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s Energy Bands in Crystals
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5.1 1-D Zone Schemes
* For Free electron 7\
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If an electron propagates in a periodic potential we always observe discontinuities

of the energies when COSK a has a maximum or a minimum from Fig.4.11
k.a=nz, n==£1 +2, +3, .., i
7T

kx :gn

/ Figure 5.2. Periodic repetition of Fig. 5.1 at the points k, = n-2r/a. The figure
/\/\/\//\/\/\ % depicts a family of free electron parabolas having a periodicity of +2xz/a.

This discontinuities of the energies
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come from the fact that periodic

potential is not perfectly zero. In other
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» words, it is not a perfect free electron.
Figure 5.3. Periodic zone scheme.

N O N N



RN

7]
m-Band

§\R

We call the allowed bands, for the
time being, the n-band or the m-

band, and so forth. In later sections
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and particularly in semiconductor

Figure 5.4. Reduced zone scheme. (This is a section of Fig. 5.3 between —n/a and
physics, we will call one of these
bands the valence band and the next
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Figure 5.5. Extended zone scheme. The first and second Brillouin zones (BZ) are

shown, see Section 5.2.



Free electron bands (see Fig 5.6)
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Figure 5.6. “Free electron bands™ plotted in the reduced zone scheme (cubic primi-
tive crystal structure). Compare this figure with the central portion of Fig. 5.2, that is,
with the region from zero to n/a. Note the sameness of the individual bands.
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5.2 One- and Two-Dimensional Brillouin Zones

1-d Brillouin Zone
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n/a <K< 2nla, -n/a <K, <-2z/a : m-band =

0
a 0 i
-—1 B.Z—"

Iﬁ -‘///.

Y

e
d 2B
2° BZ, .

N

Figure 5.5. Extended zone scheme. The first and second Brillouin zones (BZ) are

- Individual branches in an extended zone shown, see Section 5.2.
scheme (Fig. 5.5) can be shifted by 2x/a to left or to right.
Shift the branches of 2"d BZ to the positive side of E- k, diagram by 2z/a to the left, and
likewise the left band by 2z/a to the right — The result is shown in Fig. 5.4

(a reduced zone scheme)
- The same can be done in 39 BZ and all BZ (because of the 2x/a periodicity) —
relevant information of all BZ can be contained in the 15t BZ (a reduced zone scheme)
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5.2 One-and Two-Dimensional Brillouin Zones

2-d Brillouin Zone
Between the boundaries —r/a and 77/a,

corresponds to the first electron band, which we
arbitrarily labeled as n-band. This region in k-space
between —77 /@ and 7/ a is called the first
Brillouin zone (BZ). Accordingly the area between
rla and 27/a, and also between —7 /g
and —-27[/a , which corresponds to the m-band, is

called the second Brillouin zone.

Figure 5.7. Four shortest lattice vectors in a k, — k, coordinate system and the
first Brillouin zone in a two-dimensional reciprocal lattice. (Cubic primitive crystal
structure.)
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5.2 One-and Two-Dimensional Brillouin Zones

2-d Brillouin Zone
Description for the movement of an electron in the

potential of 2-d lattice

- Wave vector k = (k,, k) : 2-d reciprocal lattice (Fig 5.7)

- A 2-d field of allowed energy regions which
correspond to the allowed energy band — 2-d BZ

- 1st zone in 2-d: the area enclosed by four “Bragg

/i planes” having four shortest lattice vectors, G;: bisectors
> on the lattice vectors

T/a Ky

//// - For the following zone, construct the bisectors of the
k 7 | next shortest lattice vectors, G,, G;...
///
/) i . L
1 / /;’fm/ For the zone of higher order the extended limiting
i al lines of the zones of lower order are used as additional

limiting lines.
Figure 5.8. The first four Brillouin zones of a two-dimensional, cubic primitive
reciprocal lattice.
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“Usefulness of BZ”

- Energy bands of solids (discussed in later section)
- The behavior of electrons which travel in a specific direction in reciprocal space

Example: in 2-d lattice, an electron travels at 45° to k,-axis, then the boundary

of the BZ is reached for Kk . = E\E
a

242
°h
this yields a maximal attainable energy of E. .= 22m
If the boundary of a BZ is reached at kcrlt i
a 22
the largest energy of electrons moving parallel to k, or k, axis _Lzn

2am

- Once the maximal energy has been reached, the electron waves (those of the
incident and the Bragg-reflected electrons) form standing waves (or equivalently,
the electrons are reflected back into the BZ.)



Figure 5.10. Bragg reflection of an electron wave in a lattice. The angle of incidence
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Figure 5.9. Overlapping of allowed energy bands.

Atk
through the lattice is prevented, and then the
incident and the Bragg-reflected electron

RN

In previous pages we have seen

an electron traveling in a

¥

specific direction. When we
consider energies with all
directions, overlapping of

allowed energy bands occur

(Bragg Reflection)

2asin @ =nA, n=123,...
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crit —

i the transmission of an electron beam

wave form a standing wave.
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5.3-4 3-D Brillouin Zone and Wigner-Seitz Cells

Crystals have symmetrical properties. Therefore, a crystal can be described as an
accumulation of “unit cells”. There are two kinds of unit cell, “primitive unit cell”
means a smallest possible cell, and “conventional unit cell” is a nonprimitive unit cell
having the advantage that the symmetry can be better recognized,

Wigner-Seitz Cell is a special type of primitive unit cell that shows the
cubic symmetry of the cubic cells

~y

Figure 5.13. Wigner—Seitz cell for the fec structure. It is constructed from the white

. 5 I = 5 % s Pyt (0 R | o) ~ o . . . .
Figure 5.11. Wigner—Seitz cell for the body-centered cubic (bcc) structure. cell which is marked in Fig. 5.12.

W-S cell construction: bisects the vectors
from a given atom to its nearest neighbors
and place a plane perpendicular to these
vectors at the bisecting points.

Figure 5.12. Conventional unit cell of the fcc structure. In the cell which is marked
black. the atoms are situated on the corners and faces of the cubes. In the white cell,
the atoms are at the centers of the edges and the center of the cell.
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5.5 Translation Vectors and the Reciprocal Lattice
Translation R =nt, +n,t, +n,t,, t,, t,, t; : Primitive (or fundamental) vectors
vectors

G =2z(hb,+hb,+hb,), b,,b,, b, :reciprocal lattice vectors

S

Kronecker-Delta symbol

zl

b -4 =1, b, et =0,
I b,-t, =0, » whered,, =1 forn=m and §,, =0 forn=m

b,-t,=0.

Figure 5.14. (a) Fundamental lattice vectors t,t,t3 in a cubic primitive lattice. (b)
Fundamental lattice vectors in a conventional (white) and primitive, noncubic unit
cell (black) of a bec lattice. The axes of the primitive (noncubic) unit cell form angles

. . . . of 109° 28'.
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b, =const.t, xt,.

'Y
b b,-t, =const.t, -t, xt, =1.
1 t, xt
const.= . b=
t -t xt, t,-t, xt,

L x1
b.= t3 X tl b3 =1 2
2 1
t,-t,xt, L, -1, x1
Figure 5.15. Plane formed by t, and t3 with perpendicular vector b .

Calculation for the reciprocal lattice of a BCC crystal

Real crystal
a: lattice constant , t;, t,, t;: primitive lattice vectors
I, J, | - unit vectors in the X, y, z coordinate system (see Fig. 5.14(b))

a ..
t1=5(—'+1+|)’
Abbreviated,

a - a, - a, .z
L, :E(ﬂl) L, :E(m)’ L, :E(lﬂ)-



2 |! J | 2 2
toxt. =21 -1 1|=Z(i+jel+l—itj)=2(2j+20)
S| 4 4
1 1 -1
2
=2 (j+1) .
2 3 3 3
a .. ] a a
ttxt,=—(i+j+)-(0+j+1)=—(0+1+1)=—. R
4 4 2 X (2m)b,
O o fomy s
2 I Mg ovvisoafusins | I— -
G " bt E
b, =——=—(+1), /
a a e J SERE— —
2 ke L2
1 1 1 g ——
b,=—(011). b, ==(101). b,==(110).
' a( ) ? a( ) 3 a( ) Figure 5.16. Lattice vectors in reciprocal space of a bee crystal. The primitive vectors

in the reciprocal lattice are (because of (5.13)) larger by a factor of 2z. The lattice

constant of the cube then becomes 27 - 2/a.
» The end points of the reciprocal lattice vectors of a bec crystal are at the center of

the edges of a cube. This means that reciprocal lattice of the bcc structure are

identical to the lattice points in a real lattice of the fcc structure
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In Fig 5.17, three important directions
[100] from [ (origin) to point H: A
[110] from T to N: T

[111]from I ' toP: A

(k+G) E= E(—XI+GT,

2m\ a

2 2 2 2
Figure 5.17. First Brillouin zone of the bcc crystal structure N\ 2 2 h 272- 2 h 72-
A — = | (xi) =Cx° ,C= =
j (x1) 2m ( j ma’
27
. G=———(i+l).
é a
s 83 \
el 2 2
g = 27X . 271 . . 2
= | E:h i——(i+1)| =C[i(x-1)-1]
R\ 2m| a a
e} :C[(x—1)2+1J:C(x2—2x+2)
000
or‘ 4 H H F P P A I T £ NN G H X= O —> E — 2C
l\:\ii;hsu\l Is:e lh:]‘::!f;ntl?l\j\ Lt]::, [:LL\;:;:II\: :r, \-'aluf:s {ll !t: Ilcu;uliu;n.rirlllc l[lllt:n:r;[: X = 1 % E — 1C .

Compare to Fig. 5.6. C h:?,f{'*,-"m.-;?, see (5.38).
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Figure 5.20. Free electron bands of the fcc structure. The letters on the bottom of
the graphs correspond to letters in Fig. 5.19 and indicate specific symmetry points in

k-space.
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5.7 Band Structures for Some Metals and Semiconductors

Band structure of actual solids: Figs. 5.21-24
(results of extensive, computer-aided calculations)
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Figure 5.21. Energy bands for aluminum. Adapted from B. Segal, Phys. Rev. 124, B

1797 (1961). (The meaning of the Fermi energy will be explained in Section 6.1.) Figure 5.22. Band structure of copper (fcc). Adapted from B. Segal, Phys. Rev. 125,
109 (1962). The calculation was made using the /-dependent potential. (For the defi-
nition of the Fermi energy, see Section 6.1.)
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Figure 5.23. Calculated energy band structure of silicon (diamond-cubic crystal
structure). Adapted from M.L. Cohen and T.K. Bergstresser, Phys. Rev. 14, 789
(1966). See also J.R. Chelikowsky and M.L. Cohen, Phys. Rev. B14, 556 (1976).

Figure 5.24. Calculated energy band structure of GaAs. Adapted from F. Herman
and W_.E. Spicer, Phys. Rev. 174, 906 (1968).
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5.8 Curves and Planes of Equal Energy «

£ ) K
2 » N
T sl o X

S e
7

A

k" & fa

/ Figure 5.26. Curves of equal energy inserted into the first Brillouin zone for a two-
k, dimensional square lattice.

Figure 5.25. Electron energy E versus wave vector k (two-dimensional). This figure
demonstrates various curves of equal energy for free electrons.

E(k) curves
Fig 5.25: curves of equal energy for free electrons

Fig 5.26: near boundary of BZ- deviation from a
circular form (2-d)

Fig 5.27: 3-d BZ for Cu

Figure 5.27. A particular surface of equal energy (Fermi surface, see Section 6.1) and
the first Brillouin zone for copper. Adapted from A.B. Pippard, Phil. Trans. Roy.
Soc. London, A 250, 325 (1957).
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