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Dynamic Modeling

Express the process's time behaviour

Non steady-state initial condition, parameter changes,
disturbances, etc.

Often in the form of mathematical equation (time differential
equation).

Dynamic Model
(Predictor)

x(0)
u(t), t ≥ 0

y(t), t ≥ 0

x(0): initial ``state"
u(t): time behaviour of some
parameter (independent
variable)

y(t): time behaviour of (depen-
dent) variables of interest
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Why Dynamic Modeling?
Process dynamics must be understood well (often at a quantitative
level) in order to design and operate the process effectively (e.g.,
design an effective control system).

Usage:

Design (esp. batch processes, cyclic continuous processes that are
inherently dynamic)

Operability assessment (stability of intended operating condition,
sensitivity to disturbances)

Operator training

Process optimization

Design of startup / shutdown / transition procedure

Design of control system
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Modeling Approaches
.
Fundamental Modeling
..

......

Theoretical/Mechanistic
modeling

Physico-chemical understanding
+ Conservation principle

Difficult to develop: need
detailed process knowledge

Usually complex: a large set of
ODEs or PDEs

Fundamentally correct - can be
used for exploratory purposes

Used for simulation (operator
training), optimization, and
transition control

.
Empirical Modeling
..

......

Explain the observed response,
cause-effect, pattern, etc.

Easier to develop: need
experimental data

Usually kept simple: a small set of
linear ODEs

Lacks fundamental correctness:
may not be useful in applications
that require extrapolation beyond
the conditions under which data
were collected

Used for controller design
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Linear System

P
(system)

u y

System can be seen as a mapping between input u and output y.
.
Linear System
..

......

Should satisfy...

Principle of superposition

This also implies...

P(0) = 0

.
Principle of superposition
..

......

y = P(u), u ∈ D, y ∈ R
Consider u1, u2 ∈ D

y1 = P(u1), y2 = P(u2)
for any scalar values of a, b

P(au1+bu2) = aP(u1)+bP(u2) = ay1+by2
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Affine System

Q. y = 3u?
A.

Q. y = 3u + 2?

A.

Q. Deviation variable?

A.

Note: People often call affine system linear system.
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Linear? Nonlinear?: Examples We Worked
on

Surge Tank
dh
dt =

F1 − F2

A ⇔ dy
dt =

u1 − u2

A
CSTR (constant hold-up)

dCA
dt =

q
V(CAi − CA)− kCA

⇔ dy
dt =

u1

V (u2 − y)− ky
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Degree of Freedom Analysis

DoF: Number of variables that can be specified independently

NF = NV − NE

NF: Degree of freedom (# of independent variables)
NV: Total number of variables
NE: Number of equations (# of independent variables)

Another perspective: # of equations needed?

NE = NV − NF
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Stirred-Tank Heating Process

NV = 6: Ti, wi, T, w, V, Q
NE = 2: mass and energy balances

NF = NV − NE = 4

If we have constant holdup and w = wi
NV = 4
NE = 1: Only energy balance
NF = 3: Three independent variables would be Ti, w, Q
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General Modeling Principle
Control
Volume

Flow in Flow out

Energy exchange

Total mass balance

Rate of mass accumulation within CV = Rate of mass in from surroundings - Rate of mass out to surroundings

Component mass (molar) balance

Rate of mass accumulation within CV = Rate of mass in from surroundings - Rate of mass out to surroundings +

Rate of mass creation within CV

Total energy (enthalpy) balance
Rate of energy accumulation within CV = Rate of energy in from surroundings - Rate of energy out to
surroundings
For flow systems,

Rate of enthalpy accumulation within CV = Rate of enthalpy in by material flow - Rate of enthalpy out by material

flow + Rate of total heat addition from surroundings
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Illustrative Example: Stirred-Tank Heating
Process

Total mass inside CV = Vρ

Rate of mass accumulation inside CV = d(Vρ)
dt

Rate of mass into CV by flow = wi
Rate of mass out of CV by flow = w
Total energy inside CV = H = ρVĤ
Rate of energy into CV by flow = wiĤi = wiC(Ti − Tref)

Rate of energy out of CV by flow = wĤ = wiC(T − Tref)

Rate of energy addition = Q

dV
dt =

1

ρ
(wi − w)

dT
dt =

wi
Vρ

(Ti − T) +
Q

ρVC

Note: Several additional examples are

available in the textbook. To become

good at modeling, you must try many

different problems on your own.
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Lumped Parameter System

Spatial dependence of variables is ignored
Well-mixed system
Systems with insignificant temperature or concentration gradient
Variables are functions of time only, not spatial position
Ordinary differential equation model

Examples
Mixer, CSTR
Tray of distillation column
Steel ball for which heat conduction within is much faster than heat
transfer to the surrounding
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Distributed Parameter System

Variables have spatial dependence
Instead of y(t), you have y(t, z), y(t, r, z), or y(t, r, z, θ).

Type of equation
Lumped parameter system ⇒ ODEs
Distributed parameter system ⇒ PDEs

Example
Counter-current heat exchanger
Plug-flow reactor or packed-tube reactor
Heat conduction through a plate
Almost all systems show some spatial variations (e.g., due to
impperfect mixing) but many systems can be treated as lumped
parameter system.

13 / 1


