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Similarity and Dissimilarity

§ Similarity
– Numerical measure of how alike two data objects are.
– Is higher when objects are more alike.
– Often falls in the range [0,1]

§ Dissimilarity
– Numerical measure of how different are two data 

objects
– Lower when objects are more alike
– Minimum dissimilarity is often 0
– Upper limit varies
– Distance: special class of dissimilarity

§ Proximity refers to a similarity or dissimilarity



Similarity/Dissimilarity for Simple Attributes

p and q are the attribute values for two data objects.
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Euclidean Distance
(Dissimilarity)

§ Euclidean Distance (distance b/w points)

Where n is the number of dimensions (attributes) and pk and qk

are, respectively, the kth attributes (components) or data 
objects p and q.

§ Standardization is necessary, if scales differ.
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Euclidean Distance
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point x y
p1 0 2
p2 2 0
p3 3 1
p4 5 1

Distance Matrix

p1 p2 p3 p4
p1 0 2.828 3.162 5.099
p2 2.828 0 1.414 3.162
p3 3.162 1.414 0 2
p4 5.099 3.162 2 0



Minkowski Distance

§ Minkowski Distance is a generalization of Euclidean Distance

Where r is a parameter, n is the number of dimensions (attributes) 

and pk and qk are, respectively, the kth attributes (components) or 

data objects p and q.
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Minkowski Distance: Examples

§ r = 1.  City block (Manhattan, taxicab, L1 norm) distance. 
– A common example of this is the Hamming distance, which is just the 

number of bits that are different between two binary vectors

§ r = 2.  Euclidean distance

§ r ® ¥.  “supremum” (Lmax norm, L¥ norm) distance. 
– This is the maximum difference between any component of the 

vectors

§ Do not confuse r with n, i.e., all these distances are 
defined for all numbers of dimensions “n”.



Minkowski Distance

Distance Matrices

point x y
p1 0 2
p2 2 0
p3 3 1
p4 5 1

L1 p1 p2 p3 p4
p1 0 4 4 6
p2 4 0 2 4
p3 4 2 0 2
p4 6 4 2 0

L2 p1 p2 p3 p4
p1 0 2.828 3.162 5.099
p2 2.828 0 1.414 3.162
p3 3.162 1.414 0 2
p4 5.099 3.162 2 0

L¥ p1 p2 p3 p4
p1 0 2 3 5
p2 2 0 1 3
p3 3 1 0 2
p4 5 3 2 0
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Mahalanobis Distance
Tqpqpqpsmahalanobi )()(),( 1 -å-= -

For red points, the Euclidean distance is 14.7, Mahalanobis distance is 6.

Explain how difficult it occurs or how strange the point is: Outlier detection

Distance b/w the point and 
the distribution mean

X times error than SD
(평균과의거리가표준편차의몇배인가)

S is the covariance matrix of 
the input data X
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교통량 20대에표준편차 3대일경우, 
26대가지나가면평균과의거리는 6이지만Mahalnobis distance는 6/3=2 즉, 표준적인편차의 2배정도의오차



Common Properties of a Distance

§ Distances, such as the Euclidean distance, 
have some well known properties.

1. d(p, q) ³ 0 for all p and q

d(p, q) = 0 only if p = q (Positive definiteness)

2. d(p, q) = d(q, p) for all p and q (Symmetry)

3. d(p, r) £ d(p, q) + d(q, r) for all points p, q, and r
(Triangle Inequality)

where d(p, q) is the distance (dissimilarity) between points (data 
objects) p and q



Common Properties of a Similarity

§ Similarities, also have some well known 

properties.

1. s(p, q) = 1 (or maximum similarity) only if p = q

2. s(p, q) = s(q, p) for all p and q (Symmetry)

where s(p, q) is the similarity between points (data objects) p
and q



Similarity Between Binary Vectors

§ Common situation is that objects, p and q, have only binary 
attributes

§ Compute similarities using the following quantities
M01 = the number of attributes where p was 0 and q was 1

M10 = the number of attributes where p was 1 and q was 0

M00 = the number of attributes where p was 0 and q was 0

M11 = the number of attributes where p was 1 and q was 1

§ Simple Matching and Jaccard Coefficients 
SMC =  number of matches / number of attributes 

=  (M11 + M00) / (M01 + M10 + M11 + M00)

J = number of 11 matches / number of not-both-zero attributes values

= (M11) / (M01 + M10 + M11)  

à Ignore 0-0 matches to avoid miss-matches by noisy 0 values
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Cosine Similarity

§ If d1 and d2 are two document vectors, then

cos( d1, d2 ) = (d1 · d2) / ||d1|| ||d2|| ,

where · indicates vector dot product and || d || is the length of vector d.

Jaccard measure + non-binary vectors

§ Example:

d1 =  3 2 0 5 0 0 0 2 0 0 

d2 =  1 0 0 0 0 0 0 1 0 2

d1 · d2=  3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5

||d1|| = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)0.5 =  (42) 0.5 = 6.481

||d2|| = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2) 0.5 = (6) 0.5 = 2.245

cos( d1, d2 ) = .3150  (1à 0°àsame except length; 0à90°àdo not share)



Correlation

§ Correlation measures the linear relationship 

between objects

§ To compute correlation, we standardize data 

objects, p and q, and then take their dot product



Visually Evaluating Correlation

Scatter plots 
showing the 
similarity from 
–1 to 1.



Density

§ Density-based clustering require a notion of 
density

§ Examples:
– Euclidean density

– Euclidean density = number of points per unit volume

– Probability density 

– Center-based density



Euclidean Density – Cell-based

§ Simplest approach is to divide region into a 
number of rectangular cells of equal volume and 
define density as # of points the cell contains



Euclidean Density – Center-based

§ Euclidean density is the number of points within a 
specified radius of the point


