Final review

Water treatment processes

Water treatment - hardness

Q: A water sample having a pH of 7.4 is analyzed to have the following ion concentrations. Determine the alkalinity, total hardness, carbonate hardness, and noncarbonate hardness of the sample in mg/L as CaCO₃.

Ion	Concentration (mg/L)	Ion	Concentration (mg/L)
Ca ²⁺	53.2	HCO ₃ -	132
Mg ²⁺	13.1	SO ₄ ²⁻	58.4
Na ⁺	17.5	CI-	21.2
K ⁺	4.8		
Fe ³⁺	0.32		

Water treatment - disinfection

Q: A chlorine disinfection is applied for a reactor having a dimension of 5 m x 2 m x 25 m (W x H x L) and receiving an influent flow rate of 1000 m³/hr. The first-order decay coefficient under the current chlorine dose is 0.31 min⁻¹. Assuming that the chlorine concentration is constant in the reactor and the reactor works as an ideal PFR, would it be possible to achieve 2-log removal of pathogens? What if the reactor cannot be assumed as an ideal PFR?

Wastewater treatment processes

- Pretreatment: removal of materials that may damage mechanical devices & flow equalization
- Primary treatment: sedimentation basin, remove SS & particulate BOD by gravity
- Secondary treatment: remove BOD by microorganisms, further SS removal
- Tertiary treatment: polishing of secondary effluent for improved quality

Wastewater treatment - analysis

Q: An aeration tank with a volume of 4000 m^3 is receiving primary effluent at a flow rate of $10000 \text{ m}^3/\text{d}$ having a BOD_5 of 500 mg/L. Calculate the effluent BOD_5 and the biomass concentration in the tank when there is no sludge recycle. Does the effluent BOD_5 meet the secondary effluent standard of BOD_5 = 30 mg/L? If not, determine the mean cell residence time required to achieve the standard. What is the biomass concentration in the tank according to the calculated mean cell residence time? Use following parameters.

$$K_S = 50 \ mg/L \ BOD_5$$
 $Y = 0.5 \ mg \ VSS/mgBOD_5$ $k_d = 0.10 \ d^{-1}$ $\mu_m = 3 \ d^{-1}$

2014-2

Air pollution

- Micro-, meso-, and macro-scale
- Primary and secondary pollutants
- Air pollutants: CO, NO_x , SO_x , lead, photochemical oxidants, particulates, other hazardous pollutants (hydrocarbons, heavy metals, dioxins, asbestos, ...)
- Indoor air pollution, acid rain, ozone depletion, global warming
- Montreal protocol vs. Kyoto protocol

Air pollution control

- Absorption vs. adsorption
- Combustion
- Cyclones
- Filter
- Liquid scrubbing
- Electrostatic precipitation

Solid waste management

- Classification of wastes (Korea)
 - By sources
 - By hazard
- Recycle
- Composting
- Incineration
- Sanitary landfill
 - Landfill operation area method
 - Leachate and landfill gas control

Hazardous waste management

- US regulation
 - RCRA (Resource Conservation and Recovery Act)
 - CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act)
- Soil & groundwater treatment technologies
 - In situ vs. ex situ
 - Pump-and-treat, soil vapor extraction, air sparging, permeable reactive barrier, soil washing, thermal desorption, in situ bioremediation

2014-12-08 2014-2 **10**

Noise pollution

Q: A sound is measured over 1-minute period and the average dB(A) values are taken at 10 sec intervals as shown below. Calculate the L_{eq} value of the sound over the period. Also, calculate the maximum value of N for $L_N = 55$ dB(A) assuming linear change in dB(A) between the time intervals.

Time intervals	Average dB(A) at time intervals	
0-10 sec	50	
10-20 sec	55	
20-30 sec	60	
30-40 sec	55	
40-50 sec	50	
50-60 sec	50	

2014-12-08 2014-2 **11**