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Average energy of one-dimensional harmonic oscillator 

BE k T=

Average energy per atom ( three-dimensional harmonic 
oscillator ) 

3
2 BE k T=

Average kinetic energy of vibrating atom 

3 BE k T=

20.1 Classical (Atomistic) Theory of  
        Heat Capacity 

Fig 20.1. (a) A one-dimensional harmonic oscillator and (b) a three-
dimensional harmonic oscillator.  



Total internal  energy per mole 

03 BE N k T=

Finally, the molar heat capacity is 

v 0
v

3 B
EC N k
T
∂ = = ∂ 

Inserting numerical values for N0 and kB 

v 25 J/mol K 5.98 cal/mol KC = ⋅ = ⋅

Average potential energy of vibrating atom has the same average magnitude as the 
kinetic energy.   

So Total energy of vibrating atom has the same average magnitude as the average per 
atom. 

20.1 Classical (Atomistic) Theory of  
        Heat Capacity 



The energy of the i th energy level of a harmonic oscillator 

1
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 

 = Planck's constant of action
 = frequency of harmonic oscillator

h
v

The energy of Einstein crystal ( which can be considered to be a system of 3n linear 
harmonic oscillator) 
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20.2 Quantum Mechanical      
        Considerations-The Phonon 

20.2.1 Einstein Model 

Fig 20.2. Allowed energy levels of a phonon: (a) average 
thermal energy at low temperatures and (b) average thermal 
energy at high temperatures. 
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Heat capacity at a constant volume  
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Total energy of vibration for the solid 
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20.2.2 Debye Model 
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Thermal energy at given temperature 
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The Heat capacity of the electrons 
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So far, we assumed that the thermally excited electrons behave like a classical gas. 

20.3 Electronic Contribution to  
        The Heat Capacity 



In reality, the excited electrons must obey the Pauli principle. So, 
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If we assume a monovalent metal in which we can reasonably assume one free 
electron per atom, N* can be equated to the number of atoms per mole. 
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Below the Debye temperature, the heat capacity of metals is sum of 
electron and phonon contributions. 
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Thermal effective mass 
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From the kinetic theory of gases 
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21.3 Thermal Conduction in Metals  
        and Alloys Classical Approach  

Fig 21.1. For the derivation of the heat conductivity in metals. 
Note that (dT/dx) is negative for the case shown in the graph. 
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Relation between the heat conductivity and  
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21.3 Thermal Conduction in Metals  
        and Alloys Classical Approach  



Do all the electrons participate in the heat conduction? 

No, Only those electrons which have an energy close to the Fermi energy 
participate in the heat conduction 

21.2 Thermal Conduction in Metals and 
Alloys-Quantum Mechanical Considerations 
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21.2 Thermal Conduction in Metals and 
Alloys-Quantum Mechanical Considerations 



Heat conduction in dielectric materials occurs by a flow of phonons. 

At low temperatures 

Only a few phonons exist, the thermal 

conductivity depends mainly on the heat 

capacity            which increses with the low 

temperatures. 
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At higher temperature 
The phonon-phonon interactions are 

dominant, the phonon density increases with 

increasing T. 

Thus the mean free path and the thermal 

conductivity decreases for temperatures 

21.3 Thermal Conduction in Dielectric 
Materials 



Umklapp Process 

When two phonons collide, a third 

phonon results in a proper manner to 

conserve momentum. Phonons can be 

represented to travel in k-space. 

 

Outside the first Brillouin zone, 
Resultant phonon vector 

2aAfter the collision in a direction that is almost opposite to  

Fig 21.2. Schematic representation of the thermal conductivity 
in dielectric materials as a function of temperature. 

21.3 Thermal Conduction in Dielectric 
Materials 



Part V Thermal Properties of Materials 

 Chap. 18 Introduction 

 Chap. 19 Fundamentals of Thermal Properties 

 Chap. 20 Heat Capacity 

            Chap. 21 Thermal Conduction 

            Chap. 22 Thermal Expansion 



Lα : Coefficient of linear expansion 

The length L of a rod increases with increasing temperature 

, 

Atomistic point of view 

For small temperature 
 : a atom may rest in its equilibrium 
position 

As temperature increases 
 the amplitudes of the vibrating atom 
increases 

Asymmetric 

Because potential curve is not 
symmetric, a atom moves farther apart 
from its neighbor 

Fig 22.1. Schematic representation of the potential energy, U(r), 
for two adjacent atoms as a function of internuclear separation, r. 

22 Thermal Expansion 
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