Reactors III

Today's lecture

- Continuous-stirred tank reactor
 - CSTR analysis for 1st order reaction
 - PFR vs. CSTR
 - CSTR analysis for Monod kinetics
- Including inert biomass

Reactor analysis: CSTR, 1st order

For 1st order reaction of a contaminant,

$$C = \frac{C_0}{1 + k\theta}$$

PFR vs. CSTR

PFR shows better performance esp. at high HRTs

For 1st order reaction,

CSTR:

$$C = \frac{C_0}{1 + k\theta}$$

PFR:

$$C = C_0 e^{-k\theta}$$

Reactor analysis: CSTR, Monod kinetics

Assume no active biomass in the influent (negligible)

$$S = K \frac{1 + b\theta}{Y\hat{q}\theta - (1 + b\theta)}$$
 No S_0 or X_a in the equation!

$$X_a = Y \frac{S^0 - S}{1 + b\theta}$$

HRT vs. SRT

- HRT: Hydraulic Retention Time; the average time the water stays in the system
- SRT: Soilds Retention Time (or mean cell residence time, MCRT); the average time the biomass stays in the system

Special cases

- 1) $\theta_x \le \theta_{min}$: washout
- 2) $\Theta_x \to \infty$: $S = S_{min}$
- 3) For $\Theta_{min} < \Theta_{x}$, S decreases with increase in Θ_{x} , but X_{a} peaks at some point

Including inert biomass

Influent contains some non-biodegradable, particulate organics: this is included when you measure VSS

Recall:

$$\left(\frac{1}{X_a}\frac{dX_a}{dt}\right)_{inert} = -\frac{1}{X_a}\frac{dX_i}{dt} = -(1 - f_d)b$$

Including inert biomass

Solution for inert biomass: $X_i = X_i^0 + X_a(1 - f_d)b\theta_x$

Solution for total VSS:

$$X_v = X_i + X_a = X_i^0 + Y(S - S^0) \frac{1 + (1 - f_d)b\theta_x}{1 + b\theta_x}$$