Wastewater treatment processes

Municipal wastewater treatment systems

- Pretreatment: removes materials that can cause operational problems, equalization optional
- Primary treatment: remove ~60% of SS and ~35% of BOD
- Secondary treatment remove ~85% of BOD and SS
- Advanced (tertiary) treatment more BOD and SS, N, P, others

Bar racks (screens)

 Purpose: to remove large objects that would damage or foul pumps, valves, and other mechanical equipment

http://www.infobarscreens.com

Grit chamber

- Grits: inert dense materials such as sand, broken glass, silt, and pebbles
- Purpose: to remove grits that can abrade pumps and other mechanical devices

Flow equalization

- The flow rate and strength of wastewater varies from hour to hour
- High flow rate and strength in the morning, low at night; high flow rate and low strength during storm events
- Flow equalization is to achieve nearly constant wastewater flow rate and strength → better performance of wastewater treatment and reduce the size and cost

- Removal of suspended solids by settling
- This removes some BOD as well!
- Removes ~60% of SS and ~35% of BOD
- Sludge settled at the bottom and collected by mechanical devices
- Floating materials such as oil and grease are also removed

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- Design parameters
 - Retention time: ~2 hr
 - Overflow rate, v_0

$$v_o = \frac{Q}{A_c}$$

 $Q = \text{water flow rate (m}^3/\text{s)}$

 A_c = surface area of the sedimentation basin (m²)

Weir loading, WL

$$WL = \frac{Q}{L_{weir}}$$
 $L_{weir} = \text{weir length (m)}$

* Large, dense particles: better settling properties

 \rightarrow higher v_0 and WL allowed

Rectangular or circular

http://www.mlive.com

http://www.lgam.info

Q: Calculate the retention time, overflow rate, and weir loading of the primary sedimentation basin with following design parameters.

 $Flow = 0.150 \text{ m}^3/\text{s}$

Width = 10.0 m

Weir length = 75.0 m

Length = 40.0 m

Water depth = 2.0 m

Secondary treatment

- Goal: provide BOD removal beyond what is achieved in primary treatment
 - Removal of soluble BOD
 - Additional removal of SS
- How: by providing favorable conditions for microbial activities
 - Availability of high density of microorganisms
 - Good contact between organisms and wastes
 - Favorable temperature, pH, nutrients, carbon source (food)
 - Oxygen (or other electron acceptors)
 - No or little toxic chemicals present

Activated sludge process

- A biological wastewater treatment technique using suspended microorganisms (dispersed growth)
- Aeration tank: a mixture of wastewater and microorganisms is agitated and aerated
- Wastewater BOD is removed by active microorganisms

Activated sludge process

- Secondary clarifier: the microorganisms (also called biosolids or sludge) are separated from water by gravity
- Most of the settled sludge is returned to the aeration tank (Why? - We need a high population of microorganisms)
- A fraction of the settled sludge is wasted (Why? microorganisms grow!)

Assumption:

- i) Steady-state
- ii) The aeration tank is a CSTR
- iii) All reactions occur in the aeration tank

Mass balance for substrate:

$$0 = Q^0 S^0 - (Q^e S + Q^w S) + r_{ut} V$$

Mass balance for microorganisms:

$$0 = 0 - (Q^{e}X_{a}^{e} + Q^{w}X_{a}^{w}) + [Y(-r_{ut})V - bX_{a}V]$$

This can be rearranged to:

$$\frac{Q^e X_a^e + Q^w X_a^w}{X_a V} = \frac{Y(-r_{ut})}{X_a} - b$$

• Solids retention time (SRT), θ_x

$$\theta_{x} = \frac{X_{a}V}{Q^{e}X_{a}^{e} + Q^{w}X_{a}^{w}}$$

Therefore,

$$\frac{1}{\theta_x} = \frac{Y(-r_{ut})}{X_a} - b = Y \frac{\hat{q}S}{K+S} - b$$

$$S = K \frac{1 + b\theta_x}{\theta_x (Y\hat{q} - b) - 1}$$

We've seen this!!

Mass balance for substrate:

$$0 = Q^0 S^0 - (Q^e S + Q^w S) + r_{ut} V$$

This can be rearranged to $(Q^0 = Q^e + Q^w)$:

$$-r_{ut} = \frac{Q^{0}(S^{0} - S)}{V} = \frac{(S^{0} - S)}{\theta}$$

$$X_a = \frac{\theta_x}{\theta} \frac{Y(S^0 - S)}{1 + b\theta_x}$$

We've seen something similar to this!!

Other important operation parameters

Food-to-microorganism ratio (F/M)

$$F/M = \frac{Q^0 S^0}{VX}$$
 X = total suspended solids (MLSS) in aeration tank (mg/L)

 Volumetric organic loading rate (Volumetric OLR): the amount of BOD or COD applied to the aeration tank volume per day

$$Volumetric OLR = \frac{Q^0 S^0}{V}$$

Other important operation parameters

• Sludge production, $P_{X,VSS}$

$$P_{X,VSS} = Y_{obs}(Q)(S^{0} - S) + QX_{i}^{0}$$

$$= QY(S^{0} - S) \frac{1 + (1 - f_{d})b\theta_{x}}{1 + b\theta_{x}} + QX_{i}^{0}$$

 $P_{X,VSS}$ = daily net sludge production (g VSS/d) Y_{obs} = observed yield (g VSS/g substrate)

Oxygen requirements, R_o

$$R_o = Q(S^0 - S) - 1.42P_{X,bio}$$

$$P_{X,bio}$$
 = daily biomass production (g VSS/d);
= $P_{X,VSS} - QX_i^0$

- The secondary treatment process can be modified to improve nutrient removal by microorganisms
- Nitrogen removal
 - Nitrification (NH₄⁺ \rightarrow NO₃⁻): needs high DO & low BOD
 - Denitrification ($NO_3^- \rightarrow N_2$): needs low DO & some BOD
- Phosphorus removal
 - If microorganisms are exposed to alternating periods of anaerobic & aerobic conditions, they tend to accumulate excessive phosphorus at aerobic conditions

- Examples of modified secondary treatment processes for biological nutrient removal
 - Modified Ludzack-Ettinger (MLE) process: N removal

– A/O process: P removal

Bardenpho process: N+P removal

- Goal: to improve the quality of the secondary treatment effluent
- Many of the Korean wastewater treatment plants now have advanced treatment process
- Further BOD and SS removal, nutrient removal, TDS removal, or the removal of refractory organic compounds
- Different processes can be used depending on the major target

- Available tertiary treatment technologies
 - Granular filtration
 - Additional removal of SS
 - Sand is most frequently used

http://www.rpi.edu

- Available tertiary treatment technologies
 - Membrane filtration: additional removal of SS

http://www.onlinembr.info

- Available tertiary treatment technologies
 - Chemical phosphorus removal
 - Use chemicals (ferric chloride, alum, lime, ...) to precipitate P from secondary effluent
 - Using ferric chloride:

$$FeCl_3 + HPO_4^{2-} \rightleftharpoons FePO_4 \downarrow + H^+ + 3Cl^-$$

Using alum

$$Al_2(SO_4)_3 + 2HPO_4^{2-} \rightleftharpoons 2AlPO_4 \downarrow +2H^+ + 3SO_4^{2-}$$

Using lime:

$$5Ca(OH)_2 + 3HPO_4^{2-} \rightleftharpoons Ca_5(PO_4)_3OH \downarrow +3H_2O + 6OH^{-}$$

- Available tertiary treatment technologies
 - Activated carbon adsorption: removal of refractory organic compounds

http://www.chemvironcarbon.com

Membrane bioreactors

Concept

- Utilizing a suspended-growth bioreactor and microfiltration as one unit process
- Effect: secondary treatment (aeration tank + clarifier) + tertiary treatment (granular media filtration)
- High removal efficiencies of BOD, SS, bacteria, and nutrients can be obtained

Membrane bioreactors - example

Membrane bioreactors

Advantages

- Better effluent quality (can be directly reused)
- Smaller space requirements (can maintain higher biomass concentration → higher volumetric OLR, with appropriate F/M → lower HRT → smaller reactor volume)

Disadvantages

- Higher capital & operating costs
 - Operating costs for membrane cleaning, fouling control, and replacement
 - Energy costs for air scouring
 - Becoming more and more economically viable with the advances in membrane technologies

Membrane bioreactors

Kim et al. (2011)

Anaerobic fluidized bed membrane bioreactor (AFMBR)

- GAC scours the membrane → fouling control
- Additional organic removal by GAC
- Methane (fuel) production