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Similarity and Dissimilarity

= Similarity
— Numerical measure of how alike two data objects are.
— Is higher when objects are more alike.
— Often falls in the range [0,1]
= Dissimilarity
— Numerical measure of how different are two data
objects
— Lower when objects are more alike
— Minimum dissimilarity is often 0
— Upper limit varies
— Distance: special class of dissimilarity

= Proximity refers to a similarity or dissimilarity



Similarity/Dissimilarity for Simple Attributes

p and q are the attribute values for two data objects.

Attribute Dissimilarity Similarity
Type
0 ifp= 1 ifp=
Nominal d = 1 F=y & = 1 #
1 ifp+#gq 0 ifp#gq
d = \P—Ci[
. e . p—q
Ordinal (values mapped to integers0 ton—1, | s =1 J—ln_l
where n is the number of values)
Interval or Ratio | d = |[p — ¢ s=—d, s = 17+d or
s—1— d—min_d

max_d—min_d

Table 5.1. Similarity and dissimilarity for simple attributes




Euclidean Distance
(Dissimilarity)

= Euclidean Distance (distance b/w points)

dist = \/kZl(pk —qk)2

Where nis the number of dimensions (attributes) and p, and g,
are, respectively, the kth attributes (components) or data
objects pand q.

= Standardization is necessary, if scales differ.



Euclidean Distance

3 _
point X y
2 @p1
P pl 0 2
p3 p4
1 ° ° p2 2 0
p2 p3 3 1
0 . I I | p4 5 1
0 2 3 5 6
pl p2 p3 p4
pl 0 2.828 3.162 5.099
p2 2.828 0 1.414 3.162
p3 3.162 1.414 0 2
p4 5.099 3.162 2 0

Distance Matrix




Minkowski Distance

= Minkowski Distance is a generalization of Euclidean Distance

1
. d N
dist=( 2| Pr =4k ')

Where ris a parameter, nis the number of dimensions (attributes)
and p,and g, are, respectively, the kth attributes (components) or
data objects pand g.



Minkowski Distance: Examples

r= 1. City block (Manhattan, taxicab, L, norm) distance.

— A common example of this is the Hamming distance, which is just the
number of bits that are different between two binary vectors

r = 2. Euclidean distance

r— oo, “supremum” (L __ norm, L_norm) distance.

max
— This is the maximum difference between any component of the
vectors

Do not confuse r with n, i.e., all these distances are

\\Wy /4

defined for all numbers of dimensions “n”.



Minkowski Distance

point X y
pl 0 2
p2 2 0
p3 3 1
p4 5 1
3
2 @1
p3 p4
1 ® ®
p2
0 L
0 1 2 3 5

L1 pl p2 p3 p4

pl 0 4 4 6

p2 4 0 2 4

p3 4 2 0 2

p4 6 4 2 0

L2 pl p2 p3 p4

pl 0 2.828 3.162 5.099
p2 2.828 0 1414 3.162
p3 3.162 1.414 0 2
p4 5.099 3.162 2 0
Lo pl p2 p3 p4

pl 0 2 3 5

p2 2 0 1 3

p3 3 1 0 2

p4 5 3 2 0

Distance Matrices




Mahalanobis Distance

mahalanobis(p,q) =(p—q)> ' (p—q)"
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Distance b/w the point and
the distribution mean

X times error than SD
(& 28 {2/ HEZEH IS Z Hi o1 7f)

Y is the covariance matrix of
the input data X

1 < - -
. 1Z(Xl;,- = X)Xy — Xr)
L=l

ik

For red points, the Euclidean distance is 14.7, Mahalanobis distance is 6.

Explain how difficult it occurs or how strange the point is: Outlier detection
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Common Properties of a Distance

= Distances, such as the Euclidean distance,
have some well known properties.

1. d(p g)=>0 forall pand g
dip, g) = 0only if p = g (Positive definiteness)
2. dp g)=d(q p) forall pand g (Symmetry)

3. d(p, r)<dp qg)+ d(q r) forall points p, g and r
(Triangle Inequality)

where d(p, g)is the distance (dissimilarity) between points (data
objects) pand g



Common Properties of a Similarity

Similarities, also have some well known
properties.

~

s(p, g) = 1 (or maximum similarity) only if p = g

2. S(p, g)=5(q, p) forall pand g (Symmetry)

where s(p, g)is the similarity between points (data objects) p
and g



Similarity Between Binary Vectors

Common situation is that objects, p and g, have only binary
attributes

Compute similarities using the following quantities
My = the number of attributes where p was 0 and q was 1
M,, = the number of attributes where p was 1 and q was 0
My, = the number of attributes where p was 0 and q was 0

M,, = the number of attributes where p was 1 and q was 1

Simple Matching and Jaccard Coefficients

SMC = number of matches / nhumber of attributes
= (My; + Myy) / (Mg; + Myy + My; + M)

J = number of 11 matches / number of not-both-zero attributes values
= (Myy) / Mgy + Myy + My,)
=2 Ignore 0-0 matches to avoid miss-matches by noisy 0 values



Cosine Similarity

= If d, and d, are two document vectors, then
cos( d, dy) = (dye d)/ |1d)| |Idyll,
where e indicates vector dot product and || d || is the length of vector d.
Jaccard measure + non-binary vectors

= Example:

d=3205000200
d,=1000000102

d,e d~= 3*1+2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 =5
|1d,|| = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0%*0)%-> = (42) 25 = 6.481
|1d,|| = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2%2) 05 = (6) 05 = 2.245

cos( d, d,) = .3150 (1-> 0°->same except length; 0->90°->do not share)



Correlation

= Correlation measures the linear relationship

between objects

= To compute correlation, we standardize data

objects, p and g, and then take their dot product



Visually Evaluating Correlation
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Density

= Density-based clustering require a notion of
density

= Examples:

— Euclidean density
— Euclidean density = number of points per unit volume

— Probability density

— Center-based density



Euclidean Density — Cell-based

= Simplest approach is to divide region into a
number of rectangular cells of equal volume and
define density as # of points the cell contains

A T S 0O 0 0 0 0 0 0
s I T D S
I8 0 S T W 13 18 0 18 o
2 f'_ ___________ 11 18 10 21 0 24 31
| T T 3 20 14 4 0 0 0
NN 0 0 0 0 0 0 0

i i i i i i j
1 2 3 - 5 6 7

Figure 7.13. Cell-based density. Table 7.6. Point counts for each grid cell.



Euclidean Density — Center-based

= Fuclidean density is the number of points within a
specified radius of the point
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Figure 7.14. lllustration of center-based density.



