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q0 < 1: Sawtooth instability, periodic 
flattening of the pressure in the core

Stability of H-mode plasmas related safety factor profile: q(r)

q = 3/2 and q = 2: 
Neoclassical Tearing Modes (NTMs):
• limit the achievable β ≡ 2µ0p/B2

• degrade confinement (+ disruptions)
• often triggered by sawteeth.

H-mode: Limitations
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• ITER work point is chosen
conservatively: bN £1.8 !



Neoclassical Tearing Mode (NTM)
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R. Carrera et al, Physics of Fluids 29 899 (1986)
- One of the earliest theoretical paper



Neoclassical Tearing Mode (NTM)

6

neutron 
rate



Neoclassical Tearing Mode (NTM)
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Neoclassical tearing modes can occur well below ideal limit
• ‚practical β-limit‘ in ITER standard scenario (ELMy H-mode)
•can also lead to disruptive temination (especially at low q)

H. Zohm et al., Plasma Phys. Contr. Fusion 37 (1995)
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• Ideal MHD: h = 0 • Resistive MHD: h ¹ 0

Neoclassical Tearing Mode (NTM)



Neoclassical Tearing Mode (NTM)
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Neoclassical Tearing Mode (NTM)
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• Pressure flattening across magnetic islands due to large transport 
coefficients along magnetic field lines

p



Neoclassical Tearing Mode (NTM)
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- Pressure flattening across magnetic islands due to large transport 
coefficients along magnetic field lines



Neoclassical Tearing Mode (NTM)
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Neoclassical Tearing Mode (NTM)
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R. Buttery et al, Plasma Physics and Controlled Fusion (2000)

sawtooth collapse

HW: What is the Belt model?



Neoclassical Tearing Mode (NTM)
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JET



Neoclassical Tearing Mode (NTM)
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- Increased sawtooth period due to 
stabilisation by fast ions produced by ICRH 
leads to the triggering of n = 2 NTM 
activity which causes a termination of the 
discharge.



Neoclassical Tearing Mode (NTM)
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Neoclassical Tearing Mode (NTM)

• Loss of BS current inside magnetic islands (helical hole) acts as 
helical perturbation current driving the islands – so once seeded, 
island is sustained by lack of bootstrap current

• Inside islands Ñp and thus jBS vanish 

• At high βp, pressure gradient drives plasma current by 
thermo-electric effects (Bootstrap current): 

jBS µ Ñp

17



• Tokamaks have good confinement because the flux surfaces lie on 
nested tori

•If current flows preferentially along certain field lines, magnetic islands 
form

• The plasma is then ‘short-circuited’ across the island region

• As a result, the plasma pressure is flattened across the island region, 
and the confinement is degraded:

Background
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q

Field lines
on surfaces
of constant r

Field lines
on surfaces
of constant W



The concept of D¢
• We begin by defining the perturbed flux:

• Away from the rational surface, y is determined by the equations of 
ideal MHD: a second order differential equation

– it predicts that y has a discontinuous derivative at r=rs

– this is conventionally parameterised by D¢:
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Basic tearing mode equation

• The discontinuous derivative arises because of currents, localised 
around the rational surface, where ideal MHD breaks down

• Integrate this over a period in x and out to a large distance, l, from the 
rational surface (w<<l<<rs): basic tearing mode equation

• The different models for non-linear tearing mode evolution employ 
different models for J||
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Rutherford tearing mode equation

• Basic ‘Rutherford’ model: take a simple Ohm’s law for J||

• In the absence of perpendicular drifts, perpendicular currents are zero, 
and so we have Ñ×J= Ñ||J||=0, or J||= J||(W)

• Thus, by averaging around flux surfaces <…>, we eliminate j to 
derive

• Relating y to the island width, w, we then arrive at Rutherford’s eqn:
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Neoclassical tearing mode drive

• The bootstrap current in banana collisionality regime  is approximately:

• Recall that the pressure gradient is removed from inside the island:
– there is a ‘hole’ in the bootstrap current around the island O-points
– provides another contribution to J|| perturbation to drive the tearing mode

• Using the above expression, we derive the neoclassical tearing mode 
equation:
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Neoclassical tearing mode:
properties

• For typical tokamak profiles bootstrap contribution drives island growth

• When D'<0 (Rutherford stable), there exists a stable, saturated island 
width solution:
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Saturated island width

• The saturated island width is:

• The saturated island width increases with bq
– as the confinement will deteriorate with increasing island size, this sets 
an effective b-limit in tokamaks
– the saturated island width can become a large fraction of the plasma 
radius, and this can lead to disruption

• As D' becomes more negative for increasing poloidal mode number, m, 
it is the lowest m modes which are most dangerous.

• Nevertheless, the above model predicts magnetic islands at all 
rational surfaces:

– so why does the tokamak work?
– additional “threshold” physics is important at small island width
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Threshold effects:
small island width physics

• For sufficiently small island widths, the pressure is not completely 
flattened inside the island
Þ the bootstrap current drive is not so effective for small islands
Þ we refer to this as ‘finite radial diffusion effects’

• The expression for the bootstrap current is based on an expansion in 
the ratio of the banana width to the equilibrium length scales
Þ the theory must therefore be questioned for islands with a width 
comparable to the ion banana width
Þ we refer to this as ‘finite orbit width effects’



• The connection length Lc is the
distance along a field line from one side
of the island to the other - i.e. the route
for the enhanced transport that flattens
the temperature. Lc~1/w so the
enhanced transport is reduced for
small islands.

• When w is close to a critical width wc,
both the flattening and hence the
bootstrap drive are reduced, giving
rise to a threshold.

Fitzpatrick Model for Transport 
Threshold



Finite radial diffusion:
(Kieran will discuss more detail)

• For a simple illustration, consider diffusive electron heat fluxes parallel 
and perpendicular to field lines:

• In the absence of heat sources Ñ×Q =0, so that

• Now c||>>c^
Þ generally radial diffusion can be ignored
Þ Ñ||T=0, so that the temperature is flattened across the island

• However, the gradient operators depend on island size:
–
–

• Balancing terms Þ radial diffusion is important for w<wc, where

• Needs much more care for ion thermal transport and particle transport
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Finite radial diffusion:
Threshold

• Thus, for sufficiently small islands, w<wc, the temperature is not 
flattened across the island, and the bootstrap drive is weakened:
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Finite orbit width effects

• For small islands of width comparable to the ion banana width, ions 
and electrons respond differently to the island:
– an electrostatic potential is required to maintain quasi-neutrality in the 

vicinity of the island
– ions and electrons experience E´B drifts 
– the ions experience an orbit averaged drift, which differs from the local 

drift experienced by the electrons for island width~ion banana width
– a perpendicular current is generated; this is the polarisation current
– the polarisation current is not divergence-free
– sets up an electric field to drive a current parallel to field lines
– this current can influence island evolution

• The theory is still under development
• Consider island width much greater that the ion banana width

– led to the inclusion of the so-called ‘polarisation term’ in the modified 
Rutherford equation



Polarisation term

• Allowing for the polarisation term, the modified Rutherford equation is:

Note:

•In general, the full story is more complicated
•The transport and polarisation terms interact (especially ion thermal and 
particle transport)  
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The challenge

• Both the transport model and the polarisation current provide a 
threshold island width comparable to the ion banana width:

– Kinetic theory with full ion banana widths is essential

• This provides a rich, essentially unexplored vein of physics

• Gyrokinetic models are being developed to address this issue.



...leads to the so-called Rutherford equation
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• for small Ñp, current gradient (D') dominates

Þ 'classical Tearing Mode', current driven

• for larger Ñp, pressure gradient dominates:

Þ 'neoclassical Tearing Mode', pressure driven

• adding an externally driven helical current can stabilise
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Interpretation of the different terms

Tearing Modes – nonlinear growth



Neoclassical Tearing Mode (NTM)

34

4th: Stabilization from small island & polarization threshold:

3rd: Destabilization from perturbed bootstrap current:

5th: Stabilization from replacing bootstrap current by ECCD:

1st : Conventional tearing mode stability: assumed as                for m/n NTM 0 sr mD¢ » -

1 22 /
marg iw qe r» (= twice ion banana width)

2nd: Tearing mode stab. enhancement by ECCD:Westerhof’s model with no-island assumption
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fitted by inferred size of saturated NTM island (e.g. ISLAND)2a
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Neoclassical Tearing Mode (NTM)
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Helical current can be driven by electron cyclotron resonance waves
Deposition controlled by local B-field Þ very good localisation
Feedback control of position possible via launch angle of ECCD beam

• Missing bootstrap current   
inside island can be
replaced by localised
external current drive.

O-wave

X-wave



Neoclassical Tearing Mode (NTM)

• Complete stabilisation by searching the position of 
the magnetic island by scanning magnetic field in quantitative 
agreement with theory!

361st Paper: G. Gantenbein et al, PRL 85 1242 (2000)



Neoclassical Tearing Mode (NTM)

• Disruption avoidance by ECRH
Target: a discharge that disrupts due to an early (2,1) NTM 
(q = 3.9, bN=2.6)

37B. Esposito et al, Nucl. Fusion (2011)



Neoclassical Tearing Mode (NTM)

• Disruption avoidance by ECRH
1.5 MW of ECCD sufficient to avoid disruption, prepare safe landing
note: discharge never recovers performance – need to develop strategy
analysis of ‘scalability’ ongoing

38B. Esposito et al, Nucl. Fusion (2011)



39• Demonstration of individual elements as well as integrated feedback

Feedback controlled
Deposition in DIII-D
Feedback controlled
Deposition in DIII-D

NTM stabilisation with ITER 
relevant broad deposition 
in ASDEX Upgrade

NTM stabilisation with ITER 
relevant broad deposition 
in ASDEX Upgrade

NTM Stabilisation by ECCD
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NTM Stabilisation by ECCD
• KSTAR

#6272
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NTM Stabilisation by ECCD
• KSTAR

KSTAR #6272

2/1 mode

4/2 mode
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NTM Stabilisation by ECCD
• JT-60U



NTM Stabilisation by ECCD
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Courtesy from R. J. La Haye, APS (2005)
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