

MIMO Wireless Channel

Radio Technology Laboratory Seoul National University

Seoul National Univ.

Wireless Channel

- Radio channel
 - ✓ Antenna + Propagation Channel
 - ✓ Propagation loss of radio channel

Wireless Channel Models

- ✓ Empirical Model
 - Time domain channel measurement
 - Frequency domain channel measurement
- ✓ Deterministic Model
 - Ray-tracing
 - FD-TD(Finite Difference Time Domain)
 - MoM (Method of Moment)

Concept of MIMO

concept of MIMO system

- ✓ Multiple-transmitters and multiple-receivers
- Processing gain through the optimum combining
- ✓ Coding gain through the space time coding (STC)
- ✓ High spectral efficiency and extraordinarily large capacity

Wideband MIMO channel

- Wideband $n_T \times n_R$ MIMO channel
 - ✓ Wideband MIMO channel impulse response model from n_T -th transmit antenna to n_R -th receive antenna

$$h_{n_{R},n_{T}}(t) = \sum_{k=1}^{N_{path}} \alpha_{n_{R},n_{T}}(k) \delta(t - \tau_{n_{R},n_{T}}(k))$$

 $\alpha_{n_R,n_T}(k)$: complex amplitude $\tau_{n_R,n_T}(k)$: time delay N_{path} : number of multipath

✓ Frequency domain model

$$\mathbf{y}(f) = \mathbf{H}(f)\mathbf{x}(f) + \mathbf{v}(f)$$

$$h_{n_{R},n_{T}}(f) = \sum_{k=1}^{N_{path}} \alpha_{n_{R},n_{T}}(k)e^{-j2\pi f \tau_{n_{R},n_{T}}(k)}$$

$$\mathbf{H}(f) = \begin{bmatrix} h_{1,1}(f) & h_{1,2}(f) & \cdots & h_{1,n_{T}}(f) \\ h_{2,1}(f) & h_{2,2}(f) & \cdots & h_{2,n_{T}}(f) \\ \vdots & \vdots & \ddots & \vdots \\ h_{n_{R},1}(f) & h_{n_{R},2}(f) & \cdots & h_{n_{R},n_{T}}(f) \end{bmatrix}$$

Wideband MIMO channel

Tapped delay line model

$$g(\tau) = \sum_{l=1}^{M} g_l \delta(\tau - \tau_l)$$

- ✓ Element: $j \in [1, \dots, n_R], k \in [1, \dots, n_T]$
- \checkmark g_l : channel response at delay

•
$$M = \max \{L_{jk}\}, L_{jk}$$
 : excess delay

- $g_{jk,l}$: complex transmission coefficient between elements *j* and *k* at delay *l*
- ✓ Frequency domain representation : $G_f = FT(g_l)$, $f = 1, \dots, F$
- ✓ Normalized matrix response

$$H = \frac{G}{\sqrt{\frac{\sum_{j=1}^{n_{R}} \sum_{k=1}^{n_{T}} \sum_{f=1}^{F} |G_{jk,f}|^{2}}{n_{R}n_{T}F}}}$$

Wideband MIMO channel

Extension of Shannon's capacity theorem

$$\checkmark \quad C = \log_2 \left[\det \left(\mathbf{I}_{n_R} + \frac{\rho}{n_T} \mathbf{H} \mathbf{H}^{\dagger} \right) \right] \text{ (bits/s/Hz)}$$

> n_R, n_T; number of rx/tx elements, respectively

- > H ; the $n_R \times n_T$ normalized complex channel matrix (H_{ij} is the transfer fn. between tx element j and rx element i)
- \triangleright ρ ; the average signal to noise ratio (SNR) at each receiver branch
- > I ; the identity matrix
- > det ; the determinant function
- t
 ; complex conjugate transpose
- ✓ n×n Orthogonal channel matrix : $HH^{\dagger} = I_n$ (identity matrix)

 $C = n \cdot \log_2(1 + (\rho/n)) \rightarrow C = \rho / \ln(2) \text{ as } n \rightarrow \infty \text{ at high SNR}$

✓ Capacity of SISO channel : $C = \log_2(1+\rho)$

Channel Parameters

Mean Excess Delay

 $\checkmark f_0 \propto 1/\sigma_{\tau}$

Channel measurement methods

- Traditional methods
 - ✓ Frequency sweep : vector network analyzer (VNA)
 - ✓ Direct RF pulse
- Alternative methods
 - ✓ Real time sampled sequences (RTS) method
 - ✓ Periodic test sequences
 - Band-limited multi-frequency signals for RTS
 - M-sequences for PN correlation
 - ✓ Medav RUSK vector channel sounder using RTS method
 - Almost all MIMO channel measurements
 - ✓ MIMO channel sounder using PN correlation method (Example)

MIMO Channel Measurement

- Centre for communications Research McNamara, Beach
 - ✓ Discrete Multi-Tone(DMT) technique

received spectrum (lines)

transmitted signal (periodic)

received signal

✓ Specification

- 120MHz BW centered at 5.2GHz
- Frequency spacing 1.25MHz between adjacent tones
- 8 transmitters and 8 receivers

MIMO Channel Measurement

- Block diagram of the MIMO channel sounder
 - Medav RUSK BRI vector channel sounder

MIMO Channel Measurement

Switching scheme

PN Correlation Method

★ Linear filter model for time-varying channel $h(t, \tau) = \sum_{n=0}^{N} \alpha_n(t) \left[\delta(\tau - \tau_n(t)) \right] \exp\left[j(\omega_c t_n + \theta_n(t)) \right]$

 Channel impulse response measurement using PN correlation method

✓ Impulse response of linear system

$$y(t) = \int_0^\infty h(\lambda) x(t-\lambda) d\lambda$$

Cross-correlation function

Φ

$$_{xy}(\tau) = \lim_{\tau \to \infty} \frac{1}{2T} \int_{-\tau}^{\tau} x(t) y(t+\tau) dt$$

$$= \int_{0}^{\infty} d\lambda h(\lambda) \lim_{\tau \to \infty} \frac{1}{2T} \int_{-\tau}^{\tau} x(t) x(t+\tau-\lambda) dt$$

PN Correlation Method

✓ Input auto-correlation function

$$\Phi_{xx}(\tau) = \lim_{\tau \to \infty} \frac{1}{2T} \int_{-\tau}^{\tau} x(t) x(t+\tau) dt$$

$$\therefore \quad \Phi_{xy}(\tau) = \int_0^\infty h(\lambda) \Phi_{xx}(\tau - \lambda) d\lambda$$

✓ If input auto-correlation function is delta function

$$\Phi_{xy}(\tau) = \int_0^\infty h(\lambda) \delta(\tau - \lambda) d\lambda$$
$$= h(\tau)$$

PN Correlation Method

- PN correlation method
 - ✓ Transmitted signal \rightarrow PN-sequence
 - ✓ Received signal → Convolution of transmitted PN-sequence

and channel impulse response

Cross-correlation of transmitted and received signal

 \rightarrow Channel impulse response

- Measurement Method
 - Transmitting shifted PN sequence for each antenna branch having orthogonal property
 - ✓ Enable to measure each channel simultaneously

Measurement Hardware

Transmit System

- ✓ Transmit m-sequence
 - Length : 1023
 - Chip rate : 20MHz (variable up to 50MHz)
- ✓ Transmit power : 20 dBm
- ✓ Antenna : omni-directional, 4.6 dBi

Receive System

- ✓ Two 26dB-LNA for each channel
- ✓ IF frequency : 40 MHz
- ✓ Oscilloscope sampling rate : 250 MS/s
- ✓ Data saving to PC using GPIB interface

Processing saved data

- ✓ Compute amplitude and phase of channel impulse response using I/Q demodulation
- ✓ Calibration measured data using back-to-back measurement

Transmit System

Receive System

Channel Impulse Response Example

* 4×4 Impulse Response

Measurements Environments

- Measurement point
 - ✓ Analysis as measurement environments
 - ✓ Path having obstacle or not
 - LOS, NLOS
 - ✓ Analysis as antenna element spacing
 - Every $\lambda/2$ step from $\lambda/2$ to 4λ
 - ✓ Direction of receive antenna array
 - North-to-south, East-to-west
 - Transmit antenna element spacing : 1 λ , 4 λ
 - ✓ Antenna height : 1.6 m

Measurements Environments

- Properties
 - Some walls are made of metal, others are made of concrete
 - Outer walls are coated with metallic film
 - Measurements are carried out at 6th floor

Measurements Environments

✤ INMC

Properties

- ✓ Walls are made of concrete, partition, and metal.
- ✓ All doors are made of metal
- ✓ There is Atrium at center
- Measurements are carried out at 2nd floor

Measurement Example : Snapshot

EERC (site 5)

Radio Technology Laboratory

INMC (site 1)

Radio Technology Laboratory

Measurement Example : Time Variation

✤ Time variation Time variation ✓ Indoor LOS (EERC site 5) ✓ Indoor NLOS (EERC site 2) 0.2 0.2 T.x.4 0.15 0.15 Amplitude Amplitude 0.1 Tx 3 0.1 Tx 3 0.05 0.05 Tx -Π Tx 23 300 n 300 200 200 100 2.5 2 100 1.5 Time (sec) 0 0.5 2.5 Π Π 1.5 2 0.5 Time (sec) Delay (µs) Delay (µs)

Measurement Example : Time Variation

Path Loss Analysis

- Path loss
 - ✓ Path loss for each 4×4 wideband MIMO channel
 - ✓ Calculate path loss for each channel to sum multi-path power
- Average path loss
 - ✓ EERC (Bldg #301) : 64.1 dB
 - ✓ INMC (Bldg #132) : 64.8 dB

29

MIMO Channel Path Loss

EERC LOS (site 6)

EERC NLOS (site 4)

- ✓ Mean : 57.3 dB
- ✓ Standard Deviation : 3.20 dB

- ✓ Mean : 72.5 dB
- ✓ Standard Deviation : 3.61 dB

✤INMC LOS (site 6)

- ✓ Mean : 51.5 dB
- ✓ Standard Deviation : 3.13 dB

INMC NLOS (site 3)

- ✓ Mean : 71.9 dB
- ✓ Standard Deviation : 4.10 dB

Channel Parameter Analysis

Channel Parameters

✓ Mean Excess Delay & RMS Delay Spread

	EERC (unit : µs)						INMC (unit : μs)						
	Rx 1	Rx 2	Rx 3	Rx 4	Rx 5	Rx 6		Rx 1	Rx 2	Rx 3	Rx 4	Rx 5	Rx 6
MED	0.047	0.056	0.077	0.074	0.072	0.052	MED	0.062	0.053	0.070	0.143	0.137	0.183
RMS	0.040	0.045	0.061	0.063	0.055	0.043	RMS	0.041	0.043	0.050	0.084	0.095	0.094
- A lot of multi-path due to metal walls						- Building has atrium and is made of concrete							
- Large rms delay spread for Los environments						- The variation of rms delay spread and mean excess							
- The distance between Tx and Rx affects rms delay							delay a	delay are large					
spread and mean excess delay													

- INMC average : MED 0.108 μs, RMS 0.067 μs
- EERC average : MED 0.63 μs, RMS 0.051 μs

MIMO Channel : RMS Delay Spread

EERC (LOS site 5)

EERC (NLOS site 4)

- ✓ Mean : 0.055µs
- ✓ Standard Deviation : 0.023µs

- ✓ Mean : 0.064µs
- ✓ Standard Deviation : 0.026µs

33

MIMO Channel : RMS Delay Spread

INMC (LOS site)

- ✓ Mean : 0.041µs
- ✓ Standard Deviation : 0.013µs

INMC (NLOS site)

- ✓ Mean : 0.095µs
- ✓ Standard Deviation : 0.017µs

Channel Correlation

Tx and Rx Correlation Coefficients

$$\rho\left(h_{i,j}\left(k\right),h_{n,m}\left(l\right)\right) = \frac{E\left[\left(h_{i,j}\left(k\right)-E\left[h_{i,j}\left(k\right)\right]\right)\left(h_{n,m}\left(l\right)-E\left[h_{n,m}\left(l\right)\right]\right)^{*}\right]}{\sqrt{E\left[\left|h_{i,j}\left(k\right)-E\left[h_{i,j}\left(k\right)\right]\right|^{2}\right]E\left[\left|h_{n,m}\left(l\right)-E\left[h_{n,m}\left(l\right)\right]\right|^{2}\right]}}$$

- $h_{i,j}(k)$
 - k-th multi-path from j-th transmitter antenna to i-th receiver antenna
- ✓ Tx correlation coefficient
 - Correlation of transmitted signals
 - Transmitter diversity
- ✓ Rx correlation coefficient
 - Correlation of received signals
 - Receiver diversity

EERC (LOS site5)

INMC (LOS site1)

- For LOS case, the variation of correlation is large with receiver antenna separation

Rx Correlation of 1st multi-path

EERC (NLOS site3)

- For NLOS case, less variation than LOS case.

- Coefficients decrease as antenna separation increases

Rx Correlation of 1st multi-path

INMC (NLOS site2)

INMC (NLOS site3)

- For NLOS case, less variation than LOS case.

- Coefficients decrease as antenna separation increases

Channel Capacities

$$C = \log_2 \left(\det \left[\mathbf{I}_{n_R} + \left(\frac{\rho}{n_T} \mathbf{H} \mathbf{H}^* \right) \right] \right)$$

- ρ : Average received SNR
- $I_{n_R}: n_R \times n_R$ identity
- H: Channel matrix

✓ 1 λ separation

Measurement		EW		NS			
Position	10%	50%	90%	10%	50%	90%	
Rx1	9.6	1026	10.98	9.45	1025	11.01	
Rx2	9.83	10.45	10.94	9.96	10.57	11.18	
Rx3	10.16	10.68	112	10.32	10.87	11.38	
Rx4	102	10.73	11.31	10.41	10.91	11.47	
Rx5	1028	10.91	11.52	10.34	10.86	11.38	
Rx6	9.61	10.31	10.88	9.45	10.32	11.04	
Rx7	11.69	12.14	12.55	11.69	12.17	12.65	

CDF of Capacity

• 4 λ separation

0.9

Measurement		EW		NS			
Position	10%	50%	90%	10%	50%	90%	
Rx1	9.89	10.47	11.11	10.01	10.6	11.11	
Rx2	9.79	10.57	11.19	1028	10.94	11.57	
Rx3	10.29	10.9	11.42	9.93	10.73	11.33	
Rx4	10.51	10.85	11.21	10.52	10.85	11.18	
Rx5	10.54	10.86	11.18	10.61	10.92	11.23	
Rx6	10.34	10.7	11.06	10.08	10.58	10.92	
Rx7	10.63	10.94	11.41	11.79	1224	12.65	

Channel Capacities

✓ Tx 1 λ separation

Rx Separation	Rx1	Rx2	Rx3	Rx4	Rx5	Rx6	Rx7
0.5λ	10.1	10.3	10.7	11.1	10.5	10.3	12.0
1.0λ	10.1	10.3	10.7	10.9	10.5	10.2	12.0
1.5λ	10.6	10.3	10.6	10.9	11.0	10.5	12.1
2.0λ	10.5	10.5	10.7	10.9	11.1	10.3	12.1
2.5λ	10.7	10.7	11.0	10.7	11.1	10.4	12.2
3.0λ	9.9	10.4	10.7	10.5	10.9	10.2	12.2
3.5λ	10.0	10.9	11.0	10.9	10.9	10.3	12.2
4.0λ	10.2	10.5	10.8	10.8	11.1	9.9	12.2

✓ Tx 4 λ separation

Rx Separation	Rx1	Rx2	Rx3	Rx4	Rx5	Rx6	Rx7
0.5λ	10.5	10.4	10.3	10.9	10.8	10.3	11.7
1.0λ	10.5	10.7	10.7	10.8	10.8	10.6	10.8
1.5λ	10.6	10.8	11.0	10.9	10.9	10.5	11.1
2.0λ	10.7	10.9	11.0	10.8	10.9	10.7	10.9
2.5λ	10.4	10.4	11.2	10.9	10.9	10.7	10.8
3.0λ	10.4	11.1	10.7	10.9	11.0	10.7	11.1
3.5λ	10.5	10.6	10.7	10.9	10.9	10.7	11.2
4.0λ	10.6	10.9	10.7	10.7	10.9	10.7	10.9

Channel Capacities

- Available channel capacity is quite stable
- ✤ Variation with antenna separation is about 0.5 bps/Hz.

Radio Technology Laboratory