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e Linear Time Invariant System

X=Ax+BU Where A,B,C and D are constant matrix

y=Cx+Du

e Linear Time Varying System

X =A(t)x+B(t)u
y=C(t)x+ D(t)u

< Nonlinear System

X =T (x(), y(t),u(t),t)
y =h(x(t),u(t), y(t),1)



Time Invariant System

e The Laplace Transform of Linear Time Invariant System
sX(s) — x(0) = AX(s) + BU(s)
sX (s) — AX(s) = x(0) + BU(s)
(sl — A)X(s) = x(0) + BU(s)

S X(8) = (51 — A)x(0) + (sl — A)™x(0) + (sl — A)BU(s)

Transfer function is derived from zero-initial condition
Y(s)=[C(sl —A)"'B+DJU(s)

, thus the Transfer function G(s) is
G(s)=C(sl —-A)'B+D

In general the Transfer function is expressed as follows

b,s" +---+b
Y0 _ gy = 28t 1y oy
U(s) s'+aS" 4

_ K, N K, L Gs+e,
s+p, S+p, S°+as+b




System Response

e Transient response

- Response goes from the initial state to the final state

e Steady state response
-The manner in which the system output behaves as t approaches infinity

_Q()
let G(s)= P(S) then

P(s)=0 : the characteristic equation
Si :such that p(s) =0 is characteristic roots or poles
Q(s)=0 :suchthat s  are called zeros

Y (s) =G(s)U (s)

=» Partial Fraction ={ G(s) terms }+ U(s)
= Poles s,,S,,S;(real),o, £ jo,,0, £ jo,
=» Then the transient response becomes
2>Ce™ +C,e™ +----+De™ sinat +- -



Stability

e Stable

If !Lrg x(t) = Owith no zero initial condition

A linear time invariant system is “stable” if the output eventually comes back to equilibrium
state when the system is subject to an initial condition

e Equilibrium : x=0
With no disturbance and input, the output stays in the same state, which is called equilibrium.

e Stable condition
Re(s;) <0 forall S; , where S; is poles

e Critically stable
Oscillations of the output continue forever some Re(s;)=0
= Unstable

The output diverges without bound from its equilibrium state (when the system subjected to
an initial conditions)



Stability

e Absolute Stability

Whether the system is stable or unstable

« Relative Stability

- Transient response
- Damped Oscillation

e Steady-state Error

The output does not exactly agree with the input
( Concerned with the Accuracy of the system)



First Order System

. C(s) 1
e First Order System SO =) " Ts st

1 .
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for First Order system, 4
T : time constant of First order system the time constantis 7
For large T : E0| =2ICt
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First Order System

1
When R(S)=S—2 ; unit ramp input, that is, r(t)=t
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error
5 T
T
" {
4T =t
| N
el(f)
2T
I | I | | -
0 2T 4T 6T t
2
1 1 T 1 T
c(s) = i b

Ts+1 s° Ts+1 s° s

ety =Te T +t—T



Second Order System

e Second Order System

&:GS:#
R(s) s“+as+b
@
TS 420w, 5+ 0 where a=2{w, b=o;

Note that poles : —¢w, +w, 1-C? |

Unit step response

for R(s)zé ; step input

2
o, 1 1 S+ 24w,
C(s) =— ;T = o
S°+2lw S+ w. S

so(t)=1- i 1252)

sin(wyt +tan™
1-¢°

s s*+2w,5+w

2
n

where o, =w,1-¢* : Damped natural frequency
@, : Natural frequency

¢ : Damping ration



Second Order System

clt .
(OF) For t > t;, response |

remains within this strip.

. j—c{l e B2
(9% /}/ srisis ) + 0.05 3 | Wy
! ; or Wyl ="
V7777777777777 777 f 0.02 * ! ﬂB N
: - 0 T
I
These points are specified. _»_‘ fas, |
i
| Figure 4-13
E Definition of the
1

angle S.

1. Rise time t, : 10% -> 90%
5% > 95%

2. Max. Overshoot, MIO

3. Settling time, t, : 2% criterion t, =4/ ®,&
5% criterion t. =3/ ¢

4. Delay time, t; = 50%

5. Peak time, t,
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Second Order System

e Step Response of Second Order System
C(s) _ o’

n

R(S) s*+2lw s+’

(1) Under damped :0< ¢ <1

C(s) _ o’

n

R(S) (s+C@,+ jo, )(s+Cw, — joy)

w, = w,A1-¢°
1
Step response R(s):g

c(t)=L"[C(s)]=1-e* [cos w,t +Lsin a)dtj

N
=1- \/elj% (cos[a)dt +tan™ 1242 D
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Second Order System

e Step Response of Second Order System

(2) Critically damped : £ =1

2
a,

C — n
) (S+con)2 S

c(t)=1-e (1+ o)

(3) Critically damped : ¢ >1

2

C(s)= @n
©) (S+§wn+60n«/§2—1)(5+§a)n—a)n«/g“z—l)s
c(t) =1+ 1 el o L (e o

€ - e
2\/§2—1(§+«/42—1) 2«/42—1(4—\/42—1)
P (eslt_esztj s =(¢+ e 1o,

N A S

s <<s,|

The effect of —S; on the response is much smaller than that of —S,
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Higher Order Systems

O > >
R(s) + - as) C(s)
Hs) [
C(s)  G(s)  bs"+bs" +---+b, S+h,

R(S) 1+G(S)H(s) a,s"+as" +---+a, 5+a,

characteristic equation

a,s"+as" +---+a_,s+a =0
S:pl i:l,...q

_ 2 k=lor
§=-¢,0 T1-C 0, )

zero ; s=2Z, i=1--m
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Higher Order Systems

e unit step response

m

g D" +tb, 1
n

a,8" +-+-+a, S

characteristic equation
a,s"+as" " +---+a s+a =0
S — pi | :1’. . q
_ 2+ k=Ll--r
$=— 0 T1-¢ 0,
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Higher Order Systems

C(s) = k£[1(S—Zi) _ a+i a; 4 - bk(s—l_é/ka)k)_l_cka)k\/l_;kz
= r - g s _pn & 249 S+l
SJEIl(S_ pi)gl(s2 +20, 0, +a)k2) = b= kS +

q r r
Ct)=a+> ae™ +> be " cosm1-{t+D Ce ™ sinm1- 't
j=1 k=1 k=1

\ 4 Im A

N @, \/l_é’;wn

>

7 £, =cosy
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Effect of Pole Locations

(1) First Order System

S+o Ts+1

R

Step response : R(s)zé

Y(s)= 1 %

Ts+1

10T

T s Ts+l

1 1

_g_s+(1/T) Im

1

yt)=1-eT fort>0

Re

Pole : s=—c=-1/T
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Effect of Pole Locations

(2) Second Order System

Y b
E:—sz+as+b where a=2¢w, b=0)§
2

@,

s°+2lw, s+

2
@

_ n Poles : —¢w tw \J1-¢7 ]
(s+¢o,) +@f (1-¢7)
1 Aulm
Step response : R(s)zg __________ @y =0\ 1-¢°
2 | "
o, 1 !
Y(s)=— = |
s°+2lw,s+w; S ! o,
1 s+20w, i
s s'+2lw,s+w; | 7

» Re

—Cont 1— 2 -0
© sin[a)dt+tan1 (gJ =—(o,

y(t) =1~
J1-¢2

¢ : damping ratio

@, : natural freq. ¢ =cosn

@y : damped freq.
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Pole Locations and Transient Response (Impulse)

Figure 3.13

Time functions associated
with points in the s-plane
(LHP, left half-plane; RHP,
right half-plane)
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4 Im(s)

STABLE

] W
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UNSTABLE
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RHP

Re(s)

B
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Effects of Zeros

1. The effect of zero near poles (cancel the pole response)

2 2 2
H = == —
.(9) (s+1)(s+2) s+1 s+2
H.(s) = 2(s+11) 2 ( 01, 09 j: 0.18  1.64
11(s+1)(s+2) 1.1\s+1 s+2) s+1 s+2

 If we put the zero exactly at s=-1, this term will vanish completely
» The coefficient of the term (s+1) has been modified from 2 in H,(s) to 0.18 in H,(s)

In general, a zero near a pole reduces the amount of that term in the total response

coefficient ¢, (s)=(s—p,)F(s)

S=p

zero near the pole P, F(s) will be small
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Effects of Zeros

2. Effect of zeros on the transient response
Two complex poles and one zero

“n 2 - s=—Cw, to,\1-¢7
H(s)= (s/alw,)+1 ) a§S+a)n poles : cO, T\ 1-67 )
(S/C()n)2+24/<5/(()n)+l SZ"'Zé/a)nS"‘a)nz Zero : Sz—aCa)n

a =1 : the value of the zero will be close to that of the real part of the poles
a >3 :very little effect on Mp
a <3 :increasing effect as « decreases below 3

Figure 3.24 1.8 1 - == | Figure 3.25 2.0
Plots of the step response - N Plot of overshoot M, as a 18
S\;t‘; (e | function of normalized zero '
R ) 14| ; location o. At o = 1, the &

' real part of the zero equals i

the real part of the poles 1.2

| M, 1.0
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Effects of Zeros

2. Effect of zeros (L.T. Analysis)

Replacing S/@, with S

slag +1

H(s)=—r% T2
(5) s +20s+1

1 1 s
S +20s+1 al s*+2¢s+1

= HO(S)+in(S)
— qf ——

O ¢
=10

. produce overshoot
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3. Nonminimum-phase zero

a<0

Figure 3.26

Second-order step
responses v (r) of the
fransfer functions H (s),
Hy(s), and H;(s)

Effects of Zeros

nonminimum-phase zero

yv(r)

: the zero is in the RHP where s>0
- RHP zero

Figure 3.27

Step responses y(¢) of

a second-order system
with a zero in the RHP: a
nonminimum-phase system

10

//\ H(s)
f!
BTG | gl =
H”.i §)
0 4 6 8
Time (sec)
Figure 3.28 16 ¢

Response of an airplane’s
altitude to an impulsive
glevator input

e (ft)

Altitud

y()

I'ime (sec)

0

=105

—19

74 ’\.__
Hy(s) /
\./ Hy(s)
0 2 4 6

Time (sec)
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The Effect of an extra pole

= Effect on the Standard Second-order step response

H(s) =

(s/agw, +1)|(s/@,)" +24 (s/ @,)+1]

$=—agw, a : big, far left poles

e DC gain of a system

. the ratio of the output of a system to its input (presumed constant)

after all transients have decayed
DC gain = Iings-G(s)E: IirrgG(s)
S S S—

Figure 3.29 12 ———
Step responses for several
third-order systems with

g i
=05 ( . ; v
|
|
l

100

Normalized rise time for
several locations of an
additional pole

major effect : increase the rise time



Effect of Poles-Zeros on Dynamic System

1. 29 order system with no finite zeros

18 5%, ¢ =0.7

Rise time : t, Em'— Overshoot : M ={16%, ¢ =0.5

o 16 35%, ¢=0.3
Settling time 1t === o ={o,

O
2. A Zero in the LHP

Increase the overshoot
(if the zero is within a factor of 4 of the real part of the complex poles)

3. A Zero in the RHP (nonminimum-phase zero)
- Depress the overshoot

- May cause the step response to start out in the wrong direction

4. An additional pole in the LHP

- Increase the rise time significantly if the extra pole is within a factor
of 4 of the real part of the complex poles
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TRANSIENT-RESPONSE ANALYSIS WITH MATLAB

step(num,den), step(num,den,t
step(A,B,C,D), step(A,B,C,D,t)

sys = tf(num,den)
or
sys = ss(A,B,C,D)

step(sys)

Vv, X,t] = step(hum,den,t)
v, X,t] = step(A,B,C,D,iu)
v, X,t] = step(A,B,C,D,iu,t)

25



MATLAB Program 5-1

=[-1-1;6.50];

=[11;10]; Step Response
— 1 O 0 1 , From: U] From: U2
=10 0;0 0], |
step(A,B,C,D)

To: Y1

=
i
<
2 ‘_ 2
I Ii . ].5 ..........................
o
>_:_ 1k I
s
05 H 0.5
0 i 0
0 - 8 12 0 - 8 12

Time (sec)
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Transient response analysis
with MATLAB

TA Hours
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End of section 4
Ch.5:5.1-55

5-6 routh stability criterion

5-7 Effects of Integral and derivative control
5-8 steady state error in unity feedback
control systems
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