supervisor path, which is the path with the largest partial 
path metric up to that node 
− Since the possible paths through the trellis leaving node N are the 

same for each entering path, the complete path with the highest 
path metric going through node N is the path with the highest 
partial path metric up to node N 

− reduces the complexity by systematically removing paths that 
cannot achieve the highest path metric 
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Viterbi Algorithm (2) 

 The decoder can ouput a 
codeword symbol Ci 
associated with the common 
stem when all of the 
supervisor paths at a stage 
can be traced back to the 
common stem. 

 Modification for avoiding a 
random decoding delay 
− the most likely branch       

n stages back is decided 
upon based on the partial 
path metrics up to a stage  
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Distance Property (1) 

 Minimum free distance, df 
− is defined as the minimum Hamming distance of all paths 

through the trellis to all-zero path 

 Error correction capability of  a convolutional code 
− is obtained in the same manner as for block codes 
− The code can correct t errors, where  

 To find the minimum free distance path,  
− We must consider all paths that diverge from the all-zero state 

and then remerge with the state. 
 

 2fdt =
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Distance Property (2) 
 Example 

 

Hamming 
distance 

Path distance: 6 (Path1, Path2),  8 (Path3),  8 (Path4) 
Input bit sequence: 10000 (Path1), 01000 (Path2), 11000 (Path3), 10100 (Path4) 
Minimum free distance: 6;  t = 3 
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State Diagram 

 The state diagram represents possible transitions from the all-
zero state to the all-zero state 

000 

1 input bit 

0 input bit 

Hamming distance 
of a codeword 
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Transfer Function 

 The transfer function T(D) describes the paths from state a to 
state e 
−    
−   

 
 

− a convenient shorthand for enumerating the number and corresponding 
Hamming distance of all paths that diverge and remerge with the all-
zero path 

 Extended state diagram  
− J: is introduced to every branch (its exponent is the number of branches 

in any path from state a to state e)  
− N: is introduced on all branch transitions associated with a 1 input bit   
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Extended state diagram and Transfer Function 
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Error Probability for Convolutional Code (1) 

 The error probability can be obtained by first assuming 
that the all-zero sequence is transmitted and then 
determining the probability that the decoder decides as a 
different sequence. 

 SDD 
− For an AWGN channel using coherent BPSK modulation with 

energy Ec=RcEb, the probability of mistaking the all-zero 
sequence with a sequence Hamming distance d away is 
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Error Probability for Convolutional Code (2) 

 SDD 
− By the union bound: 

 
        where ad is the number of paths with distance d 

− Since                                        
 

− The bit error probability 

■ When 

      where f(d) denotes the number of bit errors with a path of distance d 
from the all-zero path                  
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Some Other Codes 

   Concatenated Codes 
   Turbo Codes 
   Low-Density Parity Check Codes 
   Coded Modulation  
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Concatenated Code (1) 
 Two levels coding 

− An inner code is designed to remove most of the errors 
introduced by the channel 

− An outer code is a less powerful code that reduces an error 
probability when the received coded bits have a relatively low 
probability of error (since most errors are corrected by the inner 
code) 

 Effective in correcting error bursts 
− At low SNRs, Viterbi decoding of a convolutional code tends to 

have burst errors 
 Common in wireless channels 

− Inner code: convolutional code 
− Outer code: Reed Solomon code 
− The inner and outer codes are separated by an interleaver 

 Very low error probability with less complexity than a single code 
with the same error probability performance 
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Concatenated Code (2) 
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Turbo Codes (1) 

 Turbo codes was introduced in 1993 in a landmark paper by 
Berrou, Glavieux, and Thitimajshima. 

 Powerful codes that achieve performance close to the Shannon 
limit. (within a fraction of a decibel of a Shannon capacity on 
AWGN channel) 

 Two key components 
− Parallel concatenated encoding 
− Iterative, graph-based decoding  
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Turbo Codes (2) 

 Parallel concatenated (turbo) encoder 
− Two parallel convolutional codes separated by an interleaver  
− A systematic code: the m information bits are transmitted as a part 

of the codeword 
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Turbo Codes (3) 

 Iterative decoder 
− Decoder 1 generates a soft decision in the form of a probability 

measure p(m1) on the information bits based on the received 
codeword (m, X1). 

− The probability measure is either a maximum posteriori probability 
or soft output Viterbi algorithm (which attaches a reliability 
indicator to the VA hard decision outputs). 

− operates an iterative manner with the two decoders alternately 
updating their probability measures. 

− Ideally, m = m1 = m2 

− The stopping condition for turbo decoding is not well-defined: 
there are many case in which the decoding dose not converge.  
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Turbo Codes (4) 

Turbo Decoder 
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Turbo Codes (5) 

 Simulation 
-  Convolutional codes 
   (rate 1/2, K=5) 
-  Interleaver depth 216  
-  0.5 dB of the Shannon 
   capacity at Pb=10-5 

Error floor 
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Low-Density Parity Check Code  

 A (dv, dc) regular binary LDPC: a linear block code with a 
particular structure for the parity check matrix H with dv 1s in 
each column and dc 1s in each row. 

 When the codeword length is long, LDPC codes achieve 
performance close to the Shannon limit 

 LDPC codes have relatively high encoding complexity and low 
decoding complexity, whereas Turbo codes tends to have low 
encoding complexity and high decoding complexity. 
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Interleaving 
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Coding with Interleaving for Fading Channels 

 Codes designed for AWGN channels can exhibit worse performance in 
fading than an uncoded system 

 To mitigate the effects of error bursts in fading channel, coding is 
typically combined with interleaving. 
− Interleaver: spreading out error bursts due to deep fades 
− Channel decoder: error correction over the spread error 

 Slow fading channels require large interleaver 
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Block Coding with Interleaving (1) 
an (n, k) block code 
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Block Coding with Interleaving (2) 

 Code symbols in the same codeword are separated by d-1 
other symbols 

 Symbols in the same codeword experience approximately 
independent fading if dTs > Tc ≈ 1/ BD (deep interleaving) 
− Ts: duration of a codeword symbol 
− Tc: channel coherence time 
− BD: channel Doppler spread  
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