Reactors II

Today's lecture

- Plug flow reactor
 - Concept
 - PFR analysis for 1st order reaction
 - PFR analysis for Monod kinetics

Reactor analysis: PFR

- Plug flow reactor (PFR)
 - assumption: no mixing in the direction of flow & completely mixed in the direction perpendicular to the flow
 - reactors get close to PFR as the length gets longer than the width and depth (e.g., rivers)

PFR, first-order reaction

 Take control volume as a thin plate perpendicular to the flow at z=z with a dimension of Δz in z dir.

PFR, first-order reaction

PFR, first-order reaction

- We model plug flow reactor as a movement of a "plug"
- The plug has a cross sectional area same as the reactor dimension and an infinitesimal dimension in z-dir (a thin plate)
- Complete mixing within the plug → batch reactor moving in the direction of flow

PFR, Monod kinetics

$$u\frac{dS}{dz} = -\frac{\hat{q}S}{K+S} \left[X_a^0 + Y(S^0 - S) \right]$$