Chapter 10

Bioreactor Type and Sterilization

Type of bioreactors

- 1. Reactors with Mechanical Agitation
 - a) disperse gas bubbles throughout tank
 - b) increase residence time of bubbles
 - c) shear large bubbles to smaller bubbles
 - d) disk type or turbine type $(d_I \approx 0.3 d_T)$
 - e) provide high k_La values

Water in

Inlet Air

Type of bioreactors

- 2. Bubble Column
 - a) disperse gas bubbles throughout tank
 - b) perforated plates enhance gas dispersion and mixing

Type of bioreactors

- 3. Loop Reactors
 - a) bubble rising in draft tube causes mixing
 - b) mixing enhanced by an impeller or a jet pump

Materials for bioreactors

Materials of Construction:

Glass Vessels: Stainless Steel Vessels:

Volume < 500 Liters All Volumes 316 ss for vessel 314 ss for covers & jackets

Aeration

When O₂ transfer is limited or cell density is very high:

OUR = OTR X q_{o2} = $k_L a (C^* - C_L)$

OTR [mg O_2 / L / h]

k_L : oxygen transfer coefficient (cm/h)

a : gas-liquid interfacial area per unit vol. (cm²/cm³)

 $k_L a$: volumetric oxygen transfer coefficient (1/h)

C* : saturated DO concentration (mg/L)

 C_L : DO concentration in the broth (mg/L)

How to determine k_L a

Unsteady state method

1) O_2 is removed from the medium by sparging N2 (\rightarrow DO = 0) 2) Air is introduced into medium and DO is monitored

Unsteady state :
$$\frac{dC_{L}}{dt} = OTR = k_{L} a (C^{*} - C_{L})$$
$$- \frac{d(C^{*} - C_{L})}{C^{*} - C_{L}} = k_{L} a dt$$
$$ln (C^{*} - C_{L}) = -k_{L} a dt$$
$$\underbrace{O'_{L}}_{Slope} = \text{``-k}_{L} a^{"}$$
$$\underbrace{O'_{L}}_{t}$$

How to determine k_L a

Dynamic method

Bioreactor containing cells

Reasons for sterilization

<u>Sterility</u>: the absence of detectable levels of viable organisms in a culture medium or in a gas

Reasons for Sterilization

- 1. Economic penalty is high for loss of sterility
- 2. Many fermentations must be absolutely devoid of foreign organisms
- 3. Vaccines must have only killed viruses
- Recombinant DNA fermentations exit streams must be sterilized

200

Sterilization agents

- 1. Thermal preferred for economical large-scale sterilizations of liquids and equipment.
- 2. Chemical preferred for heat-sensitive equipment
 - \rightarrow ethylene oxide (gas) for equipment
 - \rightarrow 70% ethanol-water (pH=2) for equipment/surfaces
 - \rightarrow 3% sodium hypochlorite for equipment
- 3. Radiation uv for surfaces, x-rays for liquids (costly/safety)
- 4. Filtration
 - \rightarrow membrane filters having uniform micropores
 - ightarrow depth filters of glass wool

Kinetics of thermal sterilization

Practical considerations:

- 1. Not all organisms have identical death kinetics.
 - \rightarrow (increasing difficulty; vegetative cells < spores < virus)
- 2. Individuals within a population of the same organism may respond differently

Kinetics of thermal sterilization

P(t) = Probability that an individual cell is still viable at sterilization time t

N(t) = # of individuals at time t

 $N_o = #$ of individuals at t=0

 k_d = specific death rate

$$P(t) = \frac{N(t)}{N_o} = \exp(-k_d t)$$

Temperature effects on kinetics of thermal sterilization

Arrhenius Equation

$$k_{d} = \alpha e^{-E_{od}/RT}$$

 α = constant (time⁻¹)

Population effects on kinetics of thermal sterilization

Most Thermal Sterilizations are at 121°C

Organism	<u>k_d (min⁻¹)</u>
Vegetative cells	>1010
Spores	0.5 to 5.0

Spores are the primary concern during thermal sterilization

Variables for thermal sterilization

Primary System Variables in Thermal Sterilization

- 1. Initial concentration of organisms
- 2. Temperature, T
- 3. Time (t) of exposure at temperature T.

Probability of extinction of total population ; $P_o(t) = [1-P(t)]^{N_0}$

Probability of unsuccessful fermentation due to sterilization failure ;

$$1 - P_o(t) = 1 - [1 - P(t)]^{No} = 1 - [1 - exp(-k_d t)]^{No}$$

80

Sterilization chart

- 1. Specify $1-P_o(t)$ which is acceptable (e.g. 10^{-3})
- 2. Determine N_o in the system.
- 3. Read k_dt from the chart.
- 4. Knowing k_d for the spores (or cells), obtain the required time, t.

Batch vs. continuous sterilization

Batch

- 1. Longer heat-up/cool down time
- 2. Incomplete mixing

Batch vs. continuous sterilization

Continuous

B) Continuous Sterilization

1. Shorter time

2. Higher temperature

Sterilization of gases

- \rightarrow aerobic fermentations require 0.1 to 1.0 (L air / (L liquid min))
- \rightarrow 50,000 L fermenter requires 7x10⁶ to 7x10⁷ L air/day
- \rightarrow microorganism concentrations in air are about 1-10 / L air

Methods for Air Sterilization at Inlet

- 1. Adiabatic compression, 220°C for 30 seconds
- 2. Continuous Filtration:
 - \rightarrow depth filters (glass wool filters)
 - \rightarrow surface filters (membrane cartridges)
- 3. Economics ≈ 25% of production costs for air system

Exit gas must be filtered

→ pathogenic
→ recombinant
DNA cells