Biofilm kinetics III

Today's lecture

- Biofilm analysis: pseudo-analytical solution
 - Concept and master equations
 - Non-dimensionalization of variables
 - Calculation procedure
 - Example question

Biofilm analysis

- Key points from last two lectures
 - Idealized biofilm: uniform X_f and L_f , external mass transport by film theory, internal mass transport by Fick's 2nd law of diffusion
 - Deep biofilm vs. Shallow biofilm
 - Governing eq. & BCs

$$0 = D_f \frac{d^2 S_f}{dz^2} - \frac{\hat{q} X_f S_f}{K + S_f} \qquad 0 = \frac{dS_f}{dz} \Big|_{z=L_f} \qquad \frac{D}{L} (S - S_S) = D_f \frac{dS_f}{dz} \Big|_{z=0}$$
$$0 = YJ - b' X_f L_f$$

Biofilm analysis

$$0 = D_f \frac{d^2 S_f}{dz^2} - \frac{\hat{q} X_f S_f}{K + S_f} \qquad 0 = \frac{dS_f}{dz} \Big|_{z=L_f} \qquad \frac{D}{L} (S - S_s) = D_f \frac{dS_f}{dz} \Big|_{z=0}$$
$$0 = YJ - b' X_f L_f$$

For numerical analysis, we are happy with these equations; but people want to have <u>analytical solutions</u> as well!

By Sáez and Rittmann (1992)

$$J = f \cdot J_{deep}$$

J = the steady-state substrate flux of the actual biofilm [M/L²/T]

 J_{deep} = the substrate flux into a deep biofilm having the S_s (substrate concentration at the biofilm surface) value same as the actual biofilm

recall that
$$J_{deep} = \left[2\hat{q} X_f D_f \left(S_S + K \ln \left(\frac{K}{K + S_S} \right) \right) \right]^{1/2}$$
 [Eq. 4.10]

f = the ratio expressing how much the actual flux is reduced because the steady-state biofilm is not deep $0 \le f \le 1$, f approaches 1 for deep biofilm

$$J = f \cdot J_{deep}$$

Our goal is to calculate J.

We don't know f yet and we need S_s to calculate J_{deep} .

Note that we have eight variables:

$$\hat{q}, K, Y, b', D_f, D, L, and S$$

First, let's <u>non-dimensionalize</u> the variables.

- Non-dimensionalized variables
 - $-S_{min}^*$: represents growth potential

$$S_{min}^* = \frac{b'}{Y \hat{q} - b'} = \frac{S_{min}}{K}$$
 $S_{min}^* \ll 1$: very high growth potential $S_{min}^* > 1$: very low grow potential

(hard to maintain steady-state biomass)

 $-K^*$: compares external and internal mass transport

$$K^* = \frac{D}{L} \left[\frac{K}{\hat{q} X_f D_f} \right]^{1/2}$$

 $K^* < 1$: external mass transport controls the substrate flux into the biofilm

 $K^* \gg 1$: external mass transport resistance does not affect the substrate flux

- Non-dimensionalized variables
 - $-S^*$: dimensionless substrate concentration

$$S^* = \frac{S}{K}$$

 $\mathcal{S}^{\ast} < 1$: the substrate utilization rate is less than the maximum value throughout the biofilm

 $S^*\gg 1$: the substrate utilization rate is at its maximum at least in the outer portion of the biofilm

The non-dimensional flux

$$J^* = J/(K\hat{q}X_f D_f)^{1/2}$$

$$= J_{deep}^* \cdot f \qquad \text{(from J} = J_{deep} \cdot f)$$

$$= K^*(S^* - S_S^*) \qquad \text{(from J} = \frac{D}{L}(S - S_S))$$

 J_{deep}^* = the non-dimensional substrate flux into a deep biofilm having the S_S^* (dimensionless substrate concentration at the biofilm surface) value same as the actual biofilm

 J_{deep}^* is calculated as:

$$J_{deep}^* = (2[S_S^* - ln(1 + S_S^*)])^{1/2}$$
 (from eq. [4.10])

Calculating f

by numerical analysis, Sáez and Rittmann (1992) found following relationship (this is why the solution is <u>pseudo</u>-analytical):

$$f = tanh \left[\alpha \left(\frac{S_s^*}{S_{min}^*} - 1 \right)^{\beta} \right]$$

where

$$\alpha = 1.5557 - 0.4117 \ tanh[log_{10}S_{min}^*]$$

$$\beta = 0.5035 - 0.0257 tanh[log_{10}S_{min}^*]$$

Now, the following equations including differentials

$$0 = D_f \frac{d^2 S_f}{dz^2} - \frac{\hat{q} X_f S_f}{K + S_f} \qquad 0 = \frac{dS_f}{dz} \Big|_{z=L_f} \qquad \frac{D}{L} (S - S_S) = D_f \frac{dS_f}{dz} \Big|_{z=0}$$
$$0 = YJ - b' X_f L_f$$

are made into algebraic equations

$$J^* = J_{deep}^* \cdot f = K^*(S^* - S_S^*)$$

with J_{deep}^* a function of S_s^* and f as a function of S_s^* and S_{min}^* . (Two unknowns, two equations, three input parameters)

Using the pseudo-analytical solution

The procedures to compute the substrate flux, J, and the biomass accumulation per unit area, XfLf from the pseudo analytical solution is as follows:

- 1. Compute the non-dimensional parameters, S^* , K^* , S^*_{min}
- 2. Compute α and β
- 3. Compute S_s^* by: $S_s^* = S^* J_{deep}^* \cdot f / K^*$
- 4. Compute J^* by: $J^* = J^*_{deep} \cdot f = K^*(S^* S^*_S)$
- 5. Convert *J** into *J*
- 6. Compute $X_f L_f$ by: $X_f L_f = YJ/b'$

Q: Following parameters are given for a steady-state biofilm:

$$L = 0.01 cm$$
 $b' = 0.1 d^{-1}$
 $K = 0.01 mg/cm^3$ $D = 0.8 cm^2/d$
 $X_f = 40 mg/cm^3$ $D_f = 0.64 cm^2/d$
 $\hat{q} = 8 d^{-1}$ $Y = 0.5$

Compute the steady-state substrate flux (J) and the biofilm accumulation (X_fL_f) when the bulk liquid substrate concentration is 0.5 mg/L.