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Overview of Code Design (1)

= Main reason to apply error correction coding in wireless systems
— To reduce the bit error or block error probability

=  Amount of error reduction provided by a given code
— Coding gain in AWGN
— Diversity gain in fading

= Coding gain in AWGN

— the amount of SNR or E, /N, that can be reduced under the coding
technique for a given error probability

= Sometime, negative coding gain at low SNRs, due to spreading the bit
energy over multiple coded bits.

— Capacity curve

= Itisassociated with the SNR (or E,/N,) where the data rate of the
system equals the Shannon capacity Blog,(1+SNR)

= The capacity-achieving code has an error probability of zero, at rates
up to capacity
« Best performance that the practical code can achieve




Coding Gain in AWGN Channels
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Overview of Code Design (2)

= Performance enhancement under the coding scheme at the

cost of

— adecrease in data rate

— an increase in signal bandwidth
— the increased complexity

= A joint design of the code and modulation for obtaining a
coding gain without bandwidth expansion

=  Codes designed for AWGN do not well work in fading
channel due to the burst errors
— Combining AWGN channel codes with interleaving

= Theinterleaver spreads out the burst errors over time (time
diversity)




Linear Block Codes




Binary Linear Block Codes (1)

= Linear block codes are conceptually simple codes that are
basically an extension of single bit parity check codes for error
detection

= (n,k) binary block code

= ] _ Modulo-2 addition
A codeword of n symbols from k information bits

Each k bit information block is may € all -zero vectorisin S
A code rate: R, = k/n If S;eSandS; €S, thenS; +S; €S

linear if the 2% length-n codewords of the code form a subspace S of
the set of all binary n-tuples B,

" Hamming distance between two codewords C; and C;: d;;

dij :i(ci(l)_'_cj(l))

=1

where C. (1) denotes the Ith bit in C,




Binary Linear Block Codes (2)

= The weight of C;: w(C))
The number of 1-bits in C;: w(C
Hamming distance d,; from the aII-zero codeword

= d; :W(Ci +Cj)

®  The minimum distance of code: d..

= Encoding operation
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Systematic Linear Block Codes (1)

= The first k codeword symbols equal to the the information bits
and remaining codeword symbols equals to the parity bits

®  Generator matrix

_1 o --- O__ pll p12 pl(n—k)_
0O 1 --- 0 .
G :[Ik ‘ P]: === p:21 p:22 : pz(: k)
_O o -- 1__ Pii Py - pk(n—k)_

= Codeword from a systematic encoder
C.=UG-= Ui[lk ‘ P]:[uil"”’uik’ Prsss Pk ]

= Parity bits

P; = Uy P+ + Uy Py j=1---,n—KkK




Systematic Linear Block Codes (2)

Example =
Find the corresponding 1 00
implementation for generatinga ~ _[(0 1 0
(7,4) binary code with the 0 0 1
generator matrix 0 0 0

Solution
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Systematic Linear Block Codes (3)

= Parity check matrix
— is used to decode linear block codes with generator matrix G
— Parity-check matrix H corresponding to G=[I,|P]

I

— Since GH' =0, ., (an all-zero k x (n-k) matrix),
CH' =UGH' =0__,
= Syndrome testing
— R: the received codeword resulting from transmission of cordword C
— R = C+e, where e is the error vector
— Syndrome of R: S = RHT

— The syndrome is a function only of the error pattern e
S=RH" =(C+e)H" =CH" +eH" =0, , +eH" =eH’

H=|p"




Cyclic Codes (1)

= Linear block codes
= (Generator polynomial

g(X): O+ G X +--+0, X"
= Message polynomial

U(X)=Ug +UX +--+u, X
= Codeword

C(X)ZU(X)Q(X)=CO +CX +--+C X"

— A valid codeword for a cyclic code with generating polynomial
g(X) if and only if g(X) divides c(X) with no remainder,
cl X
AX) _q(x)
g(X)




Cyclic Codes (2)

= A cyclic code can be put in systematic form

Multiplying the message polynomial by X"
Dividing X"« u(X) by g(X) to get the remainder
polynomial p(X)

Adding p(X) to X"k u(X)

Then, the codeword is c(X)= X"k u(X) + p(X)




Hard Decision Decoding (HDD) (1)

= Each code symbol is demodulated individually as 0 or 1

This form of demodulation removes information that can be used by the
channel decoder

= Hard decision decoding

Minimum distance decoding based on Hamming distance
" Pick C; st d(C;,R)<d(C,R) Vi# ]
= If there is more than one codeword with the minimum distance, one

of these are randomly chosen
Maximum likelihood decoder chooses the codeword Cj

- C, =argmax p(R\Ci), i=0,..-,2"-1

The minimum distance criterion is equivalent to the maximum
likelihood criterion in an AWGN channel

= Since most probable error event in AWGN is the event with the
minimum number of errors needed to produce the received codeword

14



Hard Decision Decoding (HDD) (2)

Maximum
likelihood decoding

- The decoder can correct
up to t errors

- The decoder can detect
all error patterns of
d.. -1

min

L= |_dmin /ZJ




Probability of Error for HDD in AWGN (1)

= Areceived codeword may be decoded in error if it contains more than
t errors. Since the bit errors in a codeword occur independently on an
AWGN channel,

-
J

j=t+1

(nj p'(1-p)"’ :upperbound
J

— p corresponds to the error probability associated with uncoded
modulation for the given energy per codeword symbol

— When a codeword symbols are sent via a coherent BPSK modulation,

p=Q(y2E/N,)

— Powerful block codes with a large number of parity bits reduce the
energy per symbol (E, =k E,/n)
« The error probability in demodulating the codeword symbol is increased.
« Athigh SNR, the high correction capability compensates for this reduction.
= Atlow SNR, a higher probability than uncoded modulation (negative coding
gain)




Probability of Error for HDD in AWGN (2)

= At high SNR, the most likely way to make a codeword error is
to mistake a codeword for one of its nearest neighbors

— Lower bound: one nearest neighbor at distance d

dmin d . i do. i
Z n.un pj(l_ p) min —J S Pe
j=t+1 J

— Upper bound: all of the other 2-1 codewords are at distance d

P <(2¢ —1)dz (d"_ﬂn ) pi(L— p)ime-]

J

min

min




Probability of Error for HDD in AWGN (3)

= A tighter upper bound

— The probability of decoding the all-zero codeword as the jth
codeword with weight w;: p(w;)

p(Wj )S [4 p(]__ p)]wjlz

— Since the probability of decoding error is upper bounded by the
probability of mistaking the all-zero codeword for any other

codeword, =
2" -1

P, S_le [4p@-p)]""

— Asimple, slightly looser bound by using d.... instead of the
individual weights

P < (2" —1)[4p(1_ p) o2




Soft Decision Decoding (SDD)

= Soft decision decoding

— The distance between the received symbol and the transmitted
constellation point (output from the demodulator) is used in the
channel decoder

— For BPSK, If the jth symbol of the transmitted codeword is a 1, the
received symbol from the demodulator is 1, =+E. +n, ;ifitisaO0,

I :_JEC+”1

= The decoder forms a correlation metric C(R, C;) for a received
codeword R=[r,,..., r,] and each codeword C,=(c;,,..., Ci,), and chooses
the codeword C; with the highest correlation metric.

n If ¢;=0, 2¢;;-1="-1
C(R,C,)=) \2c. —-1)r.
R.C) ;( i )r’ if ¢;=1, 2¢;-1=1

— At very high SNR, if C; is transmitted, C(R,C,) = n\/EiC




Probability of Error for SDD in AWGN

Assume that the all-zero codeword C, is transmitted.

To correctly decode R, C(R, C,) > C(R, C;) for all i (#0)

C(R, C)) is an Gaussian random variable with mean JE, (n-w,)-/E.w,
and variance nN,/2.

The probability P (C,) = p(C(R, C,) < C(R, C;)) is equal to the
probability that a Gaussian random variable with mean —2w,,/E,
and variance nN, is larger than 0

a(q):q@;%] Q22w |- (k)

2k1 21

By union bound: P, < Z Pe(Ci) = Z Q(1/2Wi7/b R, )
i=1 i=1

Simplification by noting that w.>d_..: P ( ) (\/27/b R.d mm)

20



Common Linear Block Codes (1)

= Binary Block Codes
— Hamming (n, k) code
= redundantbitsm=n-k
« N=2"-1 k=2"-m-1
« d.i, =3, t=1(not powerful)
= Perfectcode: p = i (nj pi(L—p)

j=t+1 J
— Golay and Extended Golay
« Golay (23,12):d.;,=7,t=3
« Extended Golay (24,12). adding a single parity bit to Golay (23,12)

— Error capability is not changed between two codes
— Simple implementation (the bit rate is half the code rate)

21



Common Linear Block Codes (2)

= Binary Block Codes

— BCH (n, k) code
= Cyclic code

« Outperform all other block codes with the same n, k at
moderate and high SNRs

= Nonbinary Block Codes

— Reed Solomon code

= Similar to the binary codes in that it has K information
symbols mapped into codeword of length N

« Each symbol of a codeword is not binary but is chosen from a
nonbinary alphabet of size g

22



Convolutional Code

23



Convolutional Encoder

=  The encoder generates a codeword of length n for k-bit input sequence
a shift register: K stages with k bits per stage (k-bits shift at a time)

n binary addition operator

Constraint length: kK bits

Kk bits

length—n codeword

To modulator

Stage 1

Stage 2 Stage K

24




Trellis Diagram (1)

= the most common characterization of a convolutional code
= Convolutional encoder example (n=3, k=1, K=3)

S e Sy Encoder
1 ..., »f C \C Output
Systematic code ! 1 ! 2 C. - .
\\ , 3
A /.

AI
L

Encoder state S = S,S,

25



Trellis Diagram (2)

000 000 000

S=S.5,
tﬂ 000
00 !‘
““111
01 «
10 L
11 .
—_— S1=0
emmman S1=1

110

C,=S,, C2=S,+S,+S,, C,=S,+S,

26




Maximum Likelithood Decoding (1)

For a received sequence R, the decoder decides that coded symbol
sequence C* was transmitted if

p(R|C")=p(R[C) vC

For an AWGN channel, which noise affects each symbol

Independently, and for a convolutional code of rate 1/n and a path of
length L through the trellis

n

p(RC):lj p(R C ):ﬁH p(Rij ‘Cij )

L1 = jL:—ll n
log p(R[C)=Y"log p(R,[C, )= > log p(Rij [of )
i=0 i=0 j=1

Branch metric: B, = anlog p(Rij ‘Cij )

j=1

27



Maximum Likelihood Decoding (2)

= HDD

— If Rand C are N symbols long and differ in d places, and p is a
symbol error probability in demodulation

p(R|C)=p’-p)"
log p(R|C )=—d Iogl_Ter N log(1- p)
— Note that p < 0.5.
— When d is minimized, p(R|C) Is maximized.

— The coded sequence C with minimum Hamming distance to the
received sequence R corresponds to the maximum likelihood
decoding.

28



Maximum Likelihood Decoding (3)

= SDD

— For example, if the Cj; is sent via BPSK over an AWGN channel
with a 1 mapped to./E, and a 0 mapped to - /E, ,

R, =+/E.(2C, —1)+n,

= N; isaGaussian noise with mean zero and variance o’

p(Rij ‘Cij ): \/%G exp{— (Rij _\/EZCEZZC” 1))2}

— The equivalent branch metric obtains the same maximum

Hi = Zn: R (ZCU -1)
j=1

likelihood output

29



Maximum Likelihood Decoding (4)

Example (C,=000000000, C,=111010011)
= HDD to 4 . .
— R=100110111 00 000 000 000

2 3
= MOZZZIogP(RU‘CU) o1
i=0 j=1

=6log p+3log(l-p)
— M, =4log p+5log(l- p)

[} SDD 11 | | | |
— R=(0.8,-0.35, -0.15, 1.35, 1.22, -0.62, 0.87. 1.08, 0.91)

2 3 2 3

M, Z,u, > Y Ri(2C;-1)=> > -R,=-5.11

i=0 j=1 i=0 j=1

10

_ M,=191

30



Viterbi Algorithm (1)

= discards all paths entering a given node N except the
supervisor path, which is the path with the largest partial
path metric up to that node

Maximum Likelihood Path

31




Viterbi Algorithm (2)

=  The decoder can ouput a
codeword symbol C;
associated with the common
stem when all of the
supervisor paths at a stage
can be traced back to the
common stem.

Modification for avoiding a
random decoding delay

— the most likely branch
n stages back is decided
upon based on the partial
path metrics up to a stage

t |:k+1
[ ]

Common Stem

32




Distance Property (1)

=  Minimum free distance, d;

— Is defined as the minimum Hamming distance of all paths
through the trellis to all-zero path

= Error correction capability of a convolutional code
— Is obtained in the same manner as for block codes
— The code can correct t errors, where t=|d, /ZJ

= To find the minimum free distance path,

— We must consider all paths that diverge from the all-zero state
and then remerge with the state.

33



Distance Property (2)

Example
tl_‘l
a=00 «¢ :

33

b=01 L /‘?«.-"

*
Hammlng‘\‘
distance

c=10 =«

d=11 e

Path 1 and 2: 00-10-01-00
Path 3: 00-10-11-01-00
Path 4: 00-10-01=-10-01-00

Path distance: 6 (Pathl, Path2), 8 (Path3), 8 (Path4)
Input bit sequence: 10000 (Pathl), 01000 (Path2), 11000 (Path3), 10100 (Path4)
Minimum free distance: 6; t=3

34



State Diagram

= The state diagram represents possible transitions from the all-

zero state to the all-zero state

pz+<— Hamming distance
SN of a codeword
. . « s
1 O Input bit Jul
D2 .** D
000 ."101 001
3 ¢ 2
D L D D
a=00 hemguesccan= =t =10 el b=01 p——————pt =00
/ 111 \ 010 . 011
. . ‘s 0'
1 input bit JACTR D .- -
100

35



Transfer Function

= The transfer function T(D) describes the paths from state a to

state e
— Xc:DBXa+DXb' Xb:DXC+DXd, Xd :DZXC+D2Xd, Xe:DZXb
X D6 P =
T(D)=-" _ 0%+ 2D° 44D .

X, 1-2D° /‘

a path with minimum distance 6 4 paths of distance 10

— aconvenient shorthand for enumerating the number and corresponding
Hamming distance of all paths that diverge and remerge with the all-
zero path

= Extended state diagram

— J:is introduced to every branch (its exponent is the number of branches
in any path from state a to state e)

— N:is introduced on all branch transitions associated with a 1 input bit

36



Extended state diagram and Transfer Function

JND 2
J - L4
O JNDz"" d_11 XD
JND" { | 2
a=00 femcccmcmm== = c=10 JD - b=01 JD s ©=00
R E
... JIND .~
3 6
X, = JIND’X, + JNDX, T(D.N,J) J"ND

X, = JDX + JDX,
X, = IND?X_ + IND?X,
X, = JD?X,

.......
___________
“““

Distance 6, length 3, one bit error

37



Error Probability for Convolutional Code (1)

= The error probability can be obtained by first assuming
that the all-zero sequence iIs transmitted and then
determining the probability that the decoder decides as a
different sequence.

= SDD

— For an AWGN channel using coherent BPSK modulation with
energy E.=R_E,, the probability of mistaking the all-zero
sequence with a sequence Hamming distance d away is

ZNEC d]zQ( 27/bRCd)

0

Pz(d):Q(

38



Error Probability for Convolutional Code (2)

= SDD

— By the union bound: P_ZaoI (W/Zyb )

d=d,

where a, Is the number of paths with distance d

— Since Q( /zbeCd )Se%Rcd, Pe ST(D)‘D:e—ch T(D)= iad D¢

d:df

— The bit error probability

When T(O,N)= 3a,0°N'®, R <Y a,f(d)Q(y27,Rd)

d=d; d=d;
where f(d) denotes the number of bit errors with a path of distance d

from the all-zero path

Therefore, P, <dT(D,N)/dN|

N=1,D=e /bRc

39



Some Other Codes

Concatenated Codes

Turbo Codes

Low-Density Parity Check Codes
Coded Modulation

40



Concatenated Code (1)

Two levels coding

— An inner code is designed to remove most of the errors
introduced by the channel

— An outer code Is a less powerful code that reduces an error
probability when the received coded bits have a relatively low
probability of error (since most errors are corrected by the inner
code)

Effective in correcting error bursts

— At low SNRs, Viterbi decoding of a convolutional code tends to
have burst errors

Common in wireless channels

— Inner code: convolutional code

— Quter code: Reed Solomon code

— The inner and outer codes are separated by an interleaver

Very low error probability with less complexity than a single code
with the same error probability performance

41



Concatenated Code (2)

OUter ;III----III----III--E Inner
Encoder ——m=i Interleaver —l- Encoder
S 4 l
Channel
OUter EI---- --------------- E Inner
Decoder [ Deinterleaveris—— pecoder

42



Turbo Codes (1)

=  Turbo codes was introduced in 1993 in a landmark paper by
Berrou, Glavieux, and Thitimajshima.

= Powerful codes that achieve performance close to the Shannon
limit. (within a fraction of a decibel of a Shannon capacity on

AWGN channel)

= Two key components
— Parallel concatenated encoding
— lterative, graph-based decoding

43



Turbo Codes (2)

Parallel concatenated (turbo) encoder
Two parallel convolutional codes separated by an interleaver

A systematic code: the m information bits are transmitted as a part
of the codeword

Data
Source

l————

L |

Interleaver

C

1

Encoder

C

2

N
X, ~

Encoder

X=(m: X1 !x 2)

44



Turbo Codes (3)

= |terative decoder

Decoder 1 generates a soft decision in the form of a probability
measure p(m,) on the information bits based on the received
codeword (m, X,).

The probability measure is either a maximum posteriori probability
or soft output Viterbi algorithm (which attaches a reliability
Indicator to the VA hard decision outputs).

operates an iterative manner with the two decoders alternately
updating their probability measures.

Ideally, m=m; =m,
The stopping condition for turbo decoding is not well-defined:
there are many case in which the decoding dose not converge.

45



Turbo Codes (4)

Turbo Decoder

(m, X1)

p(m,)

Decoder 1

f'

Interleaver

(m, X2)

-

Decoder 2

hm,l

S

Deinterleaver

Jp(m 2)

46



Turbo Codes (5)

= Simulation

_ 10° . -
- Convolutional codes
(rate 1/2, K=5) e e -
e  teratio
- Interleaver depth 216 s
- 0.5 dB of the Shannor -
_ = = 10_3 Z iterations
capacity at P,=10 N
% -4
10 "\ B iterations % 3 iterations
m-a 10 iterations [
(::___ 107 18 iterations -~~:} '
/ o I‘e\z
Error floor 05 L 1% 2

47



Low-Density Parity Check Code

A (d,, d,) regular binary LDPC: a linear block code with a
particular structure for the parity check matrix H with d, 1s in
each column and d, 1s in each row.

When the codeword length is long, LDPC codes achieve
performance close to the Shannon limit

LDPC codes have relatively high encoding complexity and low
decoding complexity, whereas Turbo codes tends to have low
encoding complexity and high decoding complexity.

48



Interleaving

49



Coding with Interleaving for Fading Channels

= Codes designed for AWGN channels can exhibit worse performance in

fading than an uncoded system

=  To mitigate the effects of error bursts in fading channel, coding is
typically combined with interleaving.

— Interleaver: spreading out error bursts due to deep fades
— Channel decoder: error correction over the spread error

= Slow fading channels require large interleaver

— 1 Source

Coder

Inter-
Leaver

Modulator

Channel

Estimate of

Original Bits -s—————

Decoder

Deinter-
Leaver

Demod

50




Block Coding with Interleaving (1)

an (n, k) block code

Read out of . .
interleaver by columns Read into deinterleaver
by columns
1,5.9,....nd-3,2,6,10,...
- Mod |~mel Channel [—pf Demod [1]5]9])....nd-3,2,6,10.,...
—_—] 2 3 . |4 ] 2 3 4
Codewords read into
interleaver by rows. 5 6 7 8 [5] 6 7 8
9 10 11 12 [9] 10 11 12
drows
L J L ] L ] L ]
L J L J L J L J
* * * L
4d-3 | 4d-2 | 4d-1 4d Y 4d-3 | 4d-2 4d-1 4d
~=af g -
n-k parity bits k info. bits Read out by rows
4
n=4 columns

INTERLEAVER DE-INTERLEAVER




Block Coding with Interleaving (2)

= Code symbols in the same codeword are separated by d-1
other symbols

= Symbols in the same codeword experience approximately
Independent fading if dT,> T_ = 1/ B, (deep interleaving)
— T, duration of a codeword symbol
— T.: channel coherence time
— Bp: channel Doppler spread

52
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