Microbial kinetics in reactors: further discussion II

Today's lecture

- Nutrient & e⁻ acceptor consumption
- Hydroysis
- Alternate rate expressions

Nutrient consumption

 For the consumption of nutrients for biomass production:

$$r_n = \gamma_n Y_{obs} r_{ut} = \gamma_n Y r_{ut} \frac{1 + (1 - f_d)b \theta_x}{1 + b \theta_x}$$

 r_n = rate of nutrient consumption [M_nL⁻³T⁻¹] γ_n = the stoichiometric ratio of nutrient mass to VSS for biomass [M_nM_x⁻¹]

Using $C_5H_7O_2N$ as cell formula: $\gamma_N = 14 \ g \ N/113 \ g \ VSS = 0.124 \ g \ N/g \ VSS$ $\gamma_P = 0.2 \ x \ 0.124 = 0.025 \ g \ P/g \ VSS \ (generally \ P = 0.2N)$

Nutrient consumption in a CSTR

Steady-state mass balance:

$$0 = QC_n^0 - QC_n + r_n V$$

$$C_n = C_n^{0} + r_n \theta$$

if C_n < 0, nutrient-limiting

e-acceptor consumption

(e⁻ acceptor used in a reactor)

= [(total O.D. in the effluent) - (total O.D. in the influent)] x (conversion factor)

In terms of the use rate for a reactor $(\Delta S_{\alpha}/\Delta t)$:

$$\frac{\Delta S_a}{\Delta t} = \gamma_a \left[Q(S^0 + 1.42X_v^0) \quad Q(S + SMP + 1.42X_v) \right]$$
$$= \gamma_a Q[S^0 - S - SMP + 1.42(X_v^0 - X_v)]$$

 γ_a = the stoichiometric ratio of acceptor mass to oxygen demand

for oxygen: 1 g O₂/g COD

for nitrate: 0.35 g NO₃-N/g COD

e-acceptor consumption

To estimate the required mass rate of acceptor supply (ex: aeration $[O_2]$ requirement), the calculated e^- acceptor use rate, $\Delta S_a/\Delta t$ can be written as:

$$\frac{\Delta S_a}{\Delta t} = Q \Big[S_a^{\ 0} - S_a \Big] + R_a$$
 (mass flow rate in) – Requirement of e- acceptor addition

Nutrients and electron acceptors

Q: From the last lecture example, we calculated the following:

$$S^0 = 500 \text{ mg } BOD_L/L$$
 $X_v = 221 \text{ mg } VSS/L$
 $S = 1.7 \text{ mg } BOD_L/L$ $SMP = 31.8 \text{ mg } BOD_L/L$
 $X_i^0 = 50 \text{ mg } VSS/L$ $r_{ut} = 249 \text{ mg } BOD_L/L$

If influent N and P concentrations are 50 mg NH_4^+ -N/L and 10 mg PO_4^{3-} -P/L, respectively, what are the <u>effluent N and P concentrations</u>?

If influent and effluent DO are 6 and 2 mg/L, respectively, how much O_2 should be supplied to the reactor?

- Particulates and polymeric substances account for a significant portion of BOD in wastewater
- >50% of BOD in typical sewage is particulates (SS)
- Particulates and large-MW compounds cannot penetrate the cell membrane
 - > needs to be hydrolyzed to smaller molecules
- Catalyzed by extracellular enzymes
- The mechanism and kinetics of hydrolysis it not fully understood

One simple way of describing hydrolysis is to assume first-order kinetics for particulates (or polymers):

$$r_{hyd} = -k_{hyd}S_p$$

 r_{hvd} = rate of accumulation of particulates (= dS_p/dt) [M_sL⁻³T⁻¹]

 k_{hdy} = first-order hydrolysis rate coefficient [T⁻¹]

 S_p = concentration of particulates [M_sL⁻³]

In a steady-state CSTR,

$$0 = Q(S_p^0 - S_p) - k_{hyd}S_pV$$

$$S_p = \frac{S_p^0}{1 + k_{hyd}\theta}$$

 Effect of hydrolysis on dissolved substrates mass balance in a steady-state CSTR

$$0 = Q(S^0 - S) - \frac{\widehat{q}S}{K + S}X_aV + k_{hyd}S_pV$$

$$0 = (S^0 - S) - \frac{\widehat{q}S}{K + S} X_a \theta + k_{hyd} S_p \theta$$

- \rightarrow Increase in S^0 by $k_{hyd}S_p\theta$
- → Increased biomass, but no change in dissolved substrates in the reactor

Q: Let's add hydrolysis on the previous example. Recall that without hydrolysis, the values calculated were as follows:

$$\theta = 2 d$$
 $S = 1.7 mg BOD_L/L$ $X_a = 161 mg VSS/L$ $SMP = 31.8 mg BOD_L/L$ $X_i = 60 mg VSS/L$ $Effluent COD = 347 mg COD/L$ $X_v = 221 mg VSS/L$ $Effluent BOD_L = 216 mg BOD_L/L$

Assuming that the influent contains biodegradable particulate organic matter with a concentration of 100 mg COD/L and the hydrolysis rate coefficient is k_{hyd} = 0.2/d, recalculate the effluent VSS, COD, and BOD,

Summary of given values:

$$\theta = 2 \ d$$
 $X_i^0 = 50 \ mg \ VSS/L$ $S^0 = 500 \ mg \ BOD_L/L$ $k_2 = 0.09 \ g \ COD/g \ VSS-d$ $\hat{q} = 20 \ g \ BOD_L/g \ VSS-d$ $\hat{q}_{UAP} = 1.8 \ g \ COD/g \ VSS-d$ $Y = 0.42 \ g \ VSS_a/g \ BOD_L$ $K_{UAP} = 100 \ mg \ COD/L$ $K = 20 \ mg \ BOD_L/L$ $\hat{q}_{BAP} = 0.1 \ g \ COD/g \ VSS-d$ $K_{BAP} = 85 \ mg \ COD/L$ $f_d = 0.8$ $S_p^0 = 100 \ mg \ COD/L$ $k_{hvd} = 0.2/d$

Alternate rate expressions

Contois equation

$$r_{ut} = -\frac{\hat{q}S}{BX_a + S}X_a$$

$$B = \text{constant } [M_s/M_x]$$

When
$$X_a \to \infty$$
, $r_{ut} = -\frac{\hat{q}}{B}S$

(at high biomass concentrations substrate utilization depends on S, not X_a)

Alternate rate expressions

Moser equation

$$r_{ut} = -\frac{\hat{q}S}{K + S^{-\gamma}}X_a$$
 $\gamma = \text{constant [unitless]}$

Tessier equation

$$r_{ut} = -\hat{q}(1 - e^{S/K})X_a$$

Just **REMEMBER** that Monod Eq. is **NOT** the only option!!!

Dual Monod equation

$$r_{ut} = -\hat{q} \frac{S}{K+S} \frac{A}{K_A + A} X_a$$

 $A = e^{-}$ acceptor concentration $[M_A/L^3]$ $K_A = \text{half-saturation coeff. for } e^{-}$ acceptor $[M_A/L^3]$

- e⁻ acceptor can also be limiting!
- Can be reduced to single Monod Eq. if $A >> K_A$
- Terms for other limiting substances can be added as well