### Week 12 Mining Association Rules (Part II)

Seokho Chi Assistant Professor I Ph.D. SNU Construction Innovation Lab



Source: Tan, Kumar, Steinback (2006)

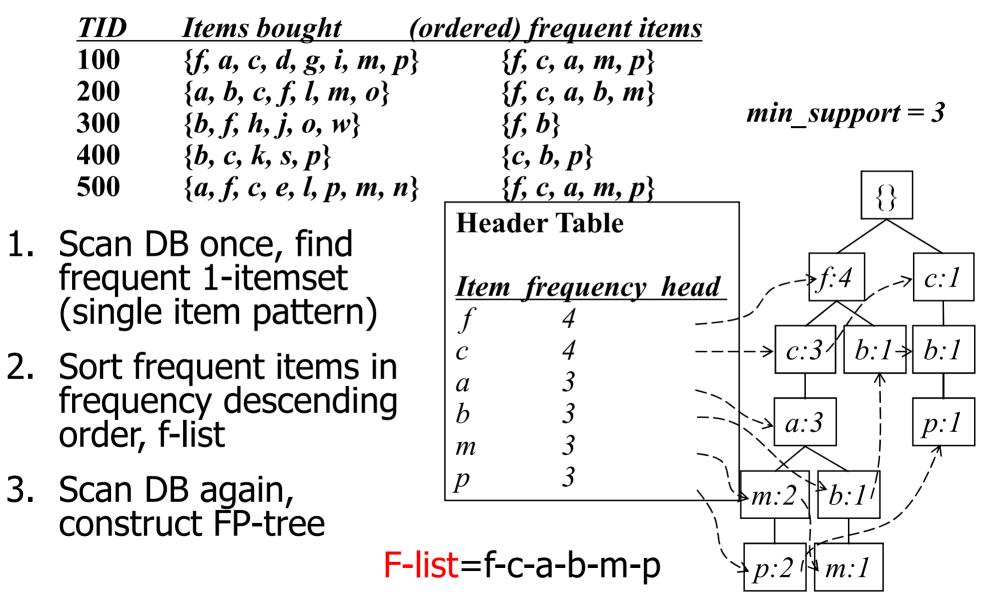


### **FP-growth Algorithm**

 Use a compressed representation of the database using an FP-tree (Frequent-Pattern Tree)

 Once an FP-tree has been constructed, it uses a recursive divide-and-conquer approach to mine the frequent itemsets

### Construct FP-tree from a Transaction Database



Adapted from:

# Effect of Support Distribution

- How to set the appropriate *minsup* threshold?
  - If *minsup* is set too high, we could miss itemsets involving interesting rare items (e.g., expensive products)
  - If *minsup* is set too low, it is computationally expensive and the number of itemsets is very large
- Using a single minimum support threshold may not be effective

### Pattern Evaluation

- Association rule algorithms tend to produce too many rules
  - many of them are uninteresting or redundant
  - Redundant if  $\{A,B,C\} \rightarrow \{D\}$  and  $\{A,B\} \rightarrow \{D\}$  have same support & confidence
- In the original formulation of association rules, support & confidence are the only measures used
- Interestingness measures can be used to prune/rank the derived patterns

# **Computing Interestingness Measure**

 Given a rule X → Y, information needed to compute rule interestingness can be obtained from a contingency table

#### Contingency table for $X \to Y$

|   | Y               | Y                      |                 |
|---|-----------------|------------------------|-----------------|
| Х | f <sub>11</sub> | <b>f</b> <sub>10</sub> | f <sub>1+</sub> |
| X | f <sub>01</sub> | f <sub>00</sub>        | f <sub>o+</sub> |
|   | f <sub>+1</sub> | f <sub>+0</sub>        | T               |

 $\begin{array}{l} f_{11} : \text{ support of X and Y} \\ f_{10} : \text{ support of } \underline{X} \text{ and } \overline{Y} \\ f_{01} : \text{ support of } \underline{X} \text{ and } \underline{Y} \\ f_{00} : \text{ support of } \overline{X} \text{ and } \underline{Y} \end{array}$ 

Used to define various measures

 support, confidence, lift, Gini, J-measure, etc.

Adapted from:

### **Drawback of Confidence**

|     | Coffee | Coffee |     |
|-----|--------|--------|-----|
| Теа | 15     | 5      | 20  |
| Теа | 75     | 5      | 80  |
|     | 90     | 10     | 100 |

Association Rule: Tea  $\rightarrow$  Coffee

Support (Tea  $\rightarrow$  Coffee) = 15 / 100 = 15%

Confidence (Tea  $\rightarrow$  Coffee) = 15 / 20 = 75%

but the fraction of people who drink coffee, regardless of whether they drink tea is 90% while the fraction of tea drinkers who drink coffee is only 75%

 $\Rightarrow$  Although confidence is high, rule is misleading

Adapted from:

### Statistical-based Measures

 Measures that take into account statistical dependence

$$Lift = \frac{P(Y \mid X)}{P(Y)}$$
  

$$Interest = \frac{P(X,Y)}{P(X)P(Y)}$$
  

$$PS = P(X,Y) - P(X)P(Y)$$
  

$$\phi - coefficient = \frac{P(X,Y) - P(X)P(Y)}{\sqrt{P(X)[1 - P(X)]P(Y)[1 - P(Y)]}}$$

Adapted from:

### Example: Lift

|     | Coffee | Coffee |     |
|-----|--------|--------|-----|
| Теа | 15     | 5      | 20  |
| Теа | 75     | 5      | 80  |
|     | 90     | 10     | 100 |

Association Rule: Tea  $\rightarrow$  Coffee

Confidence = P(Coffee | Tea) = 0.75

but P(Coffee) = 0.9

 $\Rightarrow$  Lift = 0.75/0.9= 0.8333 (< 1, therefore is negatively associated)

\*Measure of the performance of a targeting model with respect to the population as a whole

Good if the response within the target is much better than the average for the population

Adapted from:

There are lots of measures proposed in the literature

Some measures are good for certain applications, but not for others

What criteria should we use to determine whether a measure is good or bad?

| #  | Measure                       | Formula                                                                                                                                                                                                                                                               |
|----|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | $\phi$ -coefficient           | $\frac{P(A,B)-P(A)P(B)}{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}$                                                                                                                                                                                                             |
| 2  | Goodman-Kruskal's $(\lambda)$ | $\frac{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}{\sum_{j}\max_{k}P(A_{j},B_{k})+\sum_{k}\max_{j}P(A_{j},B_{k})-\max_{j}P(A_{j})-\max_{k}P(B_{k})}}{2-\max_{j}P(A_{j})-\max_{k}P(B_{k})}$                                                                                       |
| 3  | Odds ratio ( $\alpha$ )       | $\frac{P(A,B)P(\overline{A},\overline{B})}{P(A,\overline{B})P(\overline{A},B)}$                                                                                                                                                                                       |
| 4  | Yule's $Q$                    | $\frac{P(A,B)P(\overline{AB}) - P(A,\overline{B})P(\overline{A},B)}{P(A,B)P(\overline{AB}) + P(A,\overline{B})P(\overline{A},B)} = \frac{\alpha - 1}{\alpha + 1}$                                                                                                     |
| 5  | Yule's Y                      | $\frac{\sqrt{P(A,B)P(\overline{AB})} - \sqrt{P(A,\overline{B})P(\overline{A},B)}}{\sqrt{P(A,B)P(\overline{AB})} + \sqrt{P(A,\overline{B})P(\overline{A},B)}} = \frac{\sqrt{\alpha}-1}{\sqrt{\alpha}+1}$                                                               |
| 6  | Kappa (ĸ)                     | $\frac{\frac{P(A,B)+P(\overline{A},\overline{B})-P(A)P(B)-P(\overline{A},\overline{B})}{P(A)+P(\overline{B})-P(\overline{A})P(\overline{B})}}{1-P(A)P(B)-P(\overline{A})P(\overline{B})}$ $\sum_{i}\sum_{j}P(A_{i},B_{j})\log\frac{P(A_{i},B_{j})}{P(A_{i})P(B_{j})}$ |
| 7  | Mutual Information $(M)$      | $\overline{\min(-\sum_{i} P(A_i) \log P(A_i), -\sum_{j} P(B_j) \log P(B_j))}$                                                                                                                                                                                         |
| 8  | J-Measure $(J)$               | $\max\Big(P(A,B)\log(\frac{P(B A)}{P(B)})+P(A\overline{B})\log(\frac{P(\overline{B} A)}{P(\overline{B})}),$                                                                                                                                                           |
|    |                               | $P(A,B)\log(rac{P(A B)}{P(A)}) + P(\overline{A}B)\log(rac{P(\overline{A} B)}{P(\overline{A})})\Big)$                                                                                                                                                                |
| 9  | Gini index $(G)$              | $\max\left(P(A)[P(B A)^{2}+P(\overline{B} A)^{2}]+P(\overline{A})[P(B \overline{A})^{2}+P(\overline{B} \overline{A})^{2}]\right)$                                                                                                                                     |
|    |                               | $-P(B)^2 - P(\overline{B})^2,$                                                                                                                                                                                                                                        |
|    |                               | $P(B)[P(A B)^{2} + P(\overline{A} B)^{2}] + P(\overline{B})[P(A \overline{B})^{2} + P(\overline{A} \overline{B})^{2}]$                                                                                                                                                |
|    |                               | $-P(A)^2 - P(\overline{A})^2 \Big)$                                                                                                                                                                                                                                   |
| 10 | Support $(s)$                 | P(A,B)                                                                                                                                                                                                                                                                |
| 11 | Confidence $(c)$              | $\max(P(B A), P(A B))$                                                                                                                                                                                                                                                |
| 12 | Laplace $(L)$                 | $\max\left(\frac{NP(A,B)+1}{NP(A)+2},\frac{NP(A,B)+1}{NP(B)+2}\right)$                                                                                                                                                                                                |
| 13 | Conviction $(V)$              | $\max\left(\frac{P(A)P(\overline{B})}{P(A\overline{B})}, \frac{P(B)P(\overline{A})}{P(B\overline{A})}\right)$                                                                                                                                                         |
| 14 | Interest $(I)$                | $\frac{P(A,B)}{P(A)P(B)}$                                                                                                                                                                                                                                             |
| 15 | cosine (IS)                   | $\frac{P(A,B)}{\sqrt{P(A)P(B)}}$                                                                                                                                                                                                                                      |
| 16 | Piatetsky-Shapiro's (PS)      | P(A,B) - P(A)P(B)                                                                                                                                                                                                                                                     |
| 17 | Certainty factor $(F)$        | $\max\left(rac{P(B A)-P(B)}{1-P(B)},rac{P(A B)-P(A)}{1-P(A)} ight)$                                                                                                                                                                                                 |
| 18 | Added Value $(AV)$            | $\max(P(B A) - P(B), P(A B) - P(A))$                                                                                                                                                                                                                                  |
| 19 | Collective strength $(S)$     | $\frac{\frac{P(A,B)+P(\overline{AB})}{P(A)P(B)+P(\overline{A})P(\overline{B})}}{\frac{P(A,B)}{P(\underline{A})+P(B)-P(A,B)}} \times \frac{1-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A,B)-P(\overline{AB})}$                                                      |
| 20 | Jaccard $(\zeta)$             | $\frac{P(A,B)}{P(A)+P(B)-P(A,B)}$                                                                                                                                                                                                                                     |
| 21 | Klosgen $(K)$                 | $\sqrt{P(A,B)}\max(P(B A)-P(B),P(A B)-P(A))$                                                                                                                                                                                                                          |

# **Continuous and Categorical Attributes**

How to apply association analysis formulation to nonasymmetric binary variables?

| Session<br>Id | Country   | Session<br>Length<br>(sec) | Number of<br>Web Pages<br>viewed | Gender | Browser<br>Type | Buy |
|---------------|-----------|----------------------------|----------------------------------|--------|-----------------|-----|
| 1             | USA       | 982                        | 8                                | Male   | IE              | No  |
| 2             | China     | 811                        | 10                               | Female | Netscape        | No  |
| 3             | USA       | 2125                       | 45                               | Female | Mozilla         | Yes |
| 4             | Germany   | 596                        | 4                                | Male   | IE              | Yes |
| 5             | Australia | 123                        | 9                                | Male   | Mozilla         | No  |
|               |           |                            |                                  |        |                 |     |

#### **Example of Association Rule:**

{Number of Pages  $\in$  [5,10)  $\land$  (Browser=Mozilla)}  $\rightarrow$  {Buy = No}

# Handling Categorical Attributes

- Transform categorical attribute into asymmetric binary variables
- Introduce a new "item" for each distinct attributevalue pair
  - Example: replace Browser Type attribute with
    - Browser Type = Internet Explorer
    - Browser Type = Mozilla
    - Browser Type = Netscape

# Handling Categorical Attributes

#### Potential Issues

- What if attribute has many possible values
  - Example: attribute country has more than 200 possible values
  - Many of the attribute values may have very low support
    - » Potential solution: Aggregate the low-support attribute values

#### – What if distribution of attribute values is highly skewed

- Example: 95% of the visitors have Buy = No
- Most of the items will be associated with (Buy=No) item
  - » Potential solution: drop the highly frequent items

### Handling Continuous Attributes

Different kinds of rules:

– Age  $\in$  [21,35)  $\land$  Salary  $\in$  [70k,120k)  $\rightarrow$  Buy

- Salary  $\in$  [70k,120k)  $\wedge$  Buy  $\rightarrow$  Age:  $\mu {=} 28, \, \sigma {=} 4$
- Different methods:
  - Discretization-based
  - Statistics-based
  - Non-discretization based

### Handling Continuous Attributes

- Use discretization
  - Unsupervised:
    - ≻Equal-width binning
    - ≻Equal-depth binning
    - ➤Clustering

### - Supervised

### **Discretization Issues**

Size of the discretized intervals affect support & confidence

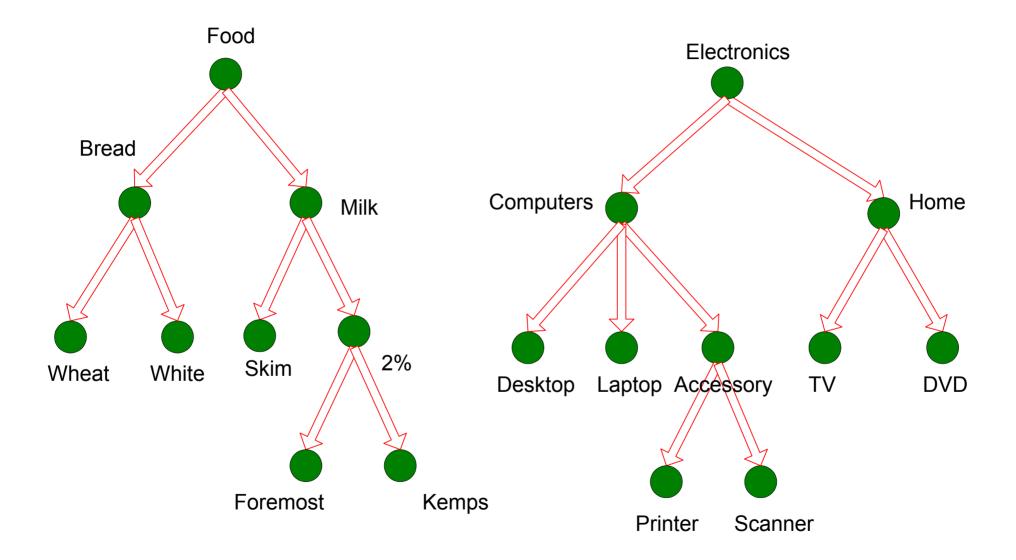
{Refund = No, (Income = \$51,250)}  $\rightarrow$  {Cheat = No}

{Refund = No,  $(60K \le Income \le 80K)$ }  $\rightarrow$  {Cheat = No}

{Refund = No,  $(0K \le Income \le 1B)$ }  $\rightarrow$  {Cheat = No}

- If intervals too small
  - may not have enough support
- If intervals too large
  - may not have enough confidence
- Potential solution: use all possible intervals

### Handling a Concept Hierarchy

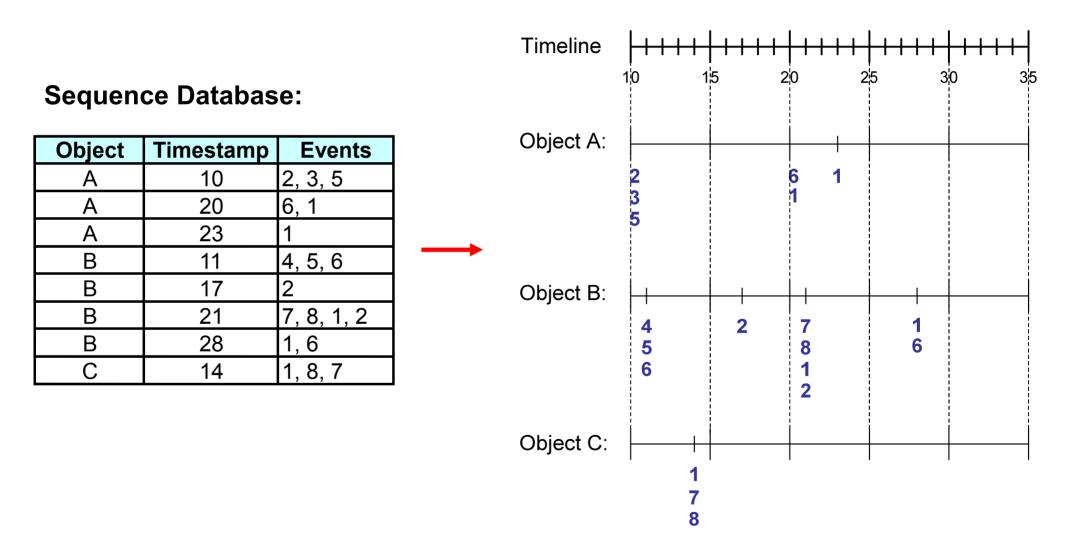


Adapted from:

### Multi-level Association Rules

- Issues with concept hierarchy:
  - Rules at lower levels may not have enough support to appear in any frequent itemsets
  - Rules at lower levels of the hierarchy are overly specific
    - e.g., skim milk → white bread, 2% milk → wheat bread, skim milk → wheat bread, etc. are indicative of association between milk and bread

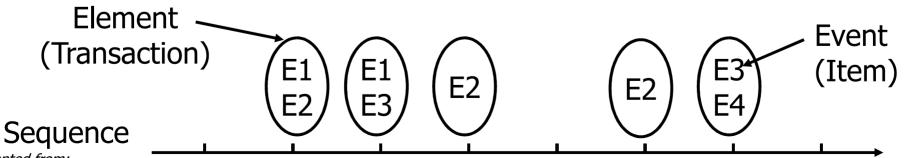
### Sequence Data



Adapted from:

### **Examples of Sequence Data**

| Sequence<br>Database | Sequence                                      | Element<br>(Transaction)                                                       | Event<br>(Item)                             |
|----------------------|-----------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------|
| Customer             | Purchase history of a given customer          | A set of items bought by a customer at time t                                  | Books, diary products,<br>CDs, etc          |
| Web Data             | Browsing activity of a particular Web visitor | A collection of files<br>viewed by a Web visitor<br>after a single mouse click | Home page, index<br>page, contact info, etc |
| Event data           | History of events generated by a given sensor | Events triggered by a sensor at time t                                         | Types of alarms<br>generated by sensors     |
| Genome<br>sequences  | DNA sequence of a particular species          | An element of the DNA sequence                                                 | Bases A,T,G,C                               |



#### Adapted from:

# Formal Definition of a Sequence

 A sequence is an ordered list of elements (transactions)

 $S = \langle e_1 e_2 e_3 \dots \rangle$ 

Each element contains a collection of events (items)

 $e_i = \{i_1, i_2, ..., i_k\}$ 

- Each element is attributed to a specific time or location

- Length of a sequence, |s|, is given by the number of elements of the sequence
- A k-sequence is a sequence that contains k events (items)

Adapted from:

# **Examples of Sequence**

#### Web sequence:

< {Homepage} {Electronics} {Digital Cameras} {Canon Digital Camera} {Shopping Cart} {Order Confirmation} {Return to Shopping} >

 Sequence of initiating events causing the nuclear accident at 3-mile Island:

(http://stellar-one.com/nuclear/staff\_reports/summary\_SOE\_the\_initiating\_event.htm)

- < {clogged resin} {outlet valve closure} {loss of feedwater} {condenser polisher outlet valve shut} {booster pumps trip} {main waterpump trips} {main turbine trips} {reactor pressure increases}>
- Sequence of books checked out at a library: <{Fellowship of the Ring} {The Two Towers} {Return of the King}>

Adapted from:

# Formal Definition of a Subsequence

• A sequence  $\langle a_1 a_2 \dots a_n \rangle$  is contained in another sequence  $\langle b_1 b_2 \dots b_m \rangle$  (m  $\geq$  n) if there exist integers  $i_1 \langle i_2 \rangle \dots \langle i_n \rangle$  such that  $a_1 \subseteq b_{i1}$ ,  $a_2 \subseteq b_{i1}$ , ...,  $a_n \subseteq b_{in}$ 

| Data sequence         | Subsequence   | Contain? |
|-----------------------|---------------|----------|
| < {2,4} {3,5,6} {8} > | < {2} {3,5} > | Yes      |
| < {1,2} {3,4} >       | < {1} {2} >   | No       |
| < {2,4} {2,4} {2,5} > | < {2} {4} >   | Yes      |

- The support of a subsequence w is defined as the fraction of data sequences that contain w
- A sequential pattern is a frequent subsequence (i.e., a subsequence whose support is ≥ minsup)

Adapted from:

### Sequential Pattern Mining: Definition

- Given:
  - a database of sequences
  - a user-specified minimum support threshold, *minsup*

- Task:
  - Find all subsequences with support  $\geq$  *minsup*

### Sequential Pattern Mining: Example

| Object | Timestamp | Events  |
|--------|-----------|---------|
| A      | 1         | 1,2,4   |
| A      | 2         | 2,3     |
| A      | 3         | 5       |
| В      | 1         | 1,2     |
| В      | 2         | 2,3,4   |
| С      | 1         | 1, 2    |
| С      | 2         | 2,3,4   |
| С      | 3         | 2,4,5   |
| D      | 1         | 2       |
| D      | 2         | 3, 4    |
| D      | 3         | 4, 5    |
| E      | 1         | 1, 3    |
| E      | 2         | 2, 4, 5 |

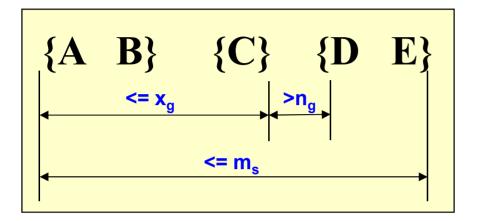
*Minsup* = 50%

**Examples of Frequent Subsequences:** 

| < {1,2} ><br>< {2,3} >         | s=60%<br>s=60% |
|--------------------------------|----------------|
| < {2,4}>                       | s=80%          |
| < {3} {5}><br>< {1} {2} >      | s=80%<br>s=80% |
| < {2} {2} >                    | s=60%<br>s=60% |
| < {1} {2,3} ><br>< {2} {2,3} > | s=60%          |
| < {1,2} {2,3} >                | s=60%          |

Adapted from:

# Timing Constraints (I)



x<sub>g</sub>: max-gap

n<sub>g</sub>: min-gap

m<sub>s</sub>: maximum span

 $x_{g} = 2, n_{g} = 0, m_{s} = 4$ 

| Data sequence                           | Subsequence     | Contain? |
|-----------------------------------------|-----------------|----------|
| < {2,4} {3,5,6} {4,7} {4,5} {8}<br>>    | < {6} {5} >     | Yes      |
| < {1} {2} {3} {4} {5}>                  | < {1} {4} >     | No       |
| < {1} {2,3} {3,4} {4,5}>                | < {2} {3} {5} > | Yes      |
| < {1,2} {3} {2,3} {3,4} {2,4}<br>{4,5}> | < {1,2} {5} >   | No       |

Adapted from:

### Mining Sequential Patterns with Timing Constraints

- Approach 1:
  - Mine sequential patterns without timing constraints
  - Postprocess the discovered patterns

- Approach 2:
  - Modify algorithms to directly prune candidates that violate timing constraints