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7.1 Introduction

The force method of analyzing a structure begins with the use of statics to
obtain the equilibrium equations, which relate the unknown forces to the
known forces.

- the known forces : the applied loads
- the unknowns : the reactions at the supports and the internal member loads

- No. of unknowns = No. of equilibrium equations : statically determinate
; as far as the forces are concerned, the problem is finished once equations
are solved.

We must be sure that the structure is stable before seeking the solution of
the equilibrium equations; if it is not, a solution is not possible.
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7.1 Introduction

unknowns«.5 support reagtions
+ 5 member forees = 10

equilibrium egs. = 5 node * 2

(a) (b)

(@) plane truss (b) Free-body diagram showing =gli'0
the support reactions.

Statically Determinate.
But the structure is unstable.

In figure (c) there exist
moment about point A.

(c) (d)

(c) Free-body diagram of the portion of the truss spanning
nodes 1,2, and 4. (d) illustration of the kinematic instability.
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7.1 Introduction

Once the forces have been determined, we can find the displacements at selected points on the
structure using the principle of complementary virtual work. This requires bringing the
structure’s material properties and cross-sectional details into the picture. All real structures are
flexible to one degree or another; there is no such ting as a perfectly rigid body. The degree of
flexibility allowed is part of the design process, and deflection analysis is required to ensure that
static displacements remain within the limits prescribed. Calculating displacements is therefore
fundamental to the analysis of structural dynamics and structural stability.

Statically indeterminate structures are those for which the methods of statics alone are
not sufficient for calculating the internal loads and external reactions. A structure of this
type has more than the minimum number of members and/or supports required for it to sustain
a given load without collapsing or moving off as a rigid body. The excess members and
supports are called redundants. Highly redundant structures, such as aircraft, provide a variety
of internal load path options. Should a given redundant member fail for some reason, the
remaining ones will continue to provide the means of carrying the load.
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7.1 Introduction

- Simple example of a redundant structure

» One of the springs is redundant, only a single spring is needed to transmit the load P to the

wall. => the redundant : member spring 2
* Applying statics to the free-body diagram in part (b) of the figure, P;=P - P,

* \WWe must also take into consideration the deformation of the structure and invoke a
compatibility condition. If s, is the stretch of spring 1 and s, that of spring 2, then
compatibility simply means that s, =s,
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(a) (b)
Figure 7.1.2 (o) Parallel {redundant) elastic spring structure. (b} Free-body diagrams showing internal loads.
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7.1 Introduction

The portion of the applied load carried by a spring depends on its relative stiffness.
The large part of the load is borne by the stiffest spring. Obviously, as the spring rake
k,; goes to zero, so does P1, and the other spring must absorb all of the load. If k,=k,,
then P,=P,=P/2: both springs share the load equally.

Adding more parallel springs to the assembly would not limit our ability to find all of
the internal loads using this procedure, which is a simple example of the force method.
In more complex structures, the principle of complementary virtual work is used to
enforce compatibility.

In this chapter, we will apply the force method to the analysis of skeletal or “stick-
like” structures, using the principle of complementary virtual work to find
displacements and forces in statically determinte and indeterminate trusses, beams,
and frames.
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7.2 RODS: Complementary Virtual Work

- a slender bar, possibly slightly tapered
- transmit loads parallel to its long axis
- The load resultant N at any section must pass through the centroid of that section

- carry an intermediate load p distributed along its axis, such as when it is attached to
shear panels in a stiffened web structure.

- There may also be a variable temperature change 7 from ambient along the rod,
producing thermal strain.

- Since the axial load N acts at the centroid, the stress e, IS uniform across each section
and o, is the only nonzero stress component; likewise oo, IS the only virtual stress
component.
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7.2 RODS: Complementary Virtual Work

[ sosuav

/
56, (% +ch) (Adx)

(:SN)(N) — L SN -
=) \azg ( Ci)—l-f(T)(ﬁ' ) (Adx)

0

Pl ———f ——i ——Fa

(a) Actual load

Figure 7.2.1 The rod element.
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(b) Virtual load
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To find the displacement at a given node of a statically determinate truss
1. calculate the internal forces N in each truss member e due to the actual applied loads.

2. remove all of the true loads and apply a fictitious force 60 to the given.node, in the direction
of the desired displacement component.

3. solve for the resultant virtual forces oN®© throughout the truss.

' no. of rods 1 (&) () L
6 Wf’ *® B

gl 0

5. Recall that the complementary virtual work of the virtual force 6Q is the product of 6Q and
the actual displace 7' (s) in the direction of the virtual force or

SW2 = 430

6. Finally, we equate the internal and external complementary virtual work, as follows:
SWZ, = W

exl int
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Example 7.3.1  For the statically determinate truss in Figure 7.3.1, calculate the horizontal
displacementu, at node 4 due to a vertical load P at node 1, using the principle of complementary
virtual work. The Axial rigidity AE is the same for.all members of the structure.

3 &£

U TR, (2) 1
(1)
&L

Figure 7.3.1 True load P at node 1 and the corresponding member

forces (in parentheses).
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7.3 Truss Deflections Using Complementary

N ivtrnal Wl
Vil ltudl Yyvul N

We can determine the member forces resulting from the vertical force P at node 1 using statics, and the results are pre-
sented alongside each member in Figure 8.3.4. Since we are seeking the horizontal movement of node 4, we remove the load
from node 1 and apply a virtual force 6 Q acting horizontally at node 4. The corresponding member loads are shown in paren-
theses in Figure 7.3.2.

Figure 7.3.2 Virtual applied load and corresponding virtual member
loads (in parentheses).
rod 4 rod 5
rod 1 rnd 2 rod 3 ~
(P)L PYL 2PL K ( V2P) fL 2P)~/_L |
1sdQ = 44 i . ) (—80) + ~— (v2 25Q)+ (0)

=214 f:z / =

The minus sign means that the displacement is to the left, in the direction opposite to that of §Q.
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7.3 Truss Deflections Using Complementary
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Example 7.3.2 For the truss of the previous example, loaded as shown in Figure 7,3,1, Calculate
the rotation of member 5.

3

K =
T TT T éy)xf 7777 . (2) 1
Figure 7.3.1 True load P at node 1 and the corresponding member Figure 7.3.3 Virtual loads required fo find the rotation of member 5.

forces (in parentheses).
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7.3 Truss Deflections

The complementary virtual work associated with a (small) rotation 8% of member 5 is #)8C, where 8C is a virtual couple
in the plane of rotation. We cannot apply a point couple to rod 5, because it is a two-force member, and loads can only be applied
to it at its ends. Therefore, we apply a pair of equal but opposite virtual forces § O to nodes 1 and 4, as shown in Figure 7.3.3,
which also shows the resulting member loads, found by using statics. The moment of the couple formed by the virtual forces is
§Q x /2L, counterclockwise. Therefore, from the principle of complementary virtual work, we have

rod 1 rod 2 rad 2
o (VaLs0) = (T (as0) + T (Vis0) + E3E (vitg)
rod 4 ma 5

Canm

AE AE (00

Upon simplification, we get

BL).
-60Q

69 (V2Ls0) = (6+4v72)

A
so that
o) — 8.243i
AFE

The rotation of the rod is counterclockwise, in the same direction as the virtual couple.
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Example 7.3.3 The Truss in Figure 7.3.4a is not loaded, but member 1 is heated to a uniform
temperature T above ambient and member 2 is heated to 2T. The temperature in the other rods
increases linearly from T to 2T. If the axial rigidity AE.and the thermal expansion coefficient

& are the same for all members, calculate the displacement %4 of node 1, using the principle of
complementary virtual work.

i 2
Fon
\2)
T 2T
( [—SQ}
% 4 15 ; 4 15 00
777777, 7 77, TR, I T 7T 777, TITTTT 77777777777,
(a) (b)
Figure 7.3.4 (a) Unloaded truss with thermal strain. (b) Virtual load at node 1 and the corresponding mem-

ber forces.
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7.3 Truss Deflections Using Complementary

-

The linear témperature variation in rods 3 and 4 is given by T [[ 4 (s/ﬁL)J while that inrod S is T [1 B (5/;{,)]

To find the displacement at node 1, we remove the thermal loading and apply the virtual force 6(Q, which is shown in Figure
7.3.4b along with the corresponding member loads, found by using statics. Even though the true loads are zero, we still have

a thermal strain term in the virtual work expression, Equation 7.3.1. Therefore, by the principle of complementary virtual
work, we have

rod 1 rod 2
U180 = («TL) (=80) + QaTL)(—8Q)
rod 3 m(.l 4
B V2L '
- s B - o 8 C /
% /cef (1 4 \/EL)“H (\@sg)+ J aT(I_ ,_ \@L)d.s (\/ESQ)
0
- rod 5
= L
Y
-+ .[QT (1 e E)d.s- (—30)
L0

This reduces to
3
u18Q = —aTL8Q —2aTLSQ + 3aTL3Q +3aTLSQ — ;a}‘ LSO
so that we finally obtain a rightward displacement of node 1 in the following amount

‘%

Uy = :q-a?'L
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7.4 Statically Indeterminate Trusses

- For indeterminate structures,

the number of unknown forces > the number of equations available from
statics

=> The differences are the number of redundant forces

- the first step towards calculating the forces in an'indeterminate structure is to
single out the redundant members and/or supports and, on a sketch, show
their effect on the structure through the loads they exert. In other words,

We cut through each redundant member, revealing the force within it

and applying that force to the structure as though it were an external load.
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7.4 Statically Indeterminate Trusses

Figure 7.4.1  Doubly-redundant truss. Figure 7.4.2 Possible choices of redundants in the truss of Figure 7.4.1.

This has two degrees of redundancy: an extra member plus an extra support. If we take away member
the truss remains stable. If we also take away the support at node 4, the truss is still unable to undergo
rigid-body motion. Upon removal of both the member and the supports, the truss becomes statically
determinate. The statically determinate structure that remains after cutting away the redundant i
called the base stru~*——- 1 1

Figure 7.4.3 Invalid choices of base structure for the indeterminate truss in Figure 7.4.1.
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7.4 Statically Indeterminate Trusses

Figure 7.4.1  Doubly-redundant fruss. Figure 7.4.2 Possible choices of redundants in the truss of Figure 7.4.1.

Assuming member 4 is in tension, it exerts the force N on nodes 2 and 3. The roller support
at node 4 applies a vertical force Y, to the node. We assume this force to be directed upwards.
The truss in Figure 7.4.2a appears to be a statically determinate truss acted on by four external
forces.

Using statics, we can now solve for the forces throughout the base structure, in terms of P,
N? and Y,.

Figure7.4.2b shows an alternate choice of base structure. Indeed, there are several other
possibilities, all of them equally valid. In any case, the base structure we end up with must be
stable and properly supported.
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7.4 Statically Indeterminate Trusses
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After settling on a proper base structure, we draw its free-body diagram and calculate the axial
load N in each member e in terms of the applied load P and the redundants N and Y,. We
then remove the true loads from the truss and replace the redundant loads by virtual loads.
Using statics, we calculate the resulting virtual internal load s~ “in each member of the truss.
With the real and virtual loads thus determined, we can write the complementary internal
virtual work sw;,” for each member of the original structure. WWe sum them up to obtain sw,
for the whole truss, as follows:

o TI7 % sty *(e L 2 , ,
Wip = Zébl im‘ = Z (AE) NN
e ¢

According to the principle of complementary virtual work, the external and internal
complementary virtual works must always be the same. Therefore, for the truss, we have

L (e)
W, = (ﬁ) N©SN©
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7.4 Statically Indeterminate Trusses

The external complementary virtual work sw

ext

is that of the virtual 1
forces in Figure 7.4.4 acting through the real displacements of their
points of application. The complementary virtual work.of

IS §Y4is 8Y4 x vy , Where vy is these true vertical component of
displacement of node 4. But », = 0 _because the support at node 4

presumably prevents vertical motion. The complementary virtual
work sN@ is also zero, as can be seen by studying Figure 7.4.5

Remember that we do not physically cut the redundant
members out of the structure. The redundant forces
shown on the base structure in Figure 7.4.4 occur at an
imaginary cut taken at some point along the member

Yo TRl da) mantna

o1 lf\l’\ [aY el V\I'\:If\+ 'l :V\ I_ 7 A _E TL\I\ r\r\mnln 2 W
SUlll as pPullit a 1 riyuic r.4.9. 111C CUTTIPICTTICHILAly

4
Y,

Figure 7.4.4  The base fruss of

Figure 7.4.2a subject-

ed only fo the virtual

redundant loads.

SN@ ﬂ—+ a

virtual work of these virtual forces is &

a ¢—» sN@4

SW* = 5N{4J X Uleft + §N(4} X Uright Figure 7.4.5

SW*=86N® x u4+86N® x (—u) =0

—————U

Virtual member loads and true displacement

at the point of the imaginary cut.
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7.4 Statically Indeterminate Trusses

This same argument can be used to show that the complementary virtual work of redundant
member forces is zero not only for truss elements but for members of any other type of structure,

as well.
Since the external virtual work is zero,

Z (L)m N{u)aNtcl =1
E AE
This equation must be valid for any choice ot the two virtual loads sy, and sy ®  Therefore,
above equation will yield the two additional equations needed to solve for all of the forces in the
indeterminate truss.

It should be pointed out that although the displacements at a structure’s supports are usually zero,
this need not be the case. For example, node 4 of the truss in Figure 7.4.1 might well have been
given a specified upward displacement v,. In that case, the complementary virtual work of sy,
would be sy, % v, _instead of zero, which would appear on the right of above equation. The point if
that v, is a known nonzero quantity, so that the complementary virtual work equality,

I (e)
e (E) NOSN© = 1,87,

e
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7.4 Statically Indeterminate Trusses

Example 7.4.1 Calculate the internal forces in the Figure 7.4.6, using the principle of
complementary virtual work.

E is uniform throughout

R G - M 2 aL.L)

| Ai =4

| A;=d;=154
| Ay=As =24
|

|

4 (3L, 0)

Figure 7.4.6 Truss with single degree of indeterminacy.
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7.4 Statically Indeterminate Trusses

Let us choose the horizontal support at node 4 as the redundant, so that our base structure is as shown in Figure 7.4.7. The
support reactions are immediately obtained from statics. Using the joint method, we can find the member loads, as shown in

the figure, in terms of the applied load P and the redundant reaction X,. In Figure 7.4.8, we remove all of the true loads on the
truss, apply only a virtual redundant load § X4, and calculate the virtual internal loads shown.

Figure 7.4.7 Base structure for the indeterminate truss, showing the computed
true reactions and member loads.

1 -38X, 5)

Figure 7.4.8 Virtual loading of the base truss.
SRS
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7.4 Statically Indeterminate Trusses

According to the principle of complementary virtual work, W* = §WZ . so that in this case,

it ext?

. (e)
(A—E) N@SN©® = y48X4 = (0)8X4 =0

since the horizontal displacement u, at node 4 is constrained to zero by the pin support. Expanding the summation, using the
data shown in Figure 7.4.7, and noting that L) =L, L® =L® =1414L, and LYW =L® =2236L, we get

element 1 element 2 element 3
I 1.414L 1.414L
— (P —3X4)(-36X4) + ———(-0.4714P — 1.414X4)(—1.4145X4) —|— (-0.9428P — 1.414X4)(—1.4146X4)
AE 1.5AE AE
element 4 element 5
2.236L 2.236L

(1 491 P +2.236X4)(2.2366X4) + \E (0.7454P 4 2.236X4)(2.2366X4) =0

Collecting terms and simplifying, we get

P XalL
A7—— +2395—— | 6X4 =0
(10 TAE+ AE) 4 [a]
which means that
10.47
X4 =———P =-04374P
23.95

The redundant load X, has thus been found in terms of the applied load P. Substituting X, into Figure 7.4.7, we obtain the
results shown in Figure 7.4.9. Observe that the actual direction of X, turned out to be opposite to what we assumed.
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7.4 Statically Indeterminate Trusses

1 (0.3121P) 2

0.5626P

Figure 7.4.9 Reactions and member forces for the truss of Figure 7.4.6
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7.4 Statically Indeterminate Trusses

Example 7.4.2 Solve the problem in the previous example by selecting member 1 of the truss as
the redundant.

Y ldy
e I/T“\' ( )

E is uniform throughout

. (L, L)

| A=A

| A= As=1.5A
| Ay =As =24
|

|

Figure 7.4.6 Truss with single degree of indeterminacy.
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7.4 Statically Indeterminate Trusses

With the horizontal member 1 of the truss in Figure 7.4.6 chosen as the redundant, the base structure becomes that shown
in Figure 7.4.10, and statics yields the true reactions and member loads, also shown. Removing the true loads and applying just
a virtual redundant load yields the situation illustrated in Figure 7.4.11.

Figure 7.4.10 Base structure of the truss in Figure 7.4.6 when member 1 is select-
ed as the redundant.

1 sND SND o

Figure 7.4.11 Virtual loads due to virtual redundant §N(D,
National Research Laboratory for Aerospace Structures !



7.4 Statically Indeterminate Trusses

Since the redundant is an internal force, the external complementary virtual work is zero. Therefore, according to the principle
of complementary virtual work, the internal complementary virtual work §W:*, must also be zero. That is,

element | element 2 element 3

L 1.414L L _ |
— NWsND 0.4714N ) (0.47148 NP -0.4 7 )
T E e )( o s g (O4714P +04714ND)(0.47145N D)

element 4 element 5

2.236L (1 (1 22
o (0.7454P — 0.7454N M) (-0.74545N ) +

w,
= (-0.7454N V) (=0.74545 NV) = 0

so that the redundant load, in terms of P, is

0.8307
2.661

= P =-03121P

We can substitute NV into Figure 7.4.10 to obtain the values for all the other initially unknown loads, which are identical to
those in Figure 7.4.9, as the reader can verify.
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7.4 Statically Indeterminate Trusses

Example 7.4.3  Calculate the vertical component of the displacement of node 1 of the staticallty

indeterminate truss of examples 7.4.1 and 7.4.2.

E is uniform throughout

2 (L, L) 2

| A=A

| Ay= Ay= 154
! Ay =As =24
|

|

Figure 7.4.6 Truss with single degree of indeterminacy.
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7.4 Statically Indeterminate Trusses

For convenience, the structure and its computed loads are reproduced in Figure 7.4.12.

To calculate the vertical displacement of node 1, we apply a vertical virtual force to that point of the truss. That virtual
load can be supported by any stable, statically determinate substructure of the complete truss. For example, we can imagine
§ P to be supported entirely by members 2 and 5, as illustrated in Figure 7.4.13, which also shows the rod loads required for
node 1 to be in equilibrium. The virtual forces throughout the rest of the truss may be assumed to be zero. Therefore, according
to the principle of complementary virtual work, we have

(-0.2327P)(2.236L)

NAL® NOL® 0.1471P)(1.414L
N © _ A ) 0.94285P) +

viéP = IN® + ———8N

(0.74546 P)

AQED AOED 1.5AE 2AE
Pl

=-0.06310—6P
AE

A=A

A>=A;=1.5A

A 4= r’\_,; =2A

E is uniform throughout

4 (3L.0)

Figure 7.4.12 Computed member loads (in parentheses) in the statically indeterminate
truss of the previous two examples.
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7.4 Statically Indeterminate Trusses

Figure 7.4.13 Statically determinate substructure of the truss containing node 1.

The vertical displacement of the node is then

PL
V) = —0063102-5 [a]

aboratory for Aerospace Structures ! !--‘
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7.4 Statically Indeterminate Trusses

The minus sign means that the displacement is downward, in the direction opposite to that of the virtual load § P.

To illustrate the fact that any statically determinate substructure containing node 1 may be used, let us choose the one
shown in Figure 7.4.14. Analysis of the equilibrium of nodes 1 and 2 yields the internal virtual forces written alongside each
rod. The virtual forces throughout the remainder of the complete truss are zero. Once again, the principle of complementary
virtual work requires that

oP

Figure 7.4.14 Alternative choice of statically determinate substructure to
support the virtual load at node 1.
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7.4 Statically Indeterminate Trusses

ND[D
ADED

N D
A EM)
rod 1

(2)

V8P = SN® 4+

N[?'}L(B)
ABIEG)

rod 2

SN@J 4

(0.3121P)(L)

(0.1471P)(1.414L)

= ——————"4F)

(1.4146P)

AE (1.54)E

rod 3

rod 4

(-0.3243P)(1.414L)
(1.5A)E

PL
=-0.06308—46 P
AE

so that, as before,

(047146 P) 4

(0.5127P)(2.236L)

ST (=0.74545 P)

PL
VvV = —006310@ [b]
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7.4 Statically Indeterminate Trusses

Example 7.4.4 Each member of the indeterminate truss in Figure 714115 undergoes a
uniform temperature rise from.ambient, in which state the truss is
unstressed. Assuming the axialrigidity.AE and the.thermal expansion
coefficient are the same for all of the members, find the internal loads.

A, E, a uniform throughout
@ L Temperature change in each rod: 7', T, Ty

$ ® 45¢
3 L

Figure 7.4.15 Thermally-loaded indeterminate truss.
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7.4 Statically Indeterminate Trusses

Select member 2 as the redundant, so that the base structure is as shown in Figure 7.4.16a, along with the true loads.
Removing the true loads and applying a virtual redundant load yields the same picture, Figure 7.4.16b. Since the supports are

immobile, the external complementary virtual work is zero. Therefore, W,

Z 5 Wmt

lnt

element |

V2 (2)

N2 N . /2
2 1)

— 2 qiamTWIL

( AE O ) ( 2

3

2

= 0, and from Equation 7.2.2,

TETTT af“’}Tf“) L@OSN©® =0

element 3

(2)

N
leZ}

E

Figure 7.4.16

(a)

(a) Base truss showing the redundant load and the
reactions to it. (b) The virtual loads.

ey

4 :IT(?*)) V2LSN® 4+ (

V2

2

A2 ar(2)
7N+QT{3)) ( ?53\;(2)) 0

AE

(b)

SN

V2

National Research Laboratory for Aerospace Structures

=



7.4 Statically Indeterminate Trusses

This simplifies to

{(1 + Jﬁ) e TR [ﬁT‘z‘ - % (T + T(”)”m@' =0

(2)
AE

Solving for N, we have

NO _ Y2 ABw [l (TD 4 T®) T(Z)}
142 2
Then, from Figure 7.4.16a, we get
NO_No - _yo___ 1 ,p, F TD +7®) — T(Z)]
2 RN ) 2
If the temperature change is the same for all of the rods (T =T® =T® =T), then NO = N® = N® = (, that is,

no loads develop within the structure if the heating is uniform. Otherwise, axial loads will accompany temperature changes.
For example, if T® =T and TW =T® =0, then PV = P® = 0.4142AEaT and P® = —05858AEaT;ift TD =T
and T® =T® =0, then PV = PP = _02071AEaT and PP = —0.2929AEaT.
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7.4 Statically Indeterminate Trusses

Example 7.4.5 Find the forces throughout the truss in Figure 7.4.17, using the principle
of complementary virtual work.I he axial rigidity AE is the same for all
of the members.

;
| 50.20)

4

Fiqure 7.4.17 A truss with two degrees of static Figure 7.4.18 Statically determinate base structure
: . indeterminac and the true loading for the truss in
s Figure 7.4.17.

National Research Laboratory for Aerospace Structures !



7.4 Statically Indeterminate Trusses

This truss has two redundants, which we can select as members 8 and 9, in which case the base structure is as shown in
Figure 7.4.18. The reactions shown in the figure are obtained from statics, and the joint method of equilibrium analysis yields
the member loads in terms of the applied loads P and the redundants N® and N®. These are listed here in Equation a. The
virtual loads on the base structure are shown in Figure 7.4.19. The corresponding virtual member loads can be obtained from
the true member loads by setting the true applied load P equal to zero and replacing the true redundant member loads N® and
N® by their virtual counterparts, N® and 8N | respectively. In Equation a all of the self-equilibrating virtual member

loads are listed alongside the true loads.

5

True Loads

Virtual Loads

N® =_-1.581P — 0.5270N®

N® =1.581P — 0.5270N®

N® = —0.5590N® +0.5590N
N® = —0.5590N® +0.5590N
N® =0.707IN®

4 N©® =0707IN®

Figure 7.4.19  Virtual loads on the base truss. ND =0.5P —0.25N® —0.08333N®

National Research Laboratory for Aerospace Structures

SN = —0.52706N

SN@® = —0.52708N®

SN® = —0.55906N® + 0.55906N©

SN® = —0.55905N® — 0.55906 N la]
SN® =0.70716N®

SN® =0.7071sN®

SND = —0.255N® — 0.083336N®

e



7.4 Statically Indeterminate Trusses

The internal complementary virtual work of the truss is as follows:

12 . )
N@ L@
| e (&)
O Wie = Zl A(r]g[:-zaw
(1) (2)
—1.581P — 0.5270N®) (3.162L : 1.581P — 0.5270N?) (3.162L |
_ | "3 )¢ } (—0.52706N ™) + { % ) }{~0.52?uawﬂ‘“)

(3}

(—0.5590N® +0.5590N ) (2.236L)

E (—0.55908N® +0.55906N ©)

i4)

5 (—0.5590N® + 0.5590N ) (2.236L)

AE
(5) {6}

(—0.55906N ® + 0.55908N )

(0.7071IN®) (1.414L)
AE

(7 (%) (9

- 0.5P — 0.25N® — 0.08333NDY (2L | 'Nn-;;.L er}
% { AE ’ 2 (—0.255N™ — 0.083335N™) + —4;;“5*”‘”'-% L

(0.7071N®) (1.414L)
AFE

(0.70718N ) + (0.70715N'®)
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7.4 Statically Indeterminate Trusses

Collecting terms and simplifying, we arrive at

it

L . .
SWr = A—Fl{ﬁ.ﬂi?h"“‘ — 1.356N? — 0.25P)sN® + (—1.356N® + 4.168N " — 0.08333P)5N?] [b]

#

The external complementary virtual work W, is zero, since both of the redundants are internal loads. Therefore, §W
must also be zero, for any choice of sN® and SN . This implies that the coefficients of these two virtual loads must vanish.
The two equations for the two unknown redundants are therefore

3.937N® _1.356N" = 0.25P

0 [C]
~1.356N® +4.168N® = (0.08333P

The solution of this system is
N® =0.07927P N® =0.04578P

Substituting these two redundant forces into Equation a gives the loads in all of the members, as summarized in Figure 7.4.20.

National Research Laboratory for Aerospace Structures !



7.4 Statically Indeterminate Trusses

Example 7.4.6 Use the principle of complementary virtual work to calculate
the horizontal component of the.displacement at node 1 of

the previous example

L P N5
D
~ifpr—
L.5P
g g
& 5 8
o o —
S = 3
= Jz
4
1.5P
—-
(a) (b)

(@) The truss of Example 7.4.5 and the computed member loads. {b) Statically determinate

Figure 7.4.20  Computed loads in the truss of Figure 7.4.21
substructure and the member loads due fo a virtual load 80 applied to find the horizontal

Figure 7.4.17.
displacement of node 1.

£
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7.4 Statically Indeterminate Trusses

Figure 7.4.21a shows the results of the analysis in Example 7.4.5. Using the principle of complementary virtual work to
find the horizontal component of the displacement at node 1 requires applying a horizontal virtual load at that point, as shown

in Figure 7.4.21b. Since the virtual loads need not satisfv compatibilitv. we can select anv stable. staticallv determinate sub-
structure of the truss to pick up the virtual load §Q. One of several such substructures is shown in Figure 7.4.21b and is com-

prised of only members 1, 2 and 7, the virtual loads in which are readily found from statics. Since the virtual loads in the rest
of the truss are zero, the internal complementary virtual work is given by

NO M » N®@ [ @2 N D
I g N A ), ( b Oy YL
W = A”)Emaw + AQ)EQ]SN + A(?)E[?)aN
(—1.6053P)(3.162L) (1.557P)(3.162L) (0.4764P)(2L)
= 0.52708 e 24 —0.16675
1E (0.52706Q) + A5 (0.52705Q) + v ( 0)
so that
PL
Wi, =-0.2392—50Q

AE

In terms of the true horizontal displacement «, and the virtual load §Q, the external complementary virtual work is
Wi, =u 80

Since W?* = 8§W*

ext mne? we havc

PL
uj =—0.2392—

and the displacement is to the left.

National Research Laboratory for Aerospace Structures !



7.4 Statically Indeterminate Trusses

Example 7.4.7 The truss in Figure 7.4.23 is identical to that in Example 7.4.5.
However, in addition to the applied load P, the vertical displacement
at the roller support 4 is prescribed to be 4. Calculate the member loads.

N 4 (0,0)

Figure 7.4.23 The truss of Figure 7.4.17, with a
prescribed displacement at node 4.

National Research Laboratory for Aerospace Structures !



7.4 Statically Indeterminate Trusses

The truss has two degrees of static indeterminacy, and in Example 7.4.5, the loads in members § and 9 were selected as
the redundants. Since the load at 4 required to produce the specified displacement d is unknown, the degree of static indeter-
minacy increases from two to three. We will treat the vertical reaction Y, at node 4 as the additional redundant, although sev-
eral other choices are apparent. Figure 7.3.24a shows the member loads, obtained from statics, as functions of the applied
load P and the redundants N®, N® and Y,. Removing the true load P and applying virtual loads in place of the redundants
yields the system illustrated in Figure 7.4.24b. Except for member 7, the loads in the rod elements are identical to those

found in Example 7.4.5. Therefore, the only difference in the internal complementary virtual work will be that contributed by
element 7. Thus,

9 6
. _ * () _ * (i) * (8) * (9) * (7)
Wi = E :5W1m = Z Wi~ + Wy, + W, + Wi, [a]
=1 i=l1
Py,
15P | 5
—
=
& 1
= 5)
2 z
= o
= &
' S
2! F
[ I
& S
S i
—f
15P

(a) (b)

Figure 7.4.24 (a) Member loads in terms of the applied loads and the redundant loads (circled). (b) The virtual loading.
U A AR e UL I R e ~lructures
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7.4 Statically Indeterminate Trusses

Using the calculations presented in Example 7.4.5, we get

nt mnt

L L
SWE = = [(3.812N®-1.398N D) §N® + (-1.398N® +4.154N ) sN®] + sw 7 [b]

Since, in this case, we have

NDL®D (0.5P —0.25N® —0.08333N — ¥,)(2L)
*(7) 7 . . ® _ © _
SWrD = T SN = T (—0.256N 0.083338N 8Y4)

Equation b yields, after substitution,

L .
SWE = T [(3.937N® —1.356N® +0.5Y4 — 0.25P) sN®
+(=1.356N® + 4.168N® +0.1667Y, — 0.08333P) SN + (0.5N® + 0.1667TN + 2Y, — P) 5Y,]

This expression must be equated to the external complementary virtual work, which is the product of the true prescribed
displacement d at node 4 and the external virtual load in the direction of d. That is,

SWE, =8Yy xd

Since §W*

oxt = OW,,, after rearranging terms, we therefore obtain

L
-5 (3937IN® —1356N® +0.5Y, — 0.25P) 5N®

L
et 356N ® +4.168N® +0.1667Y4 — 0.08333P) SN

_ AE
i 1o (0_5Nf3) +0.1667N® 4-2¥, — P — Td) 8Y4 =0

s . - =



7.4 Statically Indeterminate Trusses

Requiring this equality to hold for any choice of §P®, §P®), and 8§Y, yields three equations for N®, N and ¥,

as follows:
0.5Y4 =0.25P

N® — 1356N? +

~1.356N® + 4. 168N® +0.1667Ys = 0.08333P
, ’ AE

0.5N® +0.166IN'? 4+ 2¥, = P + = d

The solution of this system of equations is
AEd . \Ed AEd
‘ N©® = 0.04805 2= e 0,5:4.‘4% +0.5P

N® = —0.08320
and Y, into Figure 7.4.24a, we find the truss loads to be as illustrated in Figure

After substituting these values of N®, N®,
7.4.25, where F = AEd/L.
—
1.5P
i
e
—
1.5P
0.5P + 0.525F

Member loads and reactions for
the truss of Figure 7.4.23.

(F=AEd/L)

Figure 7.4.25

™



7.5 SIMPLE BEAMS: Complementary

‘71v+1 l anl
inuvu Yvul

At any point in the cross section of a beam loaded in the xy plane, there is a normal stress o,
due to the bending moment M. and a shear stress 7., due to shear load V, on the section.

Assuming, for simplicity,

 symmetry of the beam cross section => ; _

e M,=0
. T M.
The normal stress at a distance y from the neutral axis is given by = o, = — =Y
For a virtual load, this becomes =~ M,

Y ¥

L . SR | W - -

50, 80,

(1044

YI7117170007

(a) Actual load (b) Virtual load

National Research Laboratory for Aerospace Structures !



7.5 SIMPLE BEAMS: Complementary

‘71v+1 al Wl
1luAal vvuil N

The shear stress at distance y from the neutral axis is

Q. V_r
[t
Where ©. is the first moment about the neutral axis of the shaded area A', that is,

0. = [ yaa

. . . A’
The shear stress arising from a virtual 1vau 1s yiven vy uie same formula,

Q.8Vy
| OTxy = —F——
Y ' A

r.\'_‘.' =

L
Neutral axis

Centroid

National Research Laboratory for Aerospace Structures !



7.5 SIMPLE BEAMS: Complementary

‘7-v+- al Warl:
fwual vvui n

Using these equations, as well as Hooke’s Law for isotropic materials

SWir, = f[[ (3(718_\, + 0%y }/_‘_I\,) dVv
Tyy R
50\ +51’n (Eﬂ‘”

T O T
G
A

3 (f! )f [
jf M rana | [ 22

V,8V, Q2
1212

L
M.5M. V,8Vy 0’
- Co) ([ o) [ C) 1] S
0
L L
SW* — M.5M, T +/‘ VoV, dx
int — simple beam
El A, P
0 0
4 I:I-T bending a' ;;t shear Ek
INQGALIvVIIAAL 1N\Cocvalrvull I—MUUIMLUIy 1vi I_\CI\JSpa.Ce Structures




7.5 SIMPLE BEAMS: Complementary

‘71v+1 al Wl
1luAal vvuil N

* The familiar definition of area moment of inertia, 7, = [ y?dA,
A new quantity called the area effective in shear, A,
I

[ (%) da

A

A; =
» The product EI, is the flexural rigidity and GA, IS the shear rigidity.

The interpretation of A, is as follows. Recall that the shear stress distribution over a cross
section is not uniform. In the case of a rectangular section, it varies parabolically; for other
sections, the distribution is more complex. Suppose we define a nominal shear stress T = /4,
which is uniformly distributed over the cross section A,. Let the corresponding shear strain be
denoted V.. Using these quantities to calculate the internal complementary virtual work due to
shear would yield the following:

L

L
. % Vy V,6V,
!SWm[ shear — ff/y@ra'l/ = ff (_)5'55”/ = //f( 4 f Y "dl‘
G : /;
Vv v 0 (JA" (JA

s
0
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7.5 SIMPLE BEAMS: Complementary

‘71v+1 al Wl
1luAal vvuil N

We can now introduce the form factor
kK = i
A

in terms of which the shear component of the complementary internal virtual work can be written
as follows:

) V,8V,
SWiy = f T

-l £
|

he form factor for a given section is

[ &y
A

National Research Laboratory for Aerospace Structures !



7.5 SIMPLE BEAMS: Complementary

‘7-vh al Warl:
fwual vvui n

Example 7.5.1 Use Equation 7.5.9 to calculateithe form factor for the rectangular
section illustrated in Figure 7.5.6.

Jrql

[ (@)da
A

Figure 7.5.6  Rectangular beam
cross section.

National Research Laboratory for Aerospace Structures
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7.5 SIMPLE BEAMS: Complementary

‘71vtn I 7 rk

The area is A = ht, the centroidal area moment of inertia is /. = i?.fh , and Q. is the first area moment of the cross-
hatched area about the z axis, which is

Q:(y):ffy’tm =
A

For the denominator of Equation 7.5.9, we thus have

~ &\
TR

—_
~
b
T
"?:

~

I —
—
-

-

=

3

t [(h* KAy t (hYy  h%y3 S th’

SR L PRV BT | P

2 16 2 2\ 16 6 5 120
0

Substituting this result into Equation 7.5.9 yields

e 1  (Hen?)’ (L) 120

A ﬂ( ) dA th 1h? 144

120
The form factor for a rectangular section is S / 6. That is, for purposes of deflection analysis the shear force may be imagined
to be uniformly distributed over 83 percent of a rectangular cross section.

|
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7.6 Torsion: Complementary Virtual Work

The internal complementary virtual work for isotropic materials and
including only the nonzero stress terms,_is

” Txy Txz - 1 y
(Swim = f]f (5‘1'—'_\"\‘}/_\'}' += 5_['_\': Yt“) dV = f[/ (5&,\-‘? ~+ 5‘[\-;?) dV = E [/f (1’_1__‘_,(31'_‘_), -+ f_l,:ﬁr.l_:) dV [762]
v v v/

where

Bty = 57T (i—i’ - z) 8T, = STT (%_‘/z" + y) [7.6.3]
Substituting Eq 7.6.1, 7.6.3 into Eq 7.6.2 yields
= [ [ HEDE ()H e

after expanding the terms of the integrand within the curly brackets and
using the formula for the torsion constant J

e ) P (R e

g



7.6 Torsion: Complementary Virtual Work

Solving for J and making use of Equation 4.4.10 leads to the expression

=[G G o) Joa- [ {5 o)) o5 o) o

By applying the divergence theorem for the plane, the second integral
over the arbitrarily shaped cross section A of the bar can be converted
into a line integral around the boundary C of A, so that

? 3 dyr A
(R e S A AR
According to Eq. 4.4.12, the line integral vanishes and we are left with
the following formula for the torsion constant as an alternative to

equation 4.4.14Db: f-*ff{( Z>z (_”ﬂd"‘

Substituting this into Eq. 7.6.4

{ TsT TL

y
* s A * J—
W, = ] G dx torsion bar [7.6.5] o Wml torsion — _G 7 o1

0

If the torque is constant over
the length of the torsion
member, ﬁ



7.7 Beam And Frame Deflections Using

Comnla rv /awtun al Work
L/UllllJlClllC nt 1y vitual Yvuin

Example 7.7.1 Calculate the vertical displacement and the rotation at the
left end of
a cantilever beam under a uniformly distributed load,/as in
Figure 7.7.1,
“Hn due to shear.

p

Y Y Y

Yy ¥ ¥ 7YY ¥7YTYYYvvyvvy

1 L, EI, GA, 2

T,

Figure 7.7.1  Uniformly-loaded simple cantilever beam.
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7.7 Beam And Frame Detlections Using
Complementary Virtual Work

First calculate internal loads (shear and moments)
then calculate virtual shear and bending.moments to use eq. 7.5.5.

—_ sV 5V
i
P l M SM SM
= T) = TD CL E lr)
50 5C
M = —""z‘i SM = —60x M = —8C
¥ = oV = 80 oV =0

(a) (b) (c)
Figure 7.7.2  (a) Shear and bending moment due to the actual load on the beam.

(b) and (c) Virtual shear and bending moments due to a virtual point
load and point couple, respectively, applied at the free end.

* V.oV
o= [ g [P (7.55)
o EI 0 GA

N

then

1 ps? 1 L
P USRS B el T it
1180 Efz[( o SQs)derGASf(pS)(BQ)dS
0

0

e



7.7 Beam And Frame Deflections Using

pnmn] l\“"ﬂl"Y ‘7= “"II ﬂl “71\"]7
UllllJl llClltal Viiludl YYyYuUl
4 2 . .
V180 = p? §Q + il 50 The ratio of the shear portion of the
8EI GA, :
displacement to the total
therefore, the transverse displacems ng'@plﬂﬁr@mer\ '(S“ 1
o pL* L2 V1, total 1+10(L) _I+{'JI L)
' 8EL IGA, . (;)
—_  —— L/p, is the slenderness ratio.
dustoibehdiig’ dusostion the displacement decreases
rapidly with increasing
G=1iE/1+v .
for the shear ke Sk o slenderness ratio.

setdRdlisson’s ratio vy =0.25

let the effective area in shear
equal to the total cross—sectihyn= 4

areg=1_/ p> (p, is the radius of gyration
of cross section)

[1 + 10(";—)}

pL*

RE].

1I.'| -=—

The rotation of the end of the beam

L
H]SC— —— /( )l 3C)ds + —]—/{;3.\;}(0}{2'.\'
G )
0
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7.7 Beam And Frame Deflections Using

Comnlamanta rvy Virtiral Warl:
\/UlllPlC Mmcentd 1y viitudl YYUI R

Frames are composed of slender, possibly curved, beam-like elements capable
of carrying shear and bending loads, as well as axial loads like the members of a
truss.

Even though bending deflections usually dominate, we.may wish to eensider the
contribution of axial deformation, as well as shear adeformation, in the frame
members. To do so, we must combine Equation 7.2.2 and 7.5.5, so that the
internal complementary virtual work of a plane frame member (neglecting thermal
strain) 5

L
M.oM. oV, Né ““-.’
W, = [ =T ds + / - / - [7.7.1]
0 ' (
bending ] shear uwai load

where N is the force normal to the cross section of the member. In a curved
frame like that of Figure 7.7.5 in witch the depth h of the cross section is much
smaller than the radius of curvature A, we can use Equation 7.7.1, replacing ds
with Rd¢

L



7.7 Beam And Frame Detlections Using
Complementary Virtual Work

Example 7.7.3 Find the horizontal displacement of the free end of the
statically

determinate, thin circular frame.(curveddbeam) shown in
Figure 7.7.6

| h
v

Figure 7.7.5  Circular Figure 7.7.6  Curved beam.
frame in
which

R>==h,

=



7.7 Beam And Frame Detlections Using
Complementary Virtual Work

N
T
P o ﬁ

. SM
77 : +. m-")x
oo M
R \

Figure 7.7.7  Virtual load on the circular frame.

M = —PRsing dM = -850 R(1 — cos¢)
V = Pcos¢ 8V =60 sing
N = Psing SN = =80 cos ¢
L _— L L
LOM. V,8V, NéN
3w* = & £ d J b dk' i 771
int E[z § +_/ GA,; 5+] AFE 4 [ ]
0 0 0
-
ﬁuql:—j-[ﬂ—PRmn¢n—aQRil—u“¢HHd¢
Z 'ﬂ
2 1 .
i G]le / (P cose) (80 sing) Rdo + i f (Psing) (—8Q cos¢) Rd¢ E*é
LR c(] - 0 POgE



7.7 Beam And Frame Detlections Using
Complementary Virtual Work

50 PR-"‘+PH' PR)
EI. GA; AE

Setting this equal to the external complementary virtual Wt = 40

So that

Wi = =

PR’ 2(1+v) Iy
”_2EL{]+[ k ‘IME)}

=



7.7 Beam And Frame Detlections Using
Complementary Virtual Work

Example 7.7.4 Use the principle of complementary virtual work to calculate
the horizontal displacement of point 1 of the statically
determinate frame
in Figure 7.7.8a. The area, moment of.inertia, and material
properties are

Liniform throiniahniit

(a) (b)

Figure 7.7.8  (a) Frame with load at point 1. (b) Sign convention for internal forces.
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7.7 Beam And Frame Detlections Using
Complementary Virtual Work

M = P(L — s)
b_a s V=P
Top N=0

oM = —-8Q (L — 5)
8V = — 6Q
6N =0

(a) (b)

Figure 7.7.9  (a) Internal forces due to actual loading. (b) Internal forces due to virtual loading.

L



7.7 Beam And Frame Detlections Using
. Complementary Virtual Wo

beam 1

L L L
. 1 1
0 0 g 0

beaAm2
17 1 T
+ L f(PL)(——SQS)ds+Ef(P)(O)ds—i— GA. f(O)(SQ)dS
0 0

0

beam 3
! 1 2 i 2 ; 2
+ Ei; [P(L—5)](—8QL)ds + 'XE f (0)(—=8Q)ds + GA. f(P)(O)ds
0 0 0
beam4

2L a1 5
1 1 1
-I"E—sz(—PL) [-8Q(L —s)]ds + E[(‘P)(O)d&'-# EE[(O)(_gg)ds
0 0 2

beam 5

1 3L i 3L : 3L
+ EL [ [P(L—5)][-6QL]ds + iE f 0)(8Q)ds + GA. f (—P)(0)ds
0 0 o

. PE’ 3PIL3
SWi = 50 [0+(_2E12)+(0)+(0)+(ZEL )]

L]
a "
> i
~'}?
L _:':'

PL

“1="TFr.
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7.7 Beam And Frame Detlections Using

ComElementarz Virtual Work

Example 7.7.5 Use the principle of complementary virtual work to calculate

the rotation
at point 4 of the frame of the previoussexample.

50
SM =8V =8N=0 A)
SM = — 80
SV =8N=0

SM=8V=8N=0

M =P — s) s M = — 80
V=-pP y SV=86N=0 y

R |,

(a) (b)

Figure 7.7.10 (a) Internal forces due to the actual loading. (b) Internal forces due to the
virtual couple at point 4.
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7.7 Beam And Frame Detlections Using
Complementary Virtual Work

beam 4 beam 5

2L 3L
s 1 1 ‘
W= 0 + 0 + 0 +E—[Zf(—PL)(*5Q)ds+ﬁ—z-f[13(L.fb)](—5Q)d.c
0 0

2PL2 3PL2 PL?
SWi, = !

I il 30 = ——3&
t =g, Q+2EI: ¢ B v

Since the external complementary virtual wetko(s

3We*xt = Swi?{nt
TPL?
O = SET.

=



7.8 Statically Indeterminate Beams and
KFrames

We will use the principle of complementary virtual work to analyze simple,

statically indeterminate beams and frames.

First, Identify the redundants and treat them as external load applied to a
statically determinate base structure.

Then Remove the true loads from the structure and apply virtual loads in
the directions of each redundant.

Finally, we equate the external and internal complementary virtual work
expressions and solve the resulting equations for the redundant loads,
after which all the other loads follow from the analysis of the statically

determinate base structure.

=



7.8 Statically Indeterminate Beams and

L'y»amang
1'1 A11IUD

Example 7.8.1 Use the principle of complementary virtual work to calculate
the reaction EI

z

at the left end of the beam in kigure 7«8«l..Ihe flexural
rigidity IS

y p . E
| r'!“‘l!it!!l"q . L B
| p R @, S 5Y, R
T o F M-
RRRRRERENES
Z I S iy &Y | M

—‘_' A H TI) 5Y, T)

Figure 7.8.1  Singly-redun- X — X —=
dant beam.

(a) (b)

Figure 7.8.2  (a) Statically determinate base structure

with the actual applied loads. (b) Base
structure with the virtual load only.

L



l 7.8 Statically Indeterminate Beams and
|

62 WY N
- A'1 A111ITD
From figure (a), The true moment in terms of the true load

2
X
M=Y|I—-PT

From figure (b), The virtual moment in te
M = 6Yx

The internal complementarty virtual work,
L

L

M.SM. 1 px? 1 (Y1L3 pL“)

. Dl S e = — dY

SWE = £l EL_[(Y;I 5 )(SYIA‘)dx ET. 3 2 1
0 0

Wz, = 8Wg,

However , since the displacement in the di Supported)

SW =0 SW* =0

mt
1 (Y|L3 pL*

Jari=o

El, 3 8
3
Y| = —pL
] S‘D

g



7.8 Statically Indeterminate Beams and

L'y»amang
1'1 A11IUD

Example 7.8.2 Using the principle of complementary virtual work, find the

location and
magnitude of the maximum bending meEhent in the

clamped-clamped

simple beam in Figure 7.8.3."The flexural rigidity IS
unifor > P
- 2 l 2L
I 2 3 3 I L b
3 l . C' S = S
= N ¥, N oY N
?g— ¥ — S @ O - - M, ——x
. Ve, M.
Figure 7.8.3  Doubly-redun- ' ! 8V, oM,
dant simple C D C ' TD
beam. &Y
@_.. 6M1| o
(a) (b)

Figure 7.8.4 (a) Statically determinate base structure
with the actual applied loads. (b) Base

structure with virtual load only. E*%
Epieitradl
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M
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Figure 7.8.5 Bending moment diagram for the beam in Figure 7.8.3.
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7.8 Statically Indeterminate Beams and Frames

Example 7.8.3 The simple beam in Figure 7.8.6 is built in at both ends, and

there are two
intermediate roller supports. The left wallis. displaced

downwards a
prescribed amount d but remains vertical. Neglecting

shear and assuming
El is uniform, use the principle offcomplementary virtual

work to
supports.

i,

Figure 7.8.6 Simple beam of redundancy four.
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T T

Figure 7.8.7 () Statically determinate base beam with the true applied loads, and
the infermediate free-body diagrams. (b) Base structure with the four
applied virtual loads, and the infermediate free-body diagrams.

_ =

For 0 <x </, M. =-M,+Yx §M, = —6M, + 6V x

For [ <x <2, M.=-M +Y i x+Ya(x =1 oM. = =M + 8Y 1 x +8Ya(x — 1)

For 21 <x <3, M.=-M +Yix+Y(x—=0D+Y3(x=2]) SM. = =My + 6Y x + 8Ya(x — ) + 8§Y5(x=21)
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2t

}dx + f {[-M |+ Yix+Ya(x —=D][=8M; +8Y1x +8Y2(x — )]} dx
!

!
N 1
Wao= o | [ 1M1+ Tl =50y + 8ix)
0

3

+ f{[—Ml +Yix+Yox =D+ Y3(x2D][-6M) 4+ 8Y1x + 8Yo(x — 1) + §Ya(x-2D)]} dx
2

1
SWiE, = (E) [(31My — 317Y) = 21°Y, — 112Y3) 8My + (—31°My + 9PY, + $1°Y, + $1°Y3) 8Y,

z

+(22PMy + BPY + 8PY, 4+ 2PY3) 8Ys + (= 32My + 3PY, + 21°Y, + 11PY3) 8Y3]

SW,,, = —véY;

ext-—

3IM, —  31Yy — 212V, — 1PY; =0
—3IMy + IPY + LPY, +3PYs = —ELd

2PMy + 3PV + 3P+ 3PV =0

—SPMy + 3PY 4+ PV, + 1PV =0

WEL 36EL,
d G e d " Py =
52 1 503 :

1==
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36l / lZJI-"f :
GER 517
[ [ /
22FI, f | | okl
Sr’: t 51
S4EI. 6EI
5I° 517

Figure 7.8.8  Support reactions on the beam of Figure 7.8.6.
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l 7.8 Statically Indeterminate Beams and Frames

Example 7.8.4 Calculate the transverse displacement at the midpoint of
the indeterminate beam.in the previous example.

-4 1 I 2 {

ALY

71

Figure 7.8.6  Simple beam of redundancy four.
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Evn mMag
A1'1 A11ATD
36EL 24El,
58 53
. I / I @ 151 15!
22&,!: d C [ N I
502
SeEL
57 5P

(b)

Figure 7.8.9  (a] Actual loads, computed in Example 7.8.3. (b) Virtual load and the selected statically

determinate base structure.

3/ 3/
\ | . I
SW, = 7 / M&Mdx = ET[MSP(A'—I-H)M
2 1.0
21
. 1 [[2ELd 36ELd S54ELd f
VaSerl T T T T ae, LB ('r_a %
.-.ﬁ * 52
3 )
L [[2Eld _36ELd  S4ELd  24ELd T (]
El 512 57t 5p W 62 "_i)dx
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sPd | sPd [
¥ ¢ 2 a :
Wi == f (18x°=591x + 481%) dux + —5— | (-6x" +251x-241%) dx
%f 2l

Wi = 0.0256 Pd + 0.1006 Pd = 0.1256 Pd

it

SW,

ext

= RO
v 125d.

Then, a downward displacement d at the free end beam produces an
upward displacement d/8 at its midpoint.
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7.8 Statically Indeterminate Beams and Frames

Example 7.8.5 Calculate the reaction at point 1 of the frame in Figure

7.8.10, using the
principle of complementary virtual workesAssess the effects

of shear and
stretching on the result. Assume that the material

properties and sectior
prope

Figure 7.8.10 Singly-redundant

frame.
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(a)

Figure 7.8.11 Free-body diagrams of the statically determinate base
structure, showing the redundant reaction Y, as an
externally applied load.

M =Ys M

V=N Element 1 5V =8Y; Element |
N=0 SN =0
M=Y,L—Ps M = 8Y,|L

—p Element 2 5V =0 Element 2

N=¥
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Framces

6W:u awi;t,bendiug + awi:l.smlchjng + "Swi;l. shear

Lie) L)

Msm " : NN\ ©
Bw*lbendmg Z:f ( ) ds Swmt stretching — Zf( )

Lle)

2 (e)
VéVv
EW* t.shear — 2 : ( ) ds

=1

(a) (b)

Figure 7.8.12 Free-body diagrams of the base frame with a virtual
load applied at 1 in the direction of the redundant.
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7.8 Statically Indeterminate Beams and Frames

Example 7.8.6 A pin—supported semicircular frame supports a horizontal
load at point 2

on the top, as shown in Figure./.8.13.+Assuming that the
frame can be

treated as a curved, slender beam of constant Cross
section, use the

princic ' | - work to calculate the
reactions at the

SUppo ycations of the maximum
bending

mome leformation.

Figure 7.8.13 Semicircular frame
joined to the floor by
pin supports.
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o
2 Figure 7.8.15 Free-body diagram of the base
@) & frame with true loads removed
and a virtual load applied in the
Figure 7.8.14 Free-body diagrams of the statically determinate base frame, direction of the redundant
showing the horizontal reaction at 1 as the redundant. :
. i , PR !
F‘or{}gqbgé—: M:XgRsm(iJnLT(l—coscj)) 3M:3X1R3m¢ UEQfJEi’I
4] N PR
For - <¢<m: M:(X1+P)Rsm¢—7(l+cos¢)
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fMaM(RI
=] EL do)

f“—(Rd¢)+ —(Rdd'?)
R PR R | , PR _
= =7 {X1R51n¢+ B -Losqb)} [BX1R singlde + oo [(Xl +P)Rsing — —= (1 +cos¢)] (8X R sin¢) dg
: ) %
33
BT {[(T +1) P +2X 7]} 8X,

X

P 1
—— (1 4+ —)=-0.659P
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— 1.31PR

=t

0341 P 1 0.659 P
o5 P 05P
Figure 7.8.16 Computed reactions and bending moment

distribution for the frame in Figure 7.8.13.

The bending moment is plotted normal to the frame, on the
side in compression.
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7.8 Statically Indeterminate Beams and Frames

Example 7.8.7 Use the principle of complementary virtual work to
calculate the

maximum bending ' moment.in the frame. (grillage) of
Figure 7.8.17.

Assume the member cross sections are solid circles of
radius r and that
iniform throughout, with
Poisson's ration
nd stretching.

Figure 7.8.17 Singly-redundant grillage.
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(a) (b) (c)
Figure 7.8.18 Free-body diagrams of the true loads on the statically determinate base structure.

Since the effects of shear and extension are neglected, only the bending and twisting couples on each section are
shown, for simplicity.

MM =75 .

o Element 1
TV =0
Mm = Z[._\' A

5 Element 2
Th=iZ L

M® =(Z,—P)s —Z,L

T — 7,1 Element 3
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(a) (b)

Figure 7.8.19 Virtual load of the base structure.

SMW =875
_ Element 1
ST =
SM®P =875
. Element 2
ST@® = §ZL
SM® =827, (s — L)
Element 3

§T® =87 L

(c)
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L
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0
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£l
17

PL

Figure 7.8.20  Bending moment distribution in the
grillage of Figure 7.8.17.

The bending moment diagram is plotted on the side of ‘.'
the element in compression.
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7.8 Statically Indeterminate Beams and Frames

Example 7.8.8 Use the principle of complementary virtual work to find
the magnitude

and location of the'maximum bendingsmoment in'the
circular frame in

Figure 7.8.21. The material and section properties are
uniform

i

!

P

(a) (b)

Figure 7.8.21 Circular frame loaded in fension along a diameter.
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€D

(a) (b)

Figure 7.8.22  Free-body diagrams of the
frame divided in two along the
vertical diameter.

5 Ml P C SMI
1 ; 7 ™ \EM
3 RI I
AN\ TEE s \A(‘ H
2 0 0

N3

(a) (b) (c)

Figure 7.8.23 (a) Free-body diagram of a quarter circle of the ring. (b) Free-body
diagram of the sectioned quarter circle showing M, as an applied
load. (c) Free-body diagram of the sectioned qucrter circle with the
true loading removed and replaced by the virtual couple dM,.

7
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From the free-body diagram of Figure 7.8.23b, we find that

P
MzMI—ER{_l — Ccos¢) la]

and from Figure 7.8.23c, we have
M = M, [b]

Applying the principle of complementary virtual work to the complete circular frame, using symmetry and recognizing
that the complementary virtual work of the internal virtual load § M is zero, we have, for bending alone,
7 f2 f2
1 4R PR
SWo, =4 T (MSM)Rd¢p | = — M1~~2—(1—cos¢5) SMd¢ =0
"0

" EI
0

which reduces to

4R ; 1
Iy, -ZpPr+-PR|=0
EL |2 4 2

so that

T2
M, = 2—PR:0.]81?PR [c]

v
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Substituting M, into Equation a yields the bending moment in terms of ¢ and the applied load P. This is plotted in Figure
7.8.24, which shows that the maximum bending moment occurs at point 3 (and, by symmetry, point 4).

0.318PR

Figure 7.8.24 Symmetrical bending moment distribution
over a quadrant of the circular frame of
Figure 7.8.21.

The bending moment is plotted on the side of the frame in
compression.
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Example 7.8.9 A frame composed of a semicircular beam and a
horizontal floor

beam has a point load P applied to the midspan of the
floor beam, as

shown in Figure 7.8.25a. This load Is equilibrated by a
uniform shear

flow P/2R acting around the periphery of the circular
beam. Using the

I work, find the

maximum bendir

P P "
Wy g 2K ‘he point where the
momentis zero. 4 "\
{2 ) me that all material
and sectional }J
(a) (b)
Figure 7.8.25 (a) Statically indeterminate frame.

(b) Free-body diagram showing
internal loads at 1 and 3.
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To find the true and virtual bending moment distribution, we start with the free-body diagrams in Figure 7.8.26. From
part (a) of the figure, using Equation 2.5.11 to compute the moment of the shear flow, summing the moments about the cut at
an angle ¢ from 1, and equating this to zero yields

—M 4+ M; — N\R (1 —cos¢)-24,; (%):0 ' [a]

where A, the area of the shaded segment of the circle, is the area R%¢ / 2 of the pie-shaped sector subtended by the angle ¢

minus the area R? sin ¢/2 of the isosceles triangle with legs R and vertex angle ¢. Thus,

RE
A = 5 (¢ — sin ) [b]

Substituting this into Equation a and solving for the true bending moment M, we get
PR _
M:Mr"NlR(l—COSQb)—T(c;b—smdﬂ [c]

Similarly, an analysis of Figure 7.8.26b yields the following for the virtual bending moment:
M =8M; — 8N R (1 — cos¢) [d]

Moving into the horizontal beam, we have the free-body diagrams shown in Figure 7.8.27. From part (a) of the figure,
summing the moments about the bottom cut, which is a distance s from point 2, we obtain

P
M+M]‘N1R"2(AI+A2)(—)ZO ]

L



7.8 Statically Indeterminate Beams and

L'y»amang
1'1 A11IUD

R? /m
Ay = 20 (——1)
2\

It can be seen from the figure that A, is the area of the triangle with base s and height R, or A; = RS/Z. We substitute A, and
A, into Equation e and solve for the true bending moment in this portion of the frame, as follows:

Ps PR /@
M=—Mi+NR+ =5 +—(5-1) ]

2 2

P

R o "J‘l ®) oN,

o Ay
M \ i \\\ !

Y=y sl a4
N h
(a) (b)
(a) (b)
Figure 7.8.26 (a) Free-body diagram of the semicircu- !
Figure 7.8.27 (a) Free-body diagram of the frame for a cut

lar portion of the statically determinate
base frame acted on by the true loads.
(b) The same free-body diagram acted
on by the virtual loads applied at 1.

through the floor beam, showing the actual
applied loads. (b) The same free-body dia-
gram with only the virtual loads applied.

L
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A similar analysis of the free-body diagram in Figure 7.8.27b yields the virtual bending moment,

SM = —8M, + SN R [g]

We are now in a position to determine the internal complementary virtual work for the structure in Figure 7.8.25a.
Considering only bending and using symmetry, we have

. 1. if® 1 3
oWr =2 — MéMd _— MéMd
int (EI; [ S+ EIZ ﬁ S)

where ds = Rd¢ in the first integral. Substituting Equations c, d, f, and g into the integrands yields

m /2
f [M. — NIR (1 —cos¢) — ? (¢ — sinqb)] [6M, — 8N, (1 —cos¢p)] Rdg

Wi = 21

[h]

0

R
o A N B8 g B (?T 1) [—8M; + 8N, R]ds
EL I I ) ) 2 _ 1 | 3
0

=
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Expanding the integrands and collecting coefficients of the virtual loads §M/ and § N1, we get the following lengthy expression

T2 R
. 26 M, ER : Ps~c BR /i1

SW. /[M; —NIR(l—cosq’))——zm(cp—smqb)] Rd¢+/[M; —N1R~—E-—T(~2——l)]ds
0

int = ﬁ
N
/2
28N, g ; PR? . ;
EL MR (cos¢p—1) + N R (l—2cos¢;+cos‘¢~)+T(¢—51n¢—¢cos¢+51n¢cosqb) Rd¢

0

R

+f RM+NR7+RPS+PR2(H l)d

- % —— s
LR 2 3 %3

0

Carrying out the simple integrations leads ultimately to

26M, [m I3 3 @#* = 5
W = 1)y - 2oty o ==S~-T\oR
0 [( +1) RM: = 5 '+(4 16 4)

int E[: 2
28N, [ 7, 37 3 e .
~—R*M —1)R’N, + —PR

+E!2[2 1+(4 ) 1T 75

[i]
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According to the principle of complementary virtual work, sW* = Wk, for all choices of virtual loads M, and §N. In
this case, however, 8W},, = 0, since the virtual loads are internal and not externally applied. Thus we require §W}, in Equation
i to be zero for all M and § N, which means their coefficients must vanish, resulting in the following two equations:

il T 3 7% xm
—+1)RM s SO e N
(5 +1) RM, g o (4 16 4) 2
|
2
—%R%w1 ( d)RgN]————PRj’

Solving for M, and N, we find that

M, =-0.08279PR N, =-0.5507P (k]

=
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Substituting these values into Equations ¢ and f yields the bending moment equations, which can be plotted on the frame, as
shown in Figure 7.8.28. As usual, the bending moment is plotted on the side of the frame in compression. As we can see, the
maximum bending moment occurs under the point load P at the middle of the floor beam.

0.551P

0.0828PR

0.317PR

0.182PR 0.0507P

A
0.182PR | |
0.36R

Figure 7.8.28 Symmetric bending moment distribution
around the frame of Figure 7.8.25.
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Example 7.8.10 Using the principle of complementary virtual work, find
the

bending moment distribution in thewportal frame of
Figure 7.8.29a.

rgic 2 151 3

(a) (b)

Figure 7.8.29 (a) Portal frame built in at each support. (b) Free-body diagram of the base
structure, showing the three support reactions chosen as the redundants.

g
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(a) (b)

Figure 7.8.30

element.

Element 1 :
Element 2 :

Element 3 :

L'y»amang
1'1 A11IUD

M@ 2 1.5
r hrf_?)

(c)

MY = X5 — M,
M@ = XL + ¥ys — M;

M® =_X, (L —s)+15LY, — M; — Ps

Likewise, from the free-body diagrams of the virtual load, Figure 7.8.31, we find

Element 1 :

Element 2 :

Element 3 :

SMW = —8X,5s — M,

SM®P = —§X (L +8Ys — §M,

SM® = —5X (L —s)+ 1.5L8Y, — M,

Free-body diagrams of portions of the base frame, revealing the true section loads in each beam

[a]
(b]
]

[d]

[e]
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Figure 7.8.31
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(b)

Free-body diagrams of portions of the base frame, revealing the virtual section loads

in each beam element.

(c)

L
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The internal complementary virtual work for each element can be written in turn using Equations a through f, as follows:

LL_I‘; L
_ I 1 1
sWil) = — WomMds = — f(—x].s- — M) (—8X1s — M) ds
o s lq]
: J s
1
S [(AL3X) + 1L2My) 86X + (L7 X1 + LM,y) 8M, ]
L@ 1.5L
SWit?) = . MPsMPds = L (=X{L+Y,s—M)(—=8X\L+8Ys —56M)ds
it E!: b,f:
; 0 0 [h]
=— [GL3X, — 2L°Y, + 3L2M1) X1 + (-3 L° X1 + 3L°Y1 — g L°M1) 87y
+(3L7Xy — $L*Y, + 5LMy) M) ]
L&) i
3W{;EB> - s f MIsMPds = ;5_1[' [ [—X, (L —s)+1.5LY) — My — Ps][—8X1 (L —s)+ 1.5L8Y, —M,]ds
EI 2
S0 0 -
= ﬁ[(%ff}fl — 313, + LL2M, + LE3P) 8Xy + (313X, + SL3Yy — 3LPMy - 3L P) 8Y,

+ (302X, — 3L*Y) + LM, + 3L°P) $M, ]

L
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The total internal complementary virtual work of the frame is the sum of the values for the three beam elements, or

Wi, = sWi D + oW @ + oW
1 : s :
=ﬁ[(%L3X1_$L3Y[+%[J2M1+%L3P)§Xl—|—(_.1E_;1L1’Xl_’_%%_IL_‘BYI_%[JQMI_E}L‘P)(SYL [|]

+(3L7X, — BL%Y) + ILM, + L2 P) oM ]

The external complementary virtual work is zero, since the true displacement in the direction of each of the three redun-
dants is zero. It follows then that §W = O for an arbitrary choice of X, 6Yy, and éM. Therefore, their coefficients in
Equation j must each be zero, yielding the following three equations,

Br3x, -80n+ jL°M = —gPL
~Bp3x, + 2%y, -2 L2M, = 3PL [k}
L2, — ALY+ LM = ~1lpr?
The solution to this system is
X =3P Y= &P My =—3PL 1

We can now substitute these values for the redundant loads into Equations a, b, and ¢ to obtain the bending moments
throughout the frame in terms of the applied load P. These are plotted in Figure 7832

=
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Circular frames are a common component of aircraft structures. Normally, many stringers are distributed
around the periphery of such frames. The shear flow applied to a frame between each pair of stringers varies with
position, as illustrated in Example 5.2.3. To determine the contribution of a given portion of the shear flow to the
bending moment at another point of the frame, a formula is useful. First, let A be the shaded area abc subtended
by the uniform shear flow ¢ in Figure 7.8.33. Then, the moment of that shear flow about point ¢ is

M. =2Aq

Figure 7.8.33  Shaded area
subtended by
the constant
shear flow q.
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However, A is the area of segment abc of the circle minus the area of segment bc (see Equation b of Example
7.8.9). Using that equation to calculate the areas of the two segments in question and then subtracting the larger
from the smaller, we get

2
2 72

A:%(ﬁ~sinﬁ)—%[(ﬁ—f1)—Sin(ﬁ—ﬂ)]:E[Q—Siﬂﬁ+3m(ﬁ—a)]

The moment of the shear flow ¢ about point ¢ is therefore

M. = qr*[e —sin 8 +sin (B —a)] = qr’[a — (1 — cosa) sin 8 — sina cos B] [7.8.1]

e
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Example 7.8.11 Use the principle of complementary virtual work to find the

bending

moment distributiom in the circular fuselage of Figure
7.8.34. Assume

that the flexural rigidity &/ is uniform,.through out both

the ring and
o ¥y A
gl 1 stretching. The
area of all the ) g
Flange areas = 0.4 in.” ——=2

|
|

\\\1'(_{
_______ O R A —

Figure 7.8.34  Circular frame and floor beam combination.

The floor beam carries a uniformly distributed line load.

=



7.8 Statically Indeterminate Beams and

| B .
rrames

The load on the floor beam is equilibrated by shear flows applied by the skin to the periphery of the frame. The method of
determining these shear flows is described in Chapter 5. Following a procedure similar to that of Example 5.2.3, we obtain the

shear flows shown in Figure 7.8.35.

To reveal the bending moments within the frame, we must section the structure appropriately. The vertical diameter
through points 1 and 3 is a symmetry axis, so we will cut through the frame along that line, dividing it into two free bodies that
are mirror images. The left one is shown in Figure 7.8.36. There is no shear force on the sections at 1, 2, and 3, since they lie
on the axis of symmetry. Two of the three pairs of normal force and bending moments in Figure 7.8.36 are redundant. Our

choice will be those at 1 and 2, which are circled for emphasis.

). 1.732 1b/in. | @
1.732 Ib/in. : 1.732 Ib/in.

i L

1.7321b/in. | 1.732 Ib/in.
Figure 7.8.35  Shear flows acting around the periph- Figure 7.8.36  Free-body diagram of one-half
ery of the circular fuselage frame in of the symmetric frame, with the
response to the load on the floor beam. chosen redundant loads circled.
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It is convenient to use a number to identify the portions of the circular frame lying between two stringers. Therefore,
including the half-span of floor beam, we can consider the symmetric half of the structure in Figure 7.8.36 to be composed of
seven elements. Starting with point 1, at the top of the structure, we work our way around the frame counterclockwise, sec-
tioning each of the six curved elements in turn and drawing the free-body diagrams shown in Figure 7.8.37. Observe that we
have identified the shear flows symbolically (¢, ¢, etc.) and denoted the 12 Ib/in. load on the floor beam as p.

From Figure 7.8.37a, using Equation 7.8.1, we find that
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N

(d) (e) (f)

gV = ¢'© = 1.732 Ibfin.
@ = ¢® = 4732 Ibfin.
q® = ¢ = 6.464 Ibfin.
p = 12 1b/in.
r = 50 in.

Figure 7.8.37 Free-body diagrams required to find the bending moment in each of the six elements of the frame in terms of the
redundants.
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M®D = M; — Nir(1 = cos ¢) — ¢Vr?(¢ — sin¢) [al]

The virtual bending moment is found by removing the shear flow and replacing M, and N, by § M, and 3N, respectively,
so that

SMWM = 8§M, — SNr(1 — cos ¢) [a2]

The true and virtual bending moments in elements 2 through 4 are found in a similar fashion by using the free-body dia-
grams in parts (b) through (d) of Figure 7.8.37. The number of terms in the equations increases as we move from element to
element, picking up more and more of the applied loads.

M@ = M) — Nir (1 —cosp) —qgVr?[Z + (cos Z—1)sinp —sin Zcosp] —qPr?*[¢ — Z —sin(¢p — £)]  [bl]

SM®P® = 5M; — 8N 1r(1 — cos @) [b2]

M® =M, — Nir (1 —cos¢) —q"Vr* [Z + (cos Z—1) sing — sin Z cos ¢ ]
Z¥ —3

6
[c1]
— @72 [% + (cos E-1) sin (¢ — %) — sin Fcos (¢ — F)] - 4@ (6 § —sin (¢ — 3)]
SM® =8M, — N7 (1 — cos @) [c2]
M@ =My — Nir (1 = cos¢) —gVr* [£ + (cos £~ 1) sing — sin & cos @]
I [%— + (cos £ —1) sin (¢ — %) —sin Z cos (¢ — Z)] [d1]
P2 + (cos T 1) sin ¢ — 5) — sinFcos (¢ — )] — 4¥r? [¢ — § —sin(p - 3)]
SM@® = 8M; — 8N1r(1 — cos @) [d2]

=
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The free-body diagrams in parts () and (f) of Figure 7.8.37 reveal the distributed load p on the floor beam and the redun-
dant loads M, and N, acting on the cut at point 2. The corresponding free-body diagrams for the virtual load would show all of
the shear flows removed and the normal load and bending moment at points 1 and 2 replaced, as usual, by their virtual coun-
terparts. Therefore, for elements 5 and 6, moment equilibrium implies

M® = My — Nir (1 = cos¢) — ¢Vr* [ £ + (cos £-1) sin¢ — sin £ cos @]

~qPr*[Z + (cosZ~1)sin (¢ — %) —sin £ cos (¢ — Z)]
mrz[ + (cos Z 1) sin (¢ — %) — sin £ cos (¢ — 5] [e1]
g Vr[E + cos——l)sin(qf;—%)—bm%cos(qﬁ—*—'2’-)]
— g9 ¢ — & —sin(¢p — Z)] + Mz + Nor (cos § +cos¢) + prisinZ (3sinZ —sing)
SMS) = 6M; — 8N r(1 — cosg) + 8Ma + 8N (cos & + cos ) [e2]
M© = M, — Nyr (1 —cos¢) —gVr 2[%+(cos—’é——l)sm¢—sm cos ¢ |
q(z) r*[Z + (cos ~—1)sm (¢ — %) —sinZ cos (¢ — %]
R[5 + eosg-1)sin(p §) - s cos (- 3] -
g [Z + (cos £~1)sin (¢ — F) —sinE cos (¢ — §)]
—q9r?[Z + (cos £ 1) sin (¢ — &) —sin £ cos (¢ — F)]
—q©r2[p - —sin (¢ — )] + My + Npr (cos § +cos¢) + prisin % (3 sin % —sing)

=
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SM® = 5My — 5N1r (1 — cos @) + 8Mp + 8Nar (cos & + cos ¢) [f2]

For the floor beam between points 2 and 4, the true and virtual bending moments are simply

a5

\ S
M? =My - 5 [91]

SM = sM, [g2]

The internal complementary virtual work for the frame is the sum of the individual contributions from each of the seven
elements (multiplied by 2 to account for both symmetric halves of the complete frame):

2 ;"t’/% J'T/B JT& ZHI{._;
SWine = 27~ fM“)c?M“’rdcp+fM(2’5Mf2?rd¢+fM<3}aM(3>rd¢+ / MPsMDrdgp
z 0 ’Tf( x}% ;,r&
S ' o [h]
/ﬁ T J's‘m?
+fM(5J5M(5’rd¢>+ f M©@sM©rdep + / MDsMDas
2”}{3 5ﬂj6 0

Substituting Equations a through g into this equation, inserting the numerical values for the shear flows, distributed load, and
frame radius, collecting terms, simplifying, and doing the integrals finally yields

1
s [(157.1M, —7854N, + 52.36M> —856.1 N> —1.420 x 10°%) 5M,

int
+ (-7854M + 589.0 x 10°N; —4783M; + 81190N, + 121.2 x 10°) 8N, [i]
+ (52.36M —4783N;| 4 95.66 M2 —856.1 N> —1.334 x 10°) M,
+ (-856.1M + 81190N; —856.1M3 + 16990N, + 19.25 x 10°%) 5V, ]

i "
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All of the redundants are internal loads, so W%, = 0. Therefore, 6", = 0 and, by the usual argument, the principle of

int —
complementary virtual work requires the four coefficients of the virtual loads in Equation i to vanish, The result is the four
equations in the four unknowns M, N, M,, and N, as follows:

157.1M, - 854N +52.36M, - 856.1N, = 1420 x 10°E 1,
T854M; +589.0 x 10°N, - 4783M, + 8$1190N; =-121.2 x 10°E i
52.36M, - 4783} +95.66M; - 856.1Ny = 1334 x 10°E '

856.1M; 4+ 81190N; - 836.1M; + 16990N; =-19.25 x 10°E L
The solution of this system is
My=-178in-b  Ny=-1611b  My=5115in-b Ny =—19in.-lb

The bending moment distribution around the frame is found by substituting these redundant load values into Equations al
through g1. The bending moment is plotted in Figure 7.8.38. We can see that the maximum value occurs at the Junction of the
circular frame and the floor beam, and the next largest value occurs at the midpoint of the floor beam,
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161 1b

1790 in.-Ib
M40
Y

. |

2330 in.-1b
5120 1n.-1b

196 1b

357 Ib

1740 in.-1b

Figure 7.8.38 Bending moment distribution
around the circular portion

of the frame.

The moment is plotted on the side of the frame
in compression.
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