Aircraft Structural Analysis

Chapter 2
Statically Determinate Structures




2.1 Introduction

The purpose of this chapter is to review and Reinforce the principle
of static equilibrium within the context of. some basic types of
aircraft structures. A structure may be defined.as an assemblage
of materials that is intended to sustain loads. How.well the
Intention is realized depends on the design, and that depends
(among other things) on how well the shape of the structure and
the properties of the selected materials accommodate the
predicted internal loads.

Therefore, it is important for a structural designer, in spite of—and
alded by—digital computers, to develop a keen insight for
predicting and visualizing load paths throughout a structure. The
ability to do so largely depends on how well one has mastered the
skills of sketching accurate free-body diagrams and properly
applying the equilibrium equations to them, which will be one of
our primary concerns here.
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2.1 Introduction

¢ Statically determinate structures
= Pinned and rigid-jointed frames
= Stiffened shear webs
= Thin-Walled beams and torque tubes

But, most real structures are statically indeterminate with
redundant elements.
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2.2 Plane Trusses

A truss, also called a pin-jointed bars, is an idealized skeletal or “stick-
like” structure composed of slender rods joined together by smaoth
pins at the joints, also called nodes.

None of the smooth pins can apply a “couple” to the rods connected
to it. Each member withstands tensile and compressive forces can
not transfer couple moment.

(a) (b) (c)

Figure 2.2.1 (a) Plane frame members held together by a single pin. (b) A riveted or bolted
connection. (c) The idealized pin joint.
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2.2 Plane Trusses

Statically determinated Truss :

Number of Triangles 1
Number of Joints 3

Number of members 3

m
j

3
3

(a)

Figure 2.2.2
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2.2 Plane Trusses

= Externally statically determinate

= Minimally stable

= Internally statically determinate

.

T
(a) (b) (c)
Figure 2.2.3 Examples of statically determinate, minimally stable trusses.
W |
(a) () (c)
Figure 2.2.4 Examples of unstable trusses.

.-
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2.2 Plane Trusses

[
s

7777(772 /f /fi.r

(a) (b)

Figure 2.2.5  Examples of supports inadequate fo restrain
' rigid-body translation (a) and rofation (b).

g B
';;J:f;f 77%7/

(a) (b)

Figure 2.2.6 Unstable trusses made rigid by prop-
er]y located additional supports.

2] =m + r, and the supports restrain
rigid-body motion
(r : The total number of reactions)

-> Statically determinate

National Research Laboratory for Aerospace Structures



2.2 Plane Trusses

After obtaining of internal forces in the

bar elements, we can compute N
f“l

stresses by , A

O = K Section d-a ’ /,;_/-,f{r A

1
With compressive load, check £
buckling by the Euler Column e s/
formular i .
Figure 2.2.7 Uniform, uniaxial stress in
71-2 El a two-force rod element.
Ney =
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2.2 Plane Trusses

Table 2.2.1 Moments of inertia for some simple sections.
~—d— i —] -~ — e —+|
I B i
Cross section d d ==
L !
i* << d* ? 2
- << d-
wd” 2
Area r—: d- wid dtd
" ) d* g mid’ 2td”
Moment of inertia i = - =
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2.2 Plane Trusses

Solution of SD Truss Structures

1. Make equilibrium at nodes with unknewn member forces and
solve the obtained simultaneous equations.

2. Find the reaction forces at the supports by equilibrium of
whole structures( Utilize FBD ) and get the values of member
loads through the equilibrium at node by using the known
support reaction forces.
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2.2 Plane Trusses

Example 2.2.1

All members of the truss in Figure 2.2.8 are to be fabricated from
the same stock of thin-walled, round, steel tubing,the section
properties of which are listed in Table 2.2.2. Select the lightest
weight tubing for which the axial stress'in any rod of the truss
does not exceed 25,000 psi in tension or compression and the

critical buckling load is not exceeded. For steel, E=30x10° psi.

(a) (b)

Figure 2.2.8 (a) Truss with loads and dimensions. (b) Truss as a free body, showing
support reactions, and the chosen joint and member numbering scheme.
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2.2 Plane Trusses

ZFX:O: Xs+1000=0 X, =-10001b

ZM4=0: 40Y6 — 20 x 750 — 60 x 250 — (20sin60) x 1000 =0 Y¢=11831b

ZFY:O: Yo—-750+4+1183-250=0 Yy =-183.01b
(b)
Ny
s 4/00 " =0 0.8660N; —183.0=0 N; =211.31b
P ol 9
I Z F,=0: 0.5000211.3) + Ng—1000 =0 Ny = 894.2 Ib
183.01b
1000 1b
Py AT 3 o By =0 —0.8660(211.3)— 0.8660N; =0 Ny =-211.31b
60°
Y Fe=0: 1000+ N; -0.5000(211.3) 4 0.5000(-211.3) =0 N, =-788.8Ib
2113 1b N,
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2.2 Plane Trusses

1000 1b 1 —7888 2 2888 3

~211.3 1077 —1077 —288.8 \ 288.8
NS\ 7

1000 b e
I 8042 1 250 1 _1442

183.0 b 750 1b 1183 1b 250 1b

Figure 2.2.9 Solution of the truss problem in Figure 2.2.7.

Member loads are given in pounds (+ = tension, — = compression).
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2.2 Plane Trusses

3. Method of Section

Section the truss into two bodies se as to expose the force
In that member.

Then write the equilibrium equations for the free body on
either side of the section and solve them for the unknown force.

I.'.l i _|'.l
1 ¥ ) 4 i fi p¢ 4 2 ] 4 i i
= — — M
| | A
i
/ I e
i -
- v — Mg
< -
1 4 =] | 7 1 3 5
{a] 1]
Figure 2.2.10 [=) Contilevared fruss with a fronsverse section thro Jgh the cenler bay. (b) Free-body die-
gram ta the left of the cut, revealing the member forces in that bay.

MNP, =0 = N,3=+2P
NM, =0 = Ny,=2P
NF.=0 = N,;,=—3P

National Research Laboratory for Aerospace Structures



2.3. Space Trusses

To avoid the rigid body motion, the structure should be constrained
In three orthogonal translation and three rotational directions.

I 1 2 3 i < i

] 3 4 5 6 e 1+3=]

m 3 5 7 9 -« 3i+3=m
S.3]=m+6

In three dimension, the structure is in SD If it satisfies
3j=m+r, I . support reaction

Since each node create three equilibrium equations.
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2.3. Space Trusses

Example 2.3.1

Using the method of joints, calculatesall.of the member loads the
truss in Figure 2.3.1 in terms of the'loads P.and Q-applied as
shown.

1
2
£
4
5
6
7
8 01 050 0 P 0
Figure 2.3.1 A space fruss that is both internally and externally statically determinate. Figure 2.3.2 Free-body diagrams of nodes 1 through 5 of the truss in Figure 2.3.1.

The nodal coordinates are given in the table.
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2.3. Space Trusses

Node 1
The equilibrium of node 1,

Nye; + N;es + Nze; + Pk+Q0j=0
Substituting unit vectors into equilibrium equation,

ef= e; = —0.8208i + 0.5472j + 0.1642k e; = —0.8208i + 0.5472j — 0.1642k

(=0.8208N, — 0.8208N3)i + (N + 0.5472N, + 0.5472N3 4+ Q)j + (0.1642N> — 0.1642N3 + P)k =0

Setting the X, y, and z components of this vector equation equal zero,
—0.8208N, — 0.8208N; = 0
N + 0.5472N; + 0.5472N3 = —Q
0.1642N> — 0.1642N3 = —P

N =-0 N, = -3.046P N3 = 3.046P
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2.4. Simple Beams

A simple beam is a slender, homogeneous bar that bends without twisting.

P A P A

Px (Internal couple)

== S

I _ L P (Internal shear)

Figure 2.4.1 Cantilever beam and a free-body diagram showing the shear and moment at an arbi-
trary section.

px1
x 1 x %
P 7 ’ T x — —— (Internal couple)
SRERREREERRY ‘>
T, L TN, I . |
% — px (Internal shear)
(a) (b)
Figure 2.4.2 (a) Simply supported beam. (b) Internal shear and bending moment as

a function of distance from the left end.
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2.4. Simple Beams

px!
J 1 p T\' ; % % X — L; (Internal couple)
- | < O TVHW}
! : L e il
¥ Cutting plane pL ! pL
| e - — px (Internal shear)
T Il B )
+V +M {a) (b)
Figure 2.4.3 Sign convention for positive internal shear and
bending moment. Figure 2.4.2 (a) Simply supported beam. (b) Internal shear and bending moment as

a function of distance from the left end.

—V +(V 4+dV) + pdx =0

dV = —pdx pO0dx
y I
1
dVv p(x)
Hr* il
dx V+ dVv
X2 M M + dM
z 0 ‘> _ X
Vo=V, — f p(x)dx (
L/'
X dx
aM Figure 2.4.5 Free-body diagram of a differential beam
d— =-V segment, showing the internal shears and
o _ bending moments and a differential portion
A2 of the externally applied distributed load.
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2.4. Simple Beams

Figure 2.4.4 Shear (left) and moment diagrams for the beam in Figure 2.4.2.
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2.5. Stiffened Shear Webs

¢ Shear Panel : The Structure with a thin sheet of materials to which'a
rod is bonded along each edge.

+ |f we assume the panel only carries shear ferces, thenthe structure
becomes SD.

* Relaxing this assumption will be treated in Ch.4.
¢ Flange : top and bottom rods
+ Web : the panel
¢ Stiffner : vertical rod

\ B

Figure 2.5.1 Stiffened shear web acting as an idealized beam.
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2.5. Stiffened Shear Webs

& s a 3

—_—— e e e Do

4 53 . B
Y A .
A A
f a ) /4 /i ] a
1% S, 2

-

T e 1 ™ " 2

4

(a) (b) (©)

Figure 2.5.2  Parollelogram shear panel. (a) Shear forces on the edges. (b) Shear flows. (c) Average shear flows.

{

Szfqu

0

S : pure shear load

g : shear flow (shear force per unit length)
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2.5. Stiffened Shear Webs

Summing moments about point 1,
(S2sin@)a = S3(bsinb) = (20)a = (gza)b = Gr = s
Summing moments about any two of the'remaining.three corners,
h=q@=q=Gqs=q
The average shear flow is constant around the panel.

If we extend the differential parallelogram in any direction and parallel
to the sides of the panel, we see that the shear flow throughout and
around the sides of a parallelogram pangl IS constant.

/

Figure 2.5.3 Shear flow on a differential paral-
lelogram surrounding any point in
a parallelogram shear panel.
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2.5. Stiffened Shear Webs

Example 2.5.1

Find the shear flow in the structure'shown in Figure 2.5:4
and the flange loads at a section 75cm from the left end.

=l . . 075m

|
7.794 kN
s .
"1\ 4.5 kN _. r
r 7794 kKN — 9 kN/m
9 kN/m { “‘ .
‘ 9 kN/m
Y 4.5kN Y 45kN
(a) (b) (c)
Figure 2.5.4 (a) Cantilevered parallelogram stiffened shear panel. (b) Shear and axial

loads 0.75 m from free end. (c) Constant shear flows around the panel.
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2.5. Stiffened Shear Webs

Example 2.5.1

"

(a)

Figure 2.5.5
base shear flow g,
| > =P g
B
? Po Ei—=
Pr -
Figure 2.5.6 Shear flow along

a tapered edge.

\

=
o o e et bt

[ ]

\

|

w

=
I

(a) Trapezcidal shear panel. (b) Internal shear flow g related to the
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2.5. Stiffened Shear Webs

Example 2.5.2

Find the shear flow in the web of the
tapered beam shown in Figure 2.5.7. Also,
calculate the average shear flow on each

of the panel.
N
N
[~
X 70 mm
N
N
\
| R T -
20 ;11111 "-:1'.',5:}"'}.;;*}; e 130 mm
| —
Figure 2.5.7 Idealized tapered, cantilevered beam.
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.20mm|r

Example 2.5.2

1 kN/mm

)

WWw/NY |

2.5. Stiffened Shear Webs

National Res

20 kN
Figure 2.5.8 Free-body diagram of a
portion of the web in
Figure 2.5.7.
1000
800
g
’5 600
= 400
B |
@ 200 =
"‘-—,____‘_.h—-_-—_—-—___
0 T T T T
0.000 0075  0.100
x (m)
Figure 2.5.9  Shear flow on the edges of the shear panel in Figure 2.5.7

kN
q(0) = 1000 —
| m
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2.9.

Stiffened Shear Webs

L
N, =N, + [q(s)ds =0 [2.5.64]
0
N,-N,+qL=0 [2.5.6b]
. B q - .
N, i . R : Nz
L y

Figure 2.5.10

Rod in equilibrium under the direct loads applied at each end and the
shear flow distributed along its length.

If the number of equilibrium equations equal

i the number of unknowns, the stiffened web

3000 1b

i

B structure is statically determinate.

- 100 - 20" -

1
2000 1b n

+n = 2N

+n [2.5.7]

rods panels reactions nodes
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2.5. Stiffened Shear Webs

Example 2.5.3

In

2.5.11, calculate the shear.flows i

igure

INn F

Find the structure

ffeners.

load in the st

iImum

each of the three panels and the max

9”
6"

2000 Ib

(b)

- -
e Sy :
S e ]
- vmmm%%w&&%@ww o %wwvwww
i S
o

St ,@

(a)

(a) Stiffened web structure, with the chosen node, rod, and panel numbering. (b] Free-body diagram,

showing the applied loads and the reactions.

Figure 2.5.11
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2.5. Stiffened Shear Webs

Example 2.5.3

N

sz szl) Nl(z) Nl(l) sz N7(2J 9”
3 N,® I 4 kil N 3000 Ihi
A | i M 4 |
M
N P e SR 5
q ‘,
i {'-—-— { N®
} N * * N, 1 20001b
o qm N @
} { } N, AR YRS 1
e oo : <— EE—— > <—4 — 1500 b
} \ k N,© NO e T T N, 1
— 2 17N @ 2
} N2(6) + NZG) * 3000 1b
N, i i Figure 2.5.13 Free-body diagram resulting from
1 i &
i 1 ‘I‘ZJ{I a vertical section through panel 3.
NIHUJ i e = * Nl(7)
i N,
-— e e e e
X; Nl(x) NI(S) Nq(s) N2(3) Nl(‘J) Nl(9) NZ(‘)) N2(9)
4000 Ib
10 in. 6 20 in.
Figure 2.5.12  The unknown member forces and reactions in the stiffened web structure of Figure 2.5.11. 7867 1b -=
—_— B o " ~ ~ -
400 1b/in. g

Figure 2.5.14 Free-body diagram of topmost stiffener in Figure
S0
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2.5. Stiffened Shear Webs

Example 2.5.3

193.3 1b/in. 1

z

qLZJ l

Figure 2.5.15

+7867 Ib

7867 b
—

1‘ 6000 Ib

+6000 1b

~ ™ T WM R

4867 1b

—4867 Ib

Figure 2.5.17

2000 Ib

Free-body diagram of the
rightmost vertical stiffener
in Figure 2.5.11.

400 Ib/in.
£y

=

UL £7E6]

uyqr 00t

———

400 1b/in.

uyq) €€ ey

[N
o
A

6000 Ib

8 6 3 43.
7867 lb o

rE
400 193.3 i
ol A fom
P 5! Ll 2
# Fin, 13000 1b

4867 1b -

7 10 in. 14 20 in. 1

4000 1b 2000 1b

Figure 2.5.16  Constant shear flows in the panels and the
reactions at the supports in Figure 2.5.11.

+3000 Ib 3 -
e .5'1
193.3 Tbfin. = n
e L il
T 30001b ~1 & ES
43.33 Ib/in. are 5
£ P
= &
=
N s

Axial load distribution in the stiffeners is Figure 2.5.11; negative indicates compression.
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2.5. Stiffened Shear Webs

» Cylindrical sheet and Conical surface in pure shear

Element equilibrium in the axial direction,

-

Fe=0: = —qdx+q'dx=0 =  q'=gq cylindrical sheet
Y Fr=0: = (¢dl)-i—(@@dl-i=0 = ¢ =qNCoNEaEINace

-> Shear flow is constant around the cross section.

Figure 2.5.18 B itieal b Roelinipuie hens: Figure 2.5.19 Conical surface, with vertex P, in pure shear.
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2.5. Stiffened Shear Webs

Consider the curve with constant shear flow g joining points B and C

The y and z components of the resultant foree R are
R, =qAy My = N7 [2.5.9]

R = g/ Ay? + Az? =qlL [2.5.10]

The moment dT of the shear flow g acting \B ‘ﬁ‘;‘*:
on element ds at point P is (a)
dT =r x qu Figure 2.5.20 () Uniform shear flow q on a curved web. (b) Area
. . enclosed by the web and the lines joining each en
= qd‘? (}‘" SN {b)l of the webiot point O. T . ke
= g(hds)i
The total moment about O of the shear flow is R
=240 [2:5.11] c
From equation [2.5.10] and [2.5.11], 4 = i %L
e == L z
oA 2.5.12] )
L B
(b)
(e : perpendlCU|ar distance from point Oto R) Figure 2.5.21 The resultant R of the censtant shear flow in (a) has @

line of actien located as shown in (b).
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l 2.6 IDEALIZED BEAMS :
TORSIONAL AND SHEAR LOADINM

- - Conste
k _ section is
. couple of
! \\\\%qf OZAQ p
qf '\.\ 2A2
~ 4! =
(c) (d)
Figure 2.6.1 (a) Constant shear flow on a thin-

walled closed section. (b) Closed
section viewed as two open sec-
tions. (c) Shear flow resultants on
each section. (d) Pure couple resul-
tant for the closed section.

-
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2.6 IDEALIZED BEAMS :
TORSIONAL AND SHEAR LOADING

Z
3\\{
Y

(a) (b) (c) (d) (e)

Figure 2.6.2 The same torque T is applied to a closed thin-walled section whose

. Fi 2.6.3 h jon i in- i
- cpprocches zero, moving from (a) fo (d). igure Shear sfress due to forsion in a thinwalled open section.

An exact approach using
the theory of elasticity
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2.6 IDEALIZED BEAMS :
TORSIONAL AND SHEAR LOADING

Example 2.6.1
Figure 2.6.4 shows an idealized Y
beam comprised of two flanges
and a curved, thin web that has a =
semi-elliptical shape. A 3 kN 150 mm
vertical shear load is applied to —LO ! z

the free end. Calculate the shear
flow and find the horizontal
location where the shear force

bUS‘E be app“ed to produce no Figure 2.6.4 Idealized cantilever beam with
torsion. a semielliptical web.

=240 mm -
| — e

A 500 |b shear load is applied at the free end.
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2.6 IDEALIZED BEAMS :
TORSIONAL AND SHEAR LOADING

Example 2.6.2

Calculate the shear flow in the walls of the.closed section
subjected to pure torsion, shown in Figure 2.6.6.

e— 12" —ta 29" .
e
ign

50,000 in.-1b I/
|
|
|

Figure 2.6.6 Closed section under pure torsion.
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2.6 IDEALIZED BEAMS :
TORSIONAL AND SHEAR LOADING

Example 2.6.3

Figure 2.6.7 shows a 50-inch span of a tapered box beam. At the
left end, where the indicated loads are.applied, there is a rigid rib
at which the flange loads are zero. Other ribs.(not shown).of
varying size are spaced along the beam to maintain.the form of
the cross section. Calculate the shear flows and flange loads at
the 50-inch station, which lies between two Tribs.

b
1000 1b

(0; 50,0} L7 w0 F TR e T
300 Ib T =~~\(50in., 2.5 in., =30 in.
P : m in., il in.)

Figure 2.6.7 Free-body diagram of a tapered box beam, showing the three flange loads and three shear
flows at the 50-inch station.
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2.6 IDEALIZED BEAMS :
TORSIONAL AND SHEAR LOADING

2 =

Figure 2.6.9 Torque box in which all four corners infersect in a common point P.
h w
h_w 2.6.1]
hO WO
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2.6 IDEALIZED BEAMS :
TORSIONAL AND SHEAR LOADING

(a) (b)

Figure 2.6.10 (a) Idealized torque box with pure torsion applied to each end.
Webs are referenced by numbers enclosed by squares. Flange mem-
bers are referenced by numbers enclosed by circles. (b) The corre-
sponding shear flows at each end and on an intermediate section.

(i) h(i) (O)h(i) (L)

47 (0=0"—75 7 [2.6.2]

qg=— [2.6.3]
2A

~h®(L)h@(0)+h@ (L)h® (0), h (0)

A=[ > I o 9 [2.6.4]
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2.6 IDEALIZED BEAMS :
TORSIONAL AND SHEAR LOADING

Example 2.6.4

The idealized, stiffened web torquesbox structure in Figure
2.6.11(a) is span, depth, and chord. Given.that ittransmits a pure

torque of 42,000 in-lb, calculate the shear flows.and flange loads
at 20-in intervals.

42,000 in.-1b

42,000 in.-1b
(a) (b)

Figure 2.6.11 (a) Torque box with pure torsion applied to each end. (b) The shear flows on intermediate sections.

Numbers in parentheses are the lengths, in inches, of the inclined edges of the box.
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2.6 IDEALIZED BEAMS :
TORSIONAL AND SHEAR LOADING

Example 2.6.4

120 A 1000

100 ~

_ ~ 800 -
:;:‘ 80 - g
B < 600 -
_5 ;_:b d
- 60 3
3 =
@ \ ; 400
w \ N\ (2) o, ,4) -
40 | ; g &g
200
20
T . :
50 100 150 200 50 100 150
X (in.) x(in.)
Figure 2.6.12 Relationship between flange load " &
and average shear flows in adjo-
cent webs (stringer 1 illusfroted]_ Figure 2.6.13 (a) Shear flow and (b} flange load variations with span for the torque box in Figure 2.6.11.
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2.7 FRAMES

Frames, like trusses, are skeletal structures composed of
slender member.

However, unlike trusses, the member
shear and bending, as well as axial loa

l
RERRR

L X SUTTRTERY 7 "RTRORRRTRR R\
(a) (b) (c) (d) (e)

Figure 2.7.1 Examples of rigid-jcinted plane frames.

National Res aboratory for Aerospace Structures



(d)

2.7 FRAMES

0, I\ I\ 05
@-J}—é}»& |
O 0, 0; O Qs 04
Q3 = Qis Og O Qe Oz
Qg\%s Qu 0, 01 Q17 e Q12 \Q[g

R
Q1901307 &) s Q10Q16Uxn 40,

QS tar Qf) le Q Qll
*Qm Qs 0,5, O+, O *Q‘?’
+Q'_ﬂu =52 "st

05 i

szﬁ ’ sz

Figure 2.7.2 Free-body diagrams of elements of the frame in Figure 2.7.1(d).

24 equilibrium equations, 27 unknowns

-> Statically indeterminate
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2.7 FRAMES

Example 2.7.1

Find the location and value of the maximum bending moment in
the semicircular frame shown in Figure 2.7.3

(a) (b) (c) (d)

Figure 2.7.3 (a) Semicircular frame with an intermediate transverse point load. (b) Free-body diagram of the com-

plete frame. (c) Free-body diagram of a section at # < 30°. (d) Free-body diagram for a section at
a - N°
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2.7 FRAMES

Example 2.7.2

Find the location and value of the maximum bending moment in
the frame in Figure 2.7.5. The semicireular portion of the structure
IS acted on by a uniform shear flow, while point loads are applied
at the endpoints A and A’ of the horizontal elements. The given
shear flow and point loads form a self-equilibrating set.

(a) (b) (c) (d)

Figure 2.7.5 (a) Semicircular frame with self-equilibrating applied load system. (b), (c), &
(d) Free-body diagrams of each element of the frame, revealing the internal
forces on fransverse sections.
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2.7 FRAMES

Example 2.7.2

Figure 2.7.7 Bending moment distribution in the semicir-

cular frame member.
Figure 2.7.6 Area of the segment

of a circle spanned Compression occurs on the side of the frame on which the
by the angle 6. bending moment diagram is plotted.
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2.7 FRAMES

Example 2.7.3

Figure 2.7.8(a) shows a frame built.into a wall at point W, with a
20 kN load P applied at point D."Calculate the magnitudes of
the shear force, bending moment, and torsional moment acting
on a transverse section through the frame at point.O, located
at some distance from the built-in support.

R

(a) (bh)

Figure 2.7.8 (a) A frame loaded at point C and built into the wall at Use vector notation.
W. (b) Free-body diagram of the frame to one side of
the transverse section through O.
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2.7 FRAMES

Example 2.7.4

Find the location and magnitude“of the.maximum bending
moment in the frame of Figure 2.7.9. The support at1 is ecapable
of exerting reactive forces in y- and z-directions and.couples
about those axes. The support at 6 can exert forces only in the x-

and y-directions. *c
T C“;‘//l' 1
’ : R @Z L

Vector notation s G
unnecessary.

Figure 2.7.9 Statically determinate frame and its free-body diagram.
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2.7 FRAMES

Example 2.7.4

Start at point 6 and move from member to.member, calculating the forces
and moments at each section using the free-body diagrams.

2 2
Epf Epf
6 6

@L

PL

2
EPL

Figure 2.7.11  Bending moment dis-
tribution for the frame
(d) (e) (f) in Figure 2.7.9.

Figure 2.7.10 Free-body diagrams showing the internal forces acting on each transverse section of the
frame in Figure 2.7.9.
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