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• Linear Time Invariant System 
 
 
 
• Linear Time Varying System 
 
 
 
• Nonlinear System 
 
 
 
 
 
 

Systems 
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• The Laplace Transform of Linear Time Invariant System 
 
 
 

Time Invariant System 
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Transfer function is derived from zero-initial condition 
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• Transient response 
 
 
• Steady state response 
 
 
 
 

System Response 

- Response goes from the initial state to the final state 

-The manner in which the system output behaves as t approaches infinity 
 

let                  then 
   
  : the characteristic equation 
  : such that            is characteristic roots or poles  
  : such that        are called zeros 
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• Stable 
 
 
 
 
• Equilibrium :  
 
 

• Stable condition 
 
 

• Critically stable 
 
 

• Unstable 
 

Stability 
,,, 

If                   with no zero initial condition 
 
A linear time invariant system is “stable” if the output eventually comes back to equilibrium 
state when the system is subject to an initial condition 

0)(lim =
∞→

tx
t

0x =
With no disturbance and input, the output stays in the same state, which is called equilibrium. 

for all      , where      is poles     0)Re( <is is is

Oscillations of the output continue forever some  0)Re( =is

The output diverges without bound from its equilibrium state (when the system subjected to 
an initial conditions) 
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Stability 
,,, 

• Absolute Stability 
 
  
 

• Relative Stability 
 
 
 
 

• Steady-state Error 
 
 
 

Whether the system is stable or unstable 

- Transient response 
- Damped Oscillation 

The output does not exactly agree with the input 
 ( Concerned with the Accuracy of the system) 
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First Order System 
,,, 
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T : time constant of First order system 
For large T : 응답이 느리다 
For small T : 응답이 빠르다 

• First Order System 
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First Order System 
,,, 

When               ; unit ramp input, that is, r(t)=t 2
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Second Order System 
,,, 
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• Second Order System 
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Second Order System 
,,, 

1. Rise time     : 10%  90% 
      5%  95% 

 
2. Max. Overshoot, Mp 

 
3. Settling time, ts : 2% criterion  

 5% criterion  
 

4. Delay time, td = 50% 
 

5. Peak time, tp 

rt

4 /s nt ω ζ=
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Second Order System 
,,, 

21d nω ω ζ= −

• Step Response of Second Order System 
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Second Order System 
,,, 

• Step Response of Second Order System 

1ζ =(2) Critically damped :  
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Higher Order Systems 
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Higher Order Systems 
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• unit step response 
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Higher Order Systems 
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Effect of Pole Locations 
,,, 

(1) First Order System 
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Effect of Pole Locations 

(2) Second Order System 
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,,, 
Pole Locations and Transient Response (Impulse) 
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,,, 
Effects of Zeros 

 
 
 
 
  • If we put the zero exactly at s=-1, this term will vanish completely 
 
  • The coefficient of the term (s+1) has been modified from 2 in H1(s) to 0.18 in H2(s) 
 
  In general, a zero near a pole reduces the amount of that term in the total response 
 
 
    coefficient 
 
    zero near the pole P1, F(s) will be small  
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Effects of Zeros 

Two complex poles and one zero 
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2. Effect of zeros on the transient response 
 

poles :  
 
zero : 

21n ns jζω ω ζ= − ± −

ns αζω= −

1α ≅ : the value of the zero will be close to that of the real part of the poles 
3α ≥ : very little effect on Mp 
3α ≤ : increasing effect as      decreases below 3 α
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Effects of Zeros 

Replacing          with  

2
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2. Effect of zeros (L.T. Analysis) 
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,,, 
Effects of Zeros 

: the zero is in the RHP where s>0 

3. Nonminimum-phase zero 

0α <
; RHP zero 
 nonminimum-phase zero 
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The Effect of an extra pole 
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• Effect on the Standard Second-order step response 

: big, far left poles ns αζω= − α

• DC gain of a system 
  : the ratio of the output of a system to its input (presumed constant) 

after all transients have decayed 
 
 DC gain 
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major effect : increase the rise time 



24 

,,, 
Effect of Poles-Zeros on Dynamic System 

1. 2nd order system with no finite zeros 

Rise time :                    Overshoot : 
 
Settling time : 
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ζ
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st σ
≅ nσ ζω=

2. A Zero in the LHP 
Increase the overshoot  
(if the zero is within a factor of 4 of the real part of the complex poles) 

3. A Zero in the RHP (nonminimum-phase zero) 
- Depress the overshoot 
 

- May cause the step response to start out in the wrong direction 

4. An additional pole in the LHP 
- Increase the rise time significantly if the extra pole is within a factor 

of 4 of the real part of the complex poles 
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TRANSIENT-RESPONSE ANALYSIS WITH MATLAB 

step(num,den), step(num,den,t) 

step(A,B,C,D), step(A,B,C,D,t) 

sys = tf(num,den) 
or 
sys = ss(A,B,C,D) 

step(sys) 

[y,x,t] = step(num,den,t) 
[y,x,t] = step(A,B,C,D,iu) 
[y,x,t] = step(A,B,C,D,iu,t) 
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MATLAB Program 5–1 
A = [–1 –1;6.5 0]; 
B = [1 1;1 0]; 
C = [1 0;0 1]; 
D = [0 0;0 0]; 
step(A,B,C,D) 
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Transient response analysis 
with MATLAB 
 
TA Hours 
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End of section 4 
Ch. 5: 5.1-5.5 
 
5-6 routh stability criterion  
5-7 Effects of Integral and derivative control  
5-8 steady state error in unity feedback 
control systems 
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