.760, 3 Cre

Prof. Dr. Yong-Su Na
(32-206, Tel. 880-7204)




Operation (II): Startup
mak Operation (III): Tokamak Operati
. Tokamak Operation Limits (I):
Plasma Instabilities (Kadomtsev 6, 7, Wood
9-10. Tokamak Operation Limits (II):
Plasma Transport (Kadomtsev 8, 9, Wood 3, 4)

k 11. Heating and Current Drive (Kadomtsev 10)

k 12. Divertor and Plasma-Wall Interaction
k 13-14. How to Build a Tokamak (Dendy 17 by T. N. To




ration (II): Startup
k Operation (III): Tokamak Ope
kamak Operation Limits (I):
Plasma Instabilities (Kadomtsev 6, 7, Wo
10. Tokamak Operation Limits (II):
Plasma Transport (Kadomtsev 8, 9, Wood 3,

11. Heating and Current Drive (Kadomtsev 10)

12. Divertor and Plasma-Wall Interaction
13-14. How to Build a Tokamak (Dendy 17 by T. N. T




- Classical Transport
- Particle transport

I, :%n(x—Ax)v
f:in(x+Ax)§

— —

r=r,-T :i[n(x—Ax)—’”l(?H‘Ax)]‘7

J’_ —

Axvon  (Ax) on
2 Ox 2T Ox

. diffusion coefficient (m?2/s)

-
=—D— : Particle flux- Fick's law
%) ®
2 =
(AX) ] - -

density: n /

- r.
r. ”
N = r++F_ / — Vn
n(x-Ax) = n(x+Ax)
on

The heat and momentum fluxes can be estimated in similar fashion.
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« Classical Diffusion WIKIPEDIA

The Free Encyclopedia

- Momentum transport

Momentum flux
ov

Yy
T ., =—1N—
i n@x

2
1~ M ~mnD : viscosity coefficient
r

y dimension

boundary plate 0
(2D, movm):g) velocity, u

- Heat transport

shear stress, t

du

Heat flux fluid gradient, 5°
oT . ¢ -
q =—K— : Fourier’s law '
ox boundary plate (2D, stationary)

2

u

K‘~M~nl) : thermal conductivity F=ud—, 1=u—=
y

7




density: n,

/|

- Classical Transport

- Particle transport in weakly ionised plasmas -
- ]
2 r =
(&) +
22‘ r — r++r_ AX N 7
Estimate transport coefficients: Ax from mean free path j(_o
1
Ax=A =—-
n.o
ct 1 1 el )
= = : particle approac
nm’ct nmd’ no g PP

=T =Te™* :fluid approach



‘Plasma Transport

- Classical Transport

- Particle transport in weakly ionised plasmas

(Ax)"
2T

D=

Estimate transport coefficients:
T from collision frequency with neutrals

density: n,

/|




‘Plasma Transport

- Classical Transport
- Particle transport in weakly ionised plasmas

I = nv, :i,uan—DjVn

J

q
H= u : Mobility
my
2
D= LI Vo T ~ o : Diffusion coefficient
mvy
Ambipolar Diffusion
I'=-D,Vn
D, +u,D. T
DaElLll e ILlelNDl_i__eDl

lLli +/ue T;




‘Plasma Transport

« Classical Transport
- Particle transport in weakly ionised plasmas with magnetic field

. R . n(v, +v,)
I' =nv, . =tu nE-D, Vn+ —F—2
+ Ly =L + 1+ (vz / a)f)
_ H
H, = 1+ 0’1 : Mobility
D kTv o
D, = =—— ~v, = ~-L . Diffusion coefficient

- 2.2
l+wt° mo v, T




- Classical Transport
- Particle transport in fully ionised plasmas with magnetic field

I' =nv, =-D Vn

nankT

D, ;

B
/”’ \\\\\
7 from collision frequency / A
4 o\ / )
v omy, o e \ N’
ee = Vei 3/2 N J/



' Plasma Transport

» Classical Transport

- Classical thermal conductivity (expectation): x; ~ 40x.
- Typical numbers expected: 104 m?/s
- Experimentally found: 1 m2/s, x; ~ x.

_ 14T,
16 eB

Bohm diffusion (1946): DL




Plasma Transport

- Classical Transport

Bohm diffusion

_ Lk,
16 eB

:Dl

100 -~ | L lllll'li' T T IIIIIII ] L lIlll:
C \o ALKALI PLASMA (DATA NORMALIZED TO 1
: 12.3KG, 5.0 cm RADIUS) ]
) E ® RESISTIVE MICROWAVE
g O/ HEATING
=10E 18 E
hes Oo -
s - NO N\ ELECTRON CYCLOTRON
= £ B RESONANCE HEATING
e s :
s - L OHMIC HEATING: \ .
e AFTERGLOW /
10 e BOHM DIFFUSION 5 -
8 - a o B/KT, \ 9
- OHMIC _//O\ :
g HEATING O, "
ION CYCLOTRON /<
B RESONANCE HEATING - ]
0.1 e | 1 i [ R I N
0.1 1.0 10 100

KT./B (arb. units)

7, In various types of
discharges in the Model C
Stellarator

F. F. Chen, “Introduction to Plasma
Physics and Controlled Fusion” (2006)




- Braginskii Equations p,=nT, p =nT
d 0

on, —=—+(v-V
N ARASEL a oty
n=n,=/n,
on, )=0
ot assume Z = 1
OTC o5
m,n, Ve __ P _ £ —en, (E+|v, ><B] )+ R,
dt ox,  0Oxg,
. . o,
m,n, Vi B iap —~ Zen(E+|v,xB] )-R,
dt ox,  Oxg
3 dT ov
—n,—+pV-v,=-V.q,—7x -+
2 e dt pe e qe eaf ; Qe
én' 4, +p;V-v, :_v'qi_”iaﬂ%+gi Ry Tep. q. Q7




Plasma Transport

 Transport / Closure Theories

Braginskii Neoclassical Unified
transport Closure (Ji)

High: PS

Collisionality High Low: banana General
Magnetic field
strength General Strong Strong
MEgEe General Nested General
geometry
Coflision Landau Landau Landau
operator

Jeong-Young Ji, Lecture at SNU, 2012
14




- Braginskii Equations
- Transfer of momentum from ions to electrons by collisions

R=R_ +R,

R,: force of friction due to the existence of a relative velocity
U=V,_-V,

R.: thermal force which arises by virtue of a gradient in the
electron temperature

R =- MM (O.Slu|| +u,)= en(J+hJ I
Te 0” O-J_ GJ_ — e’e 261];3/2
3 n, (B e
RT = —0.71nev||]-; _E—wez-e (Exvnj O_H — 1.96GJ_ — 1.9601]-;3/2

o 0.9x10" [s'l -eV'”]
L(A/10)Z



- Braginskii Equations

- Heat flux
q. =9, +4;
T,(B
q, =0.71n Tu+§n—(—xuj
2w,r,\ B
T,
q; =—x'VT, - onl (B oor
2 eB \ B
me w,T
q, = 5 nT EXVTZ.
2 ZeB\ B
. T . T
Kl =390t = i

T, >>1




- Braginskii Equations
- Heat generated as a consequence of collisions

3m_ n
0 =0,=—=—=(T,-T))
mi 7’-e
JioJji 1, 3m, n,
Qe=—Rll—QA= + + JRT_ _(Te_TJ
o, o, en, m, T,

- Stress tensor in the absence of a magnetic field
oy = nm<v;v'ﬂ —(v"? /3)5a/3> =-nW,,

iSCOSi fficien
Rate of strain tensor viscosity coetticient

0
=P D 25 vy
8xﬁ ox 3

(24



_ kTv

D, > 1 ~mnD
mao.
- Braginskii Equations
o n,=0.96nTr,
In a strong magnetic field w7 >>1
i_ 3 nT :
o=, 1, =4,
ﬂzz - _UOWZZ 10
1 1 i1 n,-T
7z-xx :_770 E(Wxx—i_Wyy)_nlE(Wxx_Wyy)_n?)ny 773 _5 a)i i 774 2773
1 1
Ty =T E(Wxx +Wyy)_771 E(Wyy _Wxx)+773ny viscosity coefficients
7, =1, =W s W)
Y 2 o n, =0.73n,T,
ﬂ’-xz — - _772W 774WZ neT
) ny =051, n5=4n
ﬂ’-yz = ﬂzy = _772Wyz +774sz a)ez-
e_ 1nT, e
Ny =———=5, 1, =2m;
2 w

e



' Plasma Transport

- Braginskii Equations
- Heat generated as a result of viscosity
ov, 1

Qvis = _ﬂ-aﬂ — A ﬂaﬂWaﬁ
0x 4 2




« Invariant of Motion

iE():i(lmvi+lmvzj=0 lu_mvi/Z mﬂ:_ﬁ@
dt dt\ 2 B dt v, dt
dv OB oB ds 1  udB d(1 dB
F=m—=_/yVNB=-y-—=—p—.2.—_ - > St =y 2
1= dt i 'uﬁs 'u&s* dt vH v, dt dt(vaj #

— i(lmvi +lmv2) :i(,uB)+(—,ud—Bj =0

dr\ 2 2 dt dt
d . o . Full
s —(,U):O - adiabatic invariant
dt - If B is constant
B r—LVB <<1
B
-1 dB

—<x1
@, B dt
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On the Origin of the Cosmic Radiation

ENrICO FERMI
Institute for Nuclear Studies, University of Chicago, Chicago, Illinois

(Received January 3, 1949)

A theory of the origin of cosmic radiation is proposed according to which cosmic rays are originated
and accelerated primarily in the interstellar space of the galaxy by collisions against moving mag-
metic fields. One of the features of the theory is that it yields naturally an inverse power law for the
spectral distribution of the cosmic rays. The chief difficulty is that it fails to explain in a straight-
forward way the heavy nuclei observed in the primary radiation.



The path of a fast proton in an irregular magnetic
field of the type that we have assumed will be
represented very closely by a spiraling motion
around a line of force. Since the radius of this
spiral may be of the order of 10" cm, and the
irregularities in the field have dimensions of the
order of 10'8 cm, the cosmic ray will perform many
turns on its spiraling path before encountering an
appreciably different field intensity. One finds by
an elementary discussion that as the particle
approaches a region where the field intensity
increases, the pitch of the spiral will decrease. One
finds precisely that

(12)

where ¢ is the angle between the direction of the
line of force and the direction of the velocity of the
particle, and H is the local field intensity. As the
particle approaches a region where the field intensity
is larger, one will expect, therefore, that the angle
¢ increases until sind attains the maximum possible
value of one. At this point the particle is reflected
back along the same line of force and spirals back-
wards until the next region of high field intensity is
encountered. This process will be called a “Type 4"
reflection. If the magnetic field were static, such a

sin?$/H =~ constant,

1 1 1
E,=—mv’ =—mv} + —mv”2 = const.
2 2 2

reflection would not produce any change in the
kinetic energy of the particle. This is not so,
however, if the magnetic field is slowly variable.
It may happen that a region of high field intensity
moves toward the cosmic-ray particle which collides
against it. In this case, the particle will gain energy
in the collision. Conversely, it may happen that
the region of high field intensity moves away from
the particle. Since the particle is much faster, it
will overtake the irregularity of the field and be
reflected backwards, in this case with loss of energy.
The net result will be an average gain, primarily for
the reason that head-on collisions are more frequent
than overtaking collisions because the relative
velocity is larger in the former case.

HW: Derive (13)

w' 14 2BB cosd+ B?
w - 1—B?

; (13)

where B¢ is the velocity of the particle, ¢ is the
angle of inclination of the spiral, and Bc is the
velocity of the perturbation. It is assumed that the



 Fermi as a genuine scientist

spectral distribution of the cosmic rays. The chief difficulty is that it fails to explain in a straight-
forward way the heavy nuclei observed in the primary radiation.

The present theory is incomplete because no
satisfactory injection mechanism is proposed except
for protons which apparently can be regenerated at
least in part in the collision processes of the cosmic
radiation itself with the diffuse interstellar matter.
The most serious difficulty is in the injection
process for the heavy nuclear component of the
radiation. For these particles the injection energy
is very high and the injection mechanism must be
correspondingly efficient.

some equivalent mechanism. With respect to the
injection of heavy nuclei I do not know a plausible
answer to this point.



| Magnetic Mirror

« Condition for Trapping of Particles

5 1 5 1 1 ( 2)
E, = my, +§mvl =—my, + UB = Em v )+ uB_.
1 mv’
v F =— iVB_
2F Trapping B I 2 B
Q . Domain, ( u)max max -1
o m 2 2 B
5 (Vl)min min
-y
g’g Ion exists on the Ey=constant line.
Q. v
Q.
® Loss 2) o ) 2E0 5
o Meeeaaa- Domain: - MaX max .4 Vi, =—7Y,
2 / (V) min Bmin m
(Vx)mln 2F,
— N — m V2
Trapping range (v®) max L

for v

Condition for trapping of particles

3 )b <04 B,

—HVB

25




Magnetic Mirror

« Condition for Trapping of Particles

1 (5
2 lmx By 4
luBmin Bmin
()., [
| /max __ ME < T max 1
( vz) o vz -
L /min - mid — plane min
vV, cosd . o 1
- sin” @ =—;
v, sind Vi
— +1
V)
sin @ > |—min
max
Vx

ve
Trapping . (Vﬁ)max Bmax
) Domain: —; -1
§ (Vl)min Bmin
oy
o>
: e
-EQO-
© Loss 2
at B
o Yeem———- \\Domam: :v'éi max B"‘ax -1
Vi)mi i
(vf)mln min min
—— ™ 2
Trapping range  (v2).., Vi
for v2
1
Yy
vz
loss jcone 0, <0< 7m—0,
- v >
| . .
| 6, = arcsin _|—*-
- :V" max
| i
9 ™~
g
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 Mirror Ratio

jf(v)d . Td¢ﬁsin9d9+ TSin@d@ﬁ f(V) Py

f __ double cone 0 0 =6,
loss —  «© -

2r V4 00
[ red*v [dg|sinoao| 4{;‘)’3 vidv
0 0 0 0
=1-cos6,
B . B mirror ratio:
Sy =C0O8G5 = _[1——"2 ™= =R,  Determining the effectiveness
B o Brin of confinement

Why are particles reflected in the increased field of the mirrors?

F == lmVLVB— ~HV,B
2 B



Magnetic Mirror

Why are particles reflected in the increased field of the mirrors?

mv: /2 d (1)

Adiabatic invariant = — =0
H=7p di

2
F = —%%VB = —uV,B

LR -

Field generated by
ion’s gyration

28




‘Tokamak Transport

 Neoclassical theory of transport

- A. A. Galeev and R. Z. Sagdeev
“"Transport phenomena in a collisionless plasma in a toroidal
magnetic system?”, Zhurnal Experimentalnoi i Teoreticheskoi Fiziki
53 348 (1967)

- Major changes arise from toroidal effects characterized by
inverse aspect ratio, € = a/R,

29 |




Inverse aspect ratio

- Particle Trapping £ = a/R,
V-B=0
oB
: L0 (rB)+——[(1+gcosé’)B ]+L—¢ =0
1+&cosf | r or R, O¢
B, (0 =0)
= B, (r,0)=—% A 8o
o(750) 1+ &cosf [ | Bnax 12 €
A A B ‘ S '.
B(r,0)=B,(r,0)0+ B,(r,0)¢ = 0 i Bo
l1+&cosd  pe Bmin = 178 .s
-% o m

Condition for trapping of particles

2 2 BO
(VH )max_ Vi <%_1—1_8—1_2—8~28
v 2 "B B Cl-¢
1 /min L mid plane min 1 0
+ &

= v”2 <2evi



Tokamak Transport
- Particle Trapping

- Particle trapping by magnetic mirrors
trapped particles with banana orbits
untrapped (transit or passing) particles with circular orbits

- Trapped fraction: S = /I_RL: /1_%: 1_1__‘9: 12_‘9N
m max +g +g

for a typical tokamak, € ~ 1/3 — f,,, ~ 70%




- Particle Trapping

s vd
= &

trapped particles Passing (transit) particles

— — 2
Expelling force of F,=—uV B=mv| /2R

diamagnetic N vi BxVB N 1 BxVB
i V,up =% =t—vr —
Larmor motion d VB Za)c B2 y LT gl
F.= mv”2 /R
Centrifugal force mv||2 R, xB,
Var =

g¢B; R’



- Particle Trapping

HOMEWORK:

- The real particle trajectory
is as shown. Why?

- In ST, B is small, what is
the particle trajectory like?




- Particle Trapping

J. P. Graves et al, Nature Communications 3 624 (2012)



- Particle Trapping

J. P. Graves et al, Nature Communications 3 624 (2012)



- Particle Trapping

J. P. Graves et al, Nature Communications 3 624 (2012)



' Tokamak Transport
» Particle Trapping

magnetic
surface

- With known particle trajectories it is possible to find corresponding
kinetic coefficients by solving the kinetic equations with Coulomb
collisions.

- Rough estimation of transport coefficients: 02v ¢
0: particle displacement between collisions
V.. appropriate frequency of collisions

37




- Particle Trapping
- Collisional excursion across flux surfaces
untrapped particles: 2r, = 2r;
trapped particles: Ar,.,, >> 2r,
— enhanced radial diffusion across the confining magnetic field

2 rg : Artrap

Untrapped Trapped
- If the fraction of trapped particle is large, this leakage

enhancement constitutes a substantial problem in tokamak
confinement.



Tokamak Transport
- Particle Trapping

Ik E!Ei
A
B < B
R
trapped particles Passing (transit) particles
2 2
vi+vi /2
Banana width:  Ax, ~v,f~=qr, /e Vg = ! ; s V|~ VL\/;
a)C
t: transit time of one
rB V
half of the banana  ¢=—=, r,=—", v, =~2T/m
RB, @,

Displacement of Ax,. ~gqr, /AJe  for particles which have just
transit particles: become transit ones v~V NE

Ax . =41y for a typical particle Vv, ~Vv,
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density: n /
- Classical Transport

: - r.
- Particle transport r, il
on r=r.+r density:

n@)=nlx)+ = (x=x) o AX%+7 n+an

I ¢x 1 X
', =— —n(x)a’x=l[n(x0)—@mc}g i

2 Jxg-axi2 4 Ox T e * oo

1 1 1 on, a7 -
r=—|\" —n(x)d(—x)=—[n(x0)+—nAx}— o B

2 Sxrax/2 g 4 Ox T A P

2
I'=r,.-1" :_(Ax) G_n:_Da_n : Particle flux- Fick’s law
2t Ox ox
2
D =(A2x—) . diffusion coefficient (m?2/s)
T

The heat and momentum fluxes can be estimated in similar fashion.



