Week 10 Clustering (Part II)

Seokho Chi

Assistant Professor I Ph.D. SNU Construction Innovation Lab

Source: Tan, Kumar, Steinback (2006)

Grid-Based Clustering

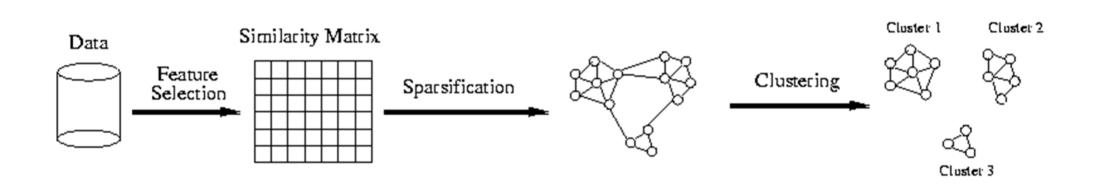
- Efficient way to organize a set of data, at least in low dimensions
- Algorithm:
 - 1. Define a set of grid cells
 - 2. Assign objects to the appropriate cells and compute the density of each cell
 - 3. Eliminate cells having a density below a specified threshold
 - 4. Form clusters from contiguous (adjacent groups of dense cells

Adapted from:

Graph-Based Clustering

- Graph-Based clustering uses the proximity graph
 - Start with the proximity matrix
 - Consider each point as a node in a graph
 - Each edge between two nodes has a weight which is the proximity between the two points
 - Initially the proximity graph is fully connected
- In the simplest case, clusters are connected components in the graph.

Sparsification in the Clustering Process



Graph-Based Clustering: Sparsification

- The amount of data that needs to be processed is drastically reduced
 - Setting many of low similarity values to 0
 - Break all links that have a similarity below a specified threshold or keep only links to the k nearest neighbors of point
 - Sparsification can eliminate more than 99% of the entries in a proximity matrix
 - The amount of time required to cluster the data is drastically reduced
 - The size of the problems that can be handled is increased

Adapted from: Tan,Steinbach, Kumar - Introduction to Data Mining

Han, Kamber - Data Mining: Concepts and Techniques

Graph-Based Clustering: Sparsification ...

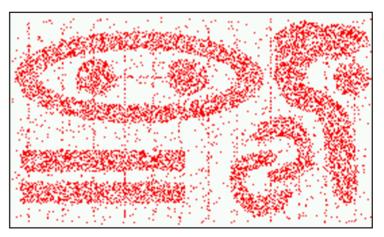
- Clustering may work better
 - Sparsification techniques keep the connections to the most similar (nearest) neighbors of a point while breaking the connections to less similar points.
 - The nearest neighbors of a point tend to belong to the same class as the point itself.
 - This reduces the impact of noise and outliers and sharpens the distinction between clusters.
- Sparsification facilitates the use of graph partitioning algorithms (or algorithms based on graph partitioning algorithms).
 - Chameleon and Hypergraph-based Clustering

Adapted from:

Characteristics of Spatial Data Sets

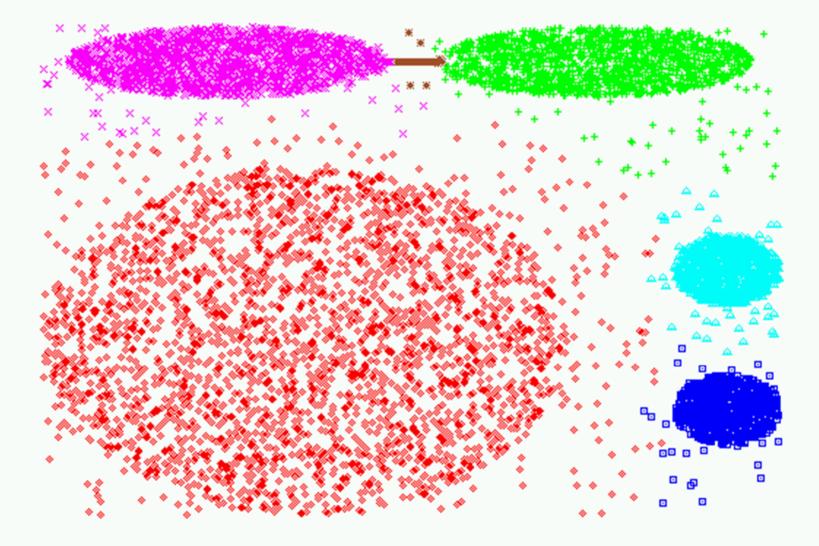
- Clusters are defined as densely populated regions of the space
- Clusters have arbitrary shapes, orientation, and non-uniform sizes
- Difference in densities across clusters and variation in density within clusters
- Existence of special artifacts (*streaks*) and noise

The clustering algorithm must address the above characteristics and also require minimal supervision.

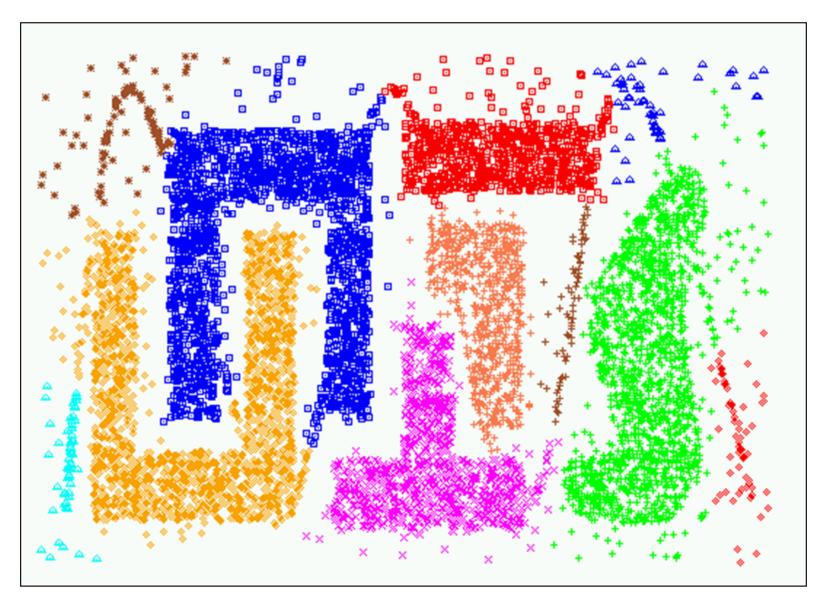


Experimental Results: CHAMELEON

*An agglomerative clustering algorithm with dynamic modeling using an efficient graph partitioning algorithm (considers density, shapes, closeness, interconnectivity, etc.)

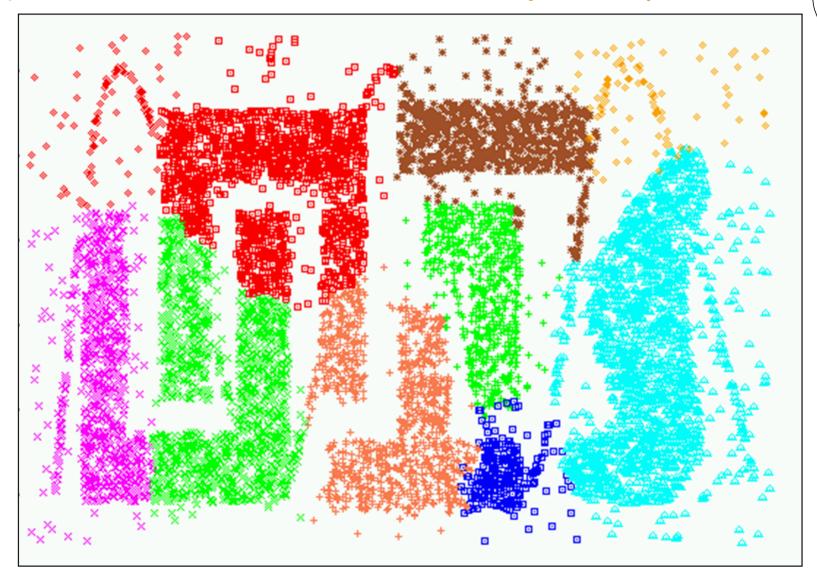


Experimental Results: CHAMELEON



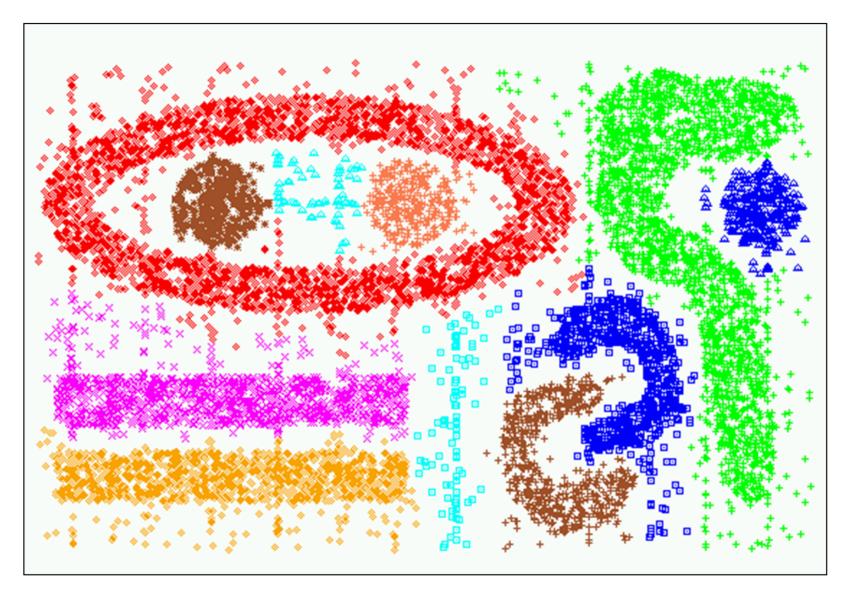
Experimental Results: CURE (10 clusters)

*Clustering Using REpresentatives: (1) Equally partitions, (2) uses a constant number of points to represent a cluster which capture the geometry and shape of the cluster and (3) then shrinks them toward the center of the cluster by a factor, alpha

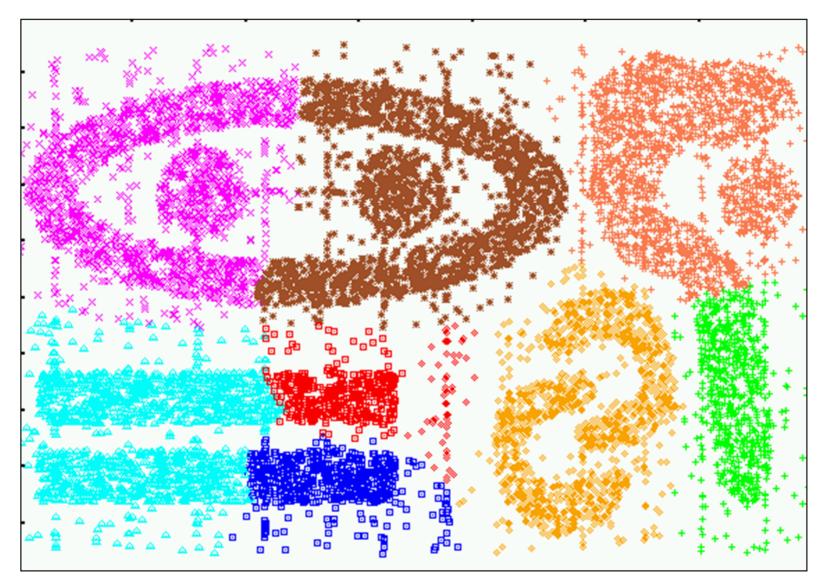


Adapted from:

Experimental Results: CHAMELEON



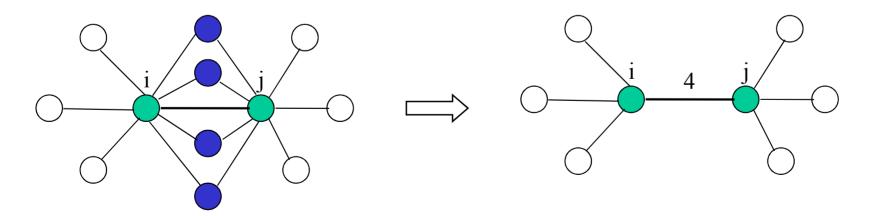
Experimental Results: CURE (9 clusters)



Shared Nearest Neighbor (SNN) Similarity

If two points are similar to many of the same points, then they are similar to one another, even if a direct measurement of similarity does not indicate this.

SNN graph: the weight of an edge is the number of shared neighbors between vertices given that the vertices are connected



SNN Clustering Algorithm

1. Compute the similarity matrix

This corresponds to a similarity graph with data points for nodes and edges whose weights are the similarities between data points

2. Sparsify the similarity matrix by keeping only the *k* most similar neighbors

This corresponds to only keeping the *k* strongest links of the similarity graph

3. Construct the shared nearest neighbor graph from the sparsified similarity matrix.

At this point, we could apply a similarity threshold and find the connected components to obtain the clusters (Jarvis-Patrick algorithm)

4. Find the SNN density of each Point.

Using a user specified parameters, *Eps*, find the number points that have an SNN similarity of *Eps* or greater to each point. This is the SNN density of the point

SNN Clustering Algorithm ...

5. Find the core points

Using a user specified parameter, *MinPts*, find the core points, i.e., all points that have an SNN density greater than *MinPts*

6. Form clusters from the core points

If two core points are within a radius, *Eps*, of each other they are place in the same cluster

7. Discard all noise points

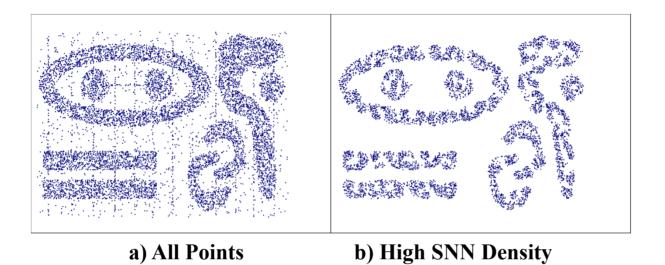
All non-core points that are not within a radius of *Eps* of a core point are discarded

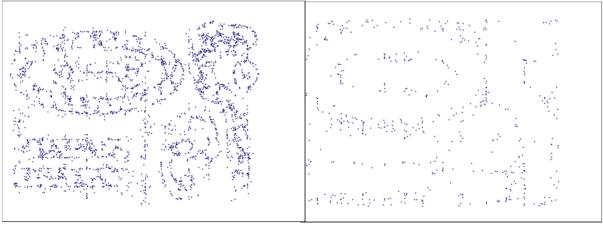
8. Assign all non-noise, non-core points to clusters

This can be done by assigning such points to the nearest core point

(Note that steps 4-8 are DBSCAN)

SNN Density



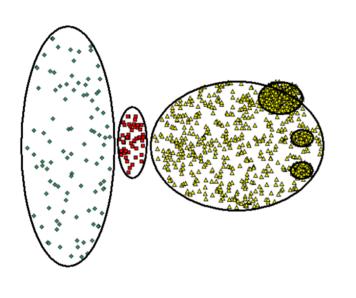


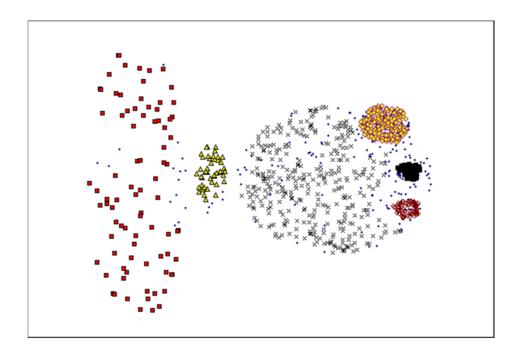
c) Medium SNN Density

d) Low SNN Density

Adapted from:

SNN Clustering Can Handle Differing Densities

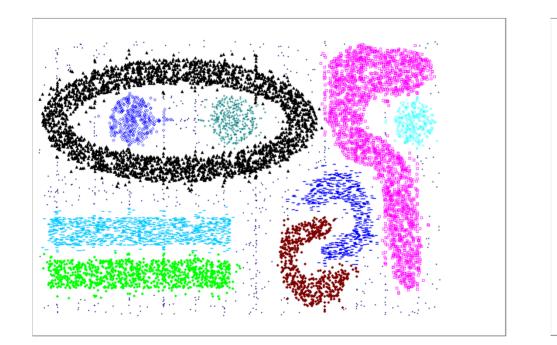


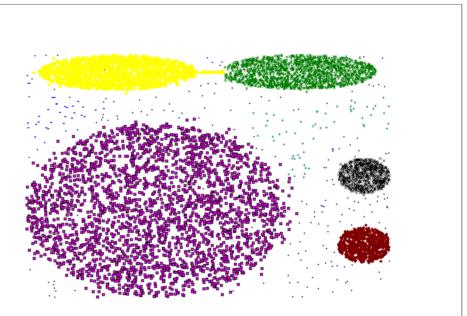


Original Points

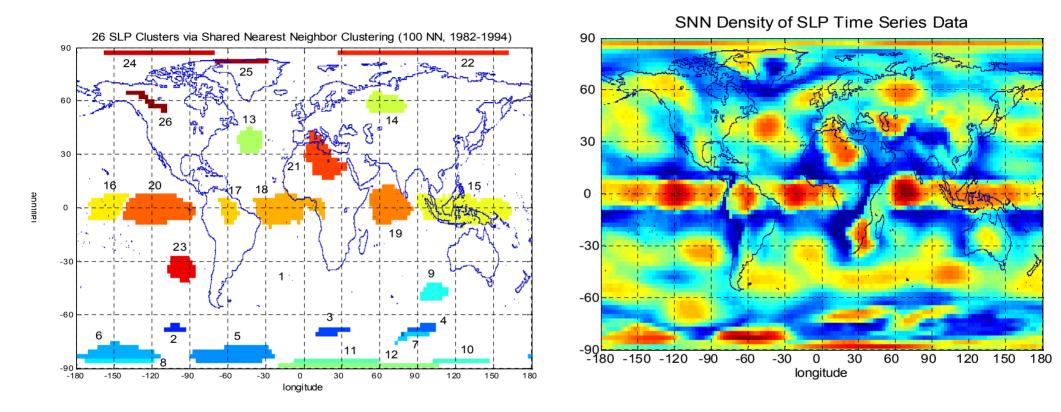
SNN Clustering

SNN Clustering Can Handle Other Difficult Situations





Finding Clusters of Time Series In Spatio-Temporal Data



SNN Clusters of Pressure

SNN Density of Pressure