458.308 Process Control & Design

Lecture 2: Dynamic Modeling

Jong Min Lee

Chemical & Biomolecular Engineering Seoul National University

Dynamic Modeling

Express the process's time behaviour

- Non steady-state initial condition, parameter changes, disturbances, etc.
- Often in the form of mathematical equation (time differential equation).

y(t): time behaviour of (dependent) variables of interest

Why Dynamic Modeling?

Process dynamics must be understood well (often at a quantitative level) in order to design and operate the process effectively (e.g., design an effective control system).

Usage:

- Design (esp. batch processes, cyclic continuous processes that are inherently dynamic)
- Operability assessment (stability of intended operating condition, sensitivity to disturbances)
- Operator training
- Process optimization
- Design of startup / shutdown / transition procedure
- Design of control system

Modeling Approaches

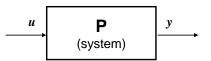
Fundamental Modeling

- Theoretical/Mechanistic modeling
- Physico-chemical understanding
 + Conservation principle
- Difficult to develop: need detailed process knowledge
- Usually complex: a large set of ODEs or PDEs
- Fundamentally correct can be used for exploratory purposes
- Used for simulation (operator training), optimization, and transition control

Empirical Modeling

- Explain the observed response, cause-effect, pattern, etc.
- Easier to develop: need experimental data
- Usually kept simple: a small set of linear ODEs
- Lacks fundamental correctness: may not be useful in applications that require extrapolation beyond the conditions under which data were collected
- Used for controller design

Linear System



System can be seen as a mapping between input u and output y.

Linear System

Should satisfy...

• Principle of superposition

This also implies...

• P(0) = 0

Principle of superposition

$$\begin{split} y &= P(u), \, u \in \mathcal{D}, \, y \in \mathcal{R} \\ \text{Consider } u_1, \, u_2 \; \in \mathcal{D} \\ y_1 &= P(u_1), \, y_2 = P(u_2) \\ \text{for any scalar values of } a, \, b \end{split}$$

$$P(au_1 + bu_2) = aP(u_1) + bP(u_2) = ay_1 + by_2$$

Affine System

- Q. y = 3u?
- A.
- Q. y = 3u + 2?
- A.
- Q. Deviation variable?
- A.

Note: People often call affine system linear system.

Linear? Nonlinear?: Examples We Worked on

• Surge Tank $\frac{dh}{dt} = \frac{F_1 - F_2}{A} \Leftrightarrow \frac{dy}{dt} = \frac{u_1 - u_2}{A}$

• CSTR (constant hold-up)

$$\frac{dC_A}{dt} = \frac{q}{V}(C_{Ai} - C_A) - kC_A$$

$$\Leftrightarrow \frac{dy}{dt} = \frac{u_1}{V}(u_2 - y) - ky$$

Degree of Freedom Analysis

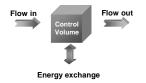
- DoF: Number of variables that can be specified independently $\mathbf{N}_{F} = \mathbf{N}_{V} - \mathbf{N}_{F}$
 - N_F: Degree of freedom (# of independent variables)
 - \mathbf{N}_{V} : Total number of variables
 - N_E: Number of equations (# of independent variables)
- Another perspective: # of equations needed?

$$\mathbf{N}_E = \mathbf{N}_V - \mathbf{N}_F$$

Stirred-Tank Heating Process

- $\mathbf{N}_V = 6$: T_i, w_i, T, w, V, Q
- $N_E = 2$: mass and energy balances
- $\mathbf{N}_F = N_V N_E = 4$
- If we have constant holdup and $w = w_i$
 - $N_V = 4$
 - $N_E = 1$: Only energy balance
 - $N_F = 3$: Three independent variables would be T_i, w, Q

General Modeling Principle



Total mass balance

• Rate of mass accumulation within CV = Rate of mass in from surroundings - Rate of mass out to surroundings

• Component mass (molar) balance

 Rate of mass accumulation within CV = Rate of mass in from surroundings - Rate of mass out to surroundings + Rate of mass creation within CV

• Total energy (enthalpy) balance

- Rate of energy accumulation within CV = Rate of energy in from surroundings Rate of energy out to surroundings
- For flow systems,

Rate of enthalpy accumulation within CV = Rate of enthalpy in by material flow - Rate of enthalpy out by material

flow + Rate of total heat addition from surroundings

Illustrative Example: Stirred-Tank Heating Process

Total mass inside CV = $V\rho$ Rate of mass accumulation inside CV = $\frac{d(V\rho)}{dt}$ Rate of mass into CV by flow = w_i Rate of mass out of CV by flow = wTotal energy inside CV = $H = \rho V \hat{H}$ Rate of energy into CV by flow = $w_i \hat{H}_i = w_i C(T_i - T_{ref})$ Rate of energy out of CV by flow = $w \hat{H} = w_i C(T - T_{ref})$

Rate of energy addition =
$$Q$$

Note: Several additional examples are available in the textbook. To become good at modeling, you must try many different problems on your own.

$$\frac{dV}{dt} = \frac{1}{\rho}(w_i - w)$$
$$\frac{dT}{dt} = \frac{w_i}{V\rho}(T_i - T) + \frac{Q}{\rho VC}$$

Lumped Parameter System

Spatial dependence of variables is ignored

- Well-mixed system
- Systems with insignificant temperature or concentration gradient
- Variables are functions of time only, not spatial position
- Ordinary differential equation model
- Examples
 - Mixer, CSTR
 - Tray of distillation column
 - Steel ball for which heat conduction within is much faster than heat transfer to the surrounding

Distributed Parameter System

- Variables have spatial dependence
 - Instead of y(t), you have y(t, z), y(t, r, z), or $y(t, r, z, \theta)$.
- Type of equation
 - Lumped parameter system \Rightarrow ODEs
 - Distributed parameter system \Rightarrow PDEs
- Example
 - Counter-current heat exchanger
 - Plug-flow reactor or packed-tube reactor
 - Heat conduction through a plate
 - Almost all systems show some spatial variations (e.g., due to impperfect mixing) but many systems can be treated as lumped parameter system.