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3.1 Definition of strain 

 

 Green strain, Almansi strain (Hamel strain) 

1
st
 Piolar-Kirchhoff strain, 2

nd 
Piolar-Kirchhoff strain (PK-strains),  

 

Cauchy stress.. 

 

 We are going to propose means of expressing the deformation of a body.  

Let us consider the motion of a body as shown in Figure 3.1.  

Consider two points P  and Q  in the body before deformation.  

When external forces are applied, the undeformed body will deform so that  

points P  and Q  move to points p  and q  in the deformed body, 



respectively. 

 

 

Figure 3.1 : The kinematics of a body motion. 

 

 The change in length of this line segment can serve as a measure of the change  

of shape and size, i.e., deformation of the body.  

We define strain as a measure of the deformation of the body.  

Let 

 

:k kX X i  Position vector of point P before deformation 

:k kx x i  Position vector of point p after deformation 



:k ku u i  Displacement vector of point P                      (3.1) 

:k kdX dX i Position vector of line segment PQ 

:k kdx dx i  Position vector of line segment pq 

Clearly, 

                       x X u                           (3.2) 

In addition, dx  is expressed as 

i
k k i

k k

xx
dx dX dX i

X X


 
                 (3.3) 

 

We introduce a second order quantity, F called deformation gradient tensor  



such that 

( )Ti
k k i X

k k

xx
F i i i x

X X


   
                 (3.4) 

where X
 is the gradient vector with respect to X coordinate system.  

Then we can rewrite Eq. (3.3) as 

dx F dX                       (3.5) 

Noting that dx  and dX are vectors, we easily recognize F  is indeed a  

second order tensor and we name it the deformation gradient tensor.  

On the other hand, the 
TF  is written as 



( )T T i k
k k k i i k

k k k i

x xx x
F i i i i i i

X X X X

  
   

   
   

 (3.6) 

Therefore, we can also rewrite Eq. (3.3) as 

Tdx dX F                       (3.7) 

Let us write lengths of line segments  PQ  and pq  as dS  and ds ,  

respectively. 

Using  Eqs. (3.5) and (3.7), we can obtain the following expression. 

2( )ds dx dx
TdX F F dX               (3.8) 

Moreover, we can express 
2( )dS  such as 

2( )dS dX dX dX dX                  (3.9) 



where                          ij i ji i 
                     (3.10) 

 

Then the difference between two scalar quantities in Eqs. (3.8) and (3.9) is 

written as  

                
2 2( ) ( )ds dS  ( )TdX F F dX 

             (3.11) 

Note that this quantity can be used as a measure of the deformation of the body.  

We introduce a second order quantity E  such as 

2 2( ) ( )ds dS  2dX E dX            (3.12) 

where 



1
( )

2

TE F F  
                (3.13) 

Remembering 
2 2( ) ( )ds dS  is a scalar and dX  is a vector, we can conclude E   

is a second order tensor defined with respect to X  coordinate system.  

This is called the Green strain tensor. 

From Eqs. (3.2) and (3.4), we can get 

[ ( )] ( )T T

X X
F X u u                 (3.14) 

Then the 
TF is written as 

( )T

X
F u    

Therefore we are able to write Green strain tensor E  as 



1
( )

2

TE F F  
  

1
[( ) ( ) )]

2

T T

X X X X
u u u u    

 (3.15) 

In order to obtain the expression for components of Green strain tensor E , 

remember the expression for X
 .  

 

Then we obtain 

 



( )

( )

j

i j j i jX

i i

jT i
j i i jX

i j

u
u i u i i i

X X

u u
u i i i i

X X


  

 

 
  

 
 

 Also,  

( ) ( ) ( )T k l k l
i k l j i kl jX X

i j i j

k k
i j

i j

u u u u
u u i i i i i i

X X X X

u u
i i

X X


   

   
   

 

 

 

 

Writing  



ij i jE E i i   

We obtain the expression for ijE  in index notation as 

, , , ,

1 1
( ) ~ ( )

2 2

ji k k
ij i j j i k i k j

j i i j

uu u u
E u u u u

X X X X

  
    

     (3.16) 

Note that Green strain tensor E  is symmetric, i.e., ij jiE E .. 

Without using index notation, components of E  are written as follows  : 

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

1 1
[( ) ( ) ( ) ] , ( , , , )

2 2

1 1
[( ) ( ) ( ) ] , ( , , , )

2 2

1 1
[( ) ( ) ( ) ] , ( , , , )

2 2

XX X X X X

YY Y Y Y Y

ZZ Z Z Z Z

u u v w
E u u v w

X X X X

v u v w
E v u v w

Y Y Y Y

w u v w
E w u v w

Z Z Z Z

   
       
   

   
       
   

   
       
   

 



                                                         (3.17) 

1 1
( ] ( , , , , , , , , )

2 2

1 1
( ] ( , , , , , , , , )

2 2

1 1
( ]

2

XY X Y X Y X Y X Y

YZ Y Z Y Z Y Z Y Z

ZX

v u u u v v w w
E v u u u v v w w

X Y X Y X Y X Y

w v u u v v w w
E w v u u v v w w

Y Z Y Z Y Z Y Z

u w u u v v w w
E

Z X Z X Z X Z X

       
         

       

       
         

       

       
     

       
( , , , , , , , , )

2

, ,

Z X Z X Z X Z X

YX XY YZ ZY XZ ZX

u w u u v v w w

E E E E E E

   

  

 

 

Note 

 

(i) Green strain tensor E is referred to the initial un-deformed geometry, and 

indicate what must occur during a given deformation. 

(ii) We have no restriction on the strain-displacement relation in Eq. (3.16) or 



Eq. (3.17). This relation includes nonlinear terms in displacement 

components. 

(iii) If we use Eqs. (3.4), (3.6), and (3.13), we can get another expression for  

Green strain tensor E. This expression is convenient for the physical  

interpretation of E.  

 

1 1
[ ( ) ] [( ) ]

2 2
i j i j

i j i j

x x x x
E i i i i

X X X X
 

   
   

                (3.18) 

 

Without using index notation, the components of E  are also written as follows :  



    

1 1 1
( 1), ( 1), ( 1)

2 2 2

1 1 1
, ,

2 2 2

XX YY ZZ

XY YX YZ ZY ZX XZ

x x x x x x
E E E

X X Y Y Z Z

x x x x x x
E E E E E E

X Y Y Z Z X

     
     

     

     
     

     

 

                                                            (3.19) 

3.2 Physical Meaning of The Green Strain Terms 

 

Consider a small rectangular parallelepiped at point P  in a body, as in Fig. 2. 

If the body is a rigid body, there is no translation and/or rotation in the body.  

Therefore,  

2 2( ) ( ) 0ds dS  .  

This means that all strain components ijE   are zero in the rigid body. 



 

 

 

Figure 3.2: The motion of a rectangular parallelepiped 

Let us imagine next that this body has some deformation and let us focus on line  

elements PA , PB , and PC . After deformation, the body in general becomes  

non-rectangular and these line elements change to pa , pb , and pc , 

respectively,  

 

Recalling Eq. (3.3).  

x x x
dx dX dY dZ

X Y Z

  
  
                (3.20) 



Note that , ,PA PB  and PC  are orthogonal to each other and vectors for line  

elements , ,pa pb  and pc  consist of dx .  

Then 

x
pa dX

X

x
pb dY

Y

x
pc dZ

Z













              
(3.21) 

Now we consider changes in the line element lengths.  

~ First look at the line element PA .  

Define relative elongation xE as the ratio of the change in length of PA  with  



respect to the original length.  

 

That is  

1x

pa PA pa
E

PA PA


  

 

Then 

(1 )xpa E PA   

 

From  Eqs. (3.19) and (3.21), we know that 

 



2 2(1 2 )xx

x x
pa dX dX E dX

X X

 
  
   

Similarly defining the relative elongations for PB and PC, we can obtain the 

following relations.  

 

1 2 1

1 2 1

1 2 1

X XX

Y YY

Z ZZ

E E

E E

E E

  

  

                         
(3.22) 

 

Therefore, , ,XX YYE E , and ZZE  are related to the relative elongations 



, ,XX YYE E and ZZE
,
 respectively and are called extensional strains.  

Next consider changes in the angles between adjacent line elements. The angle  

between PA and PB is 90
o

 
. For the sake of convenience, denote the angle  

between pa and pb  as 
.

2
XY




.  Then, XY  is the angle change.  

 

The scalar product vectors pa and pb with angle XY  is given as 

cos( )
2

XY

x x x x
dX dX dX dX

X Y X Y




   
 

     

Or 



cos( ) sin
2

XY XY

x x

X Y
x x

X Y


 

 

   
 

 
 

Noting that 

1 2 1

1 2 1

XX X

YY Y

x
E E

X

x
E E

Y


   




   


 

Repeating the above procedures for changes in angles between pb  and pc   

and between pc  and pa , we obtain similar expressions.  

 



Then using Eq. (3.19), 

2
sin

(1 )(1 )

2
sin

(1 )(1 )

2
sin

(1 )(1 )

XY
XY

X Y

YZ
YZ

Y Z

ZX
ZX

Z X

E

E E

E

E E

E

E E








 


 


 

      (3.23) 

Thus the angular changes between adjacent line elements are related to the 

strain components , ,XY YZE E , and ZXE  as well as to the elongation , ,X YE E  

and ZE . The twice strain components , ,XY YZE E , and ZXE  are called shear 

strains. 

 



2.3 Small Strain Assumption 

In many engineering problems the strain components are small. 

 Then  

1 2 1

1
1 (2 ) 1

2

X XX

XX XX

E E

E E

  

    

Repeating for other elongations, we obtain  

X XX

Y YY

Z ZZ

E E

E E

E E






                   (3.24) 

Therefore, the relative elongations are also small under small strain assumption. 



For angle changes, 

2
sin 2

(1 )(1 )

XY
XY XY

X Y

E
E

E E
 

 
   

(3.25) 

 

Also we get 

                              

sin 2

sin 2

sin 2

XY XY

YZ YZ

ZX ZX

E

E

E











                (3.26) 

The shear strains are independent of the angle changes under the small strain 

assumption. 

Note that under the small strain assumption, rotation can still be large. 

 



2.4 Linear Strain Assumption 

 

In addition to the small strain assumption, we add an assumption of small  

rotation of volume element. : The combination of these two assumptions is  

called linear strain assumption.  

~ Under the linear strain assumption, we can neglect all the nonlinear terms in  

the strain-displacement relations Eq. (3.16) or Eq. (3.17).  

In most cases of this course, we take the linear strain assumption.  

In addition, we may use   for strain tensor instead of E.  

Moreover, in the case of this infinitesimal strains, the deformed state is very  

close to the undeformed state.  

Therefore x is very close to X. Hereafter we will use x as the coordinate of the  



undeformed body instead of X.  

Then Eq. (3.16) becomes 

 

, ,

1 1
( ) ~ ( )

2 2

ji
ij i j j i

j i

uu
u u

x x



  

   (3.27) 

 

In unabridged notation we have 



,

,

,

xx x

yy y

zz z

u
u

x

v
v

y

w
w

z








 



 



 
               

 (3.28) 

                              

1 1
( ) ( , , )

2 2

1 1
( ) ( , , )

2 2

1 1
( ) ( , , )

2 2

, ,

xy x y

yz y z

zx z x

yx xy yz zy xz zx

v u
v u

x y

w v
w v

y z

u w
u w

z x







     

 
   

 

 
   

 

 
   

 

  

 

 



In engineering problems, we frequently use engineering shear strains such that 

2

2

2

xy xy

yz yz

zx zx

 

 

 






                   (3.29) 

 

The justification for neglecting the nonlinear terms is given as follows : 

 

 

Figure 3.3: Change in the segment dX 

Consider the small line element vector dX i which changes to 
x

dX
X



  where 

 



( ) ( ) ( )x X u X u i Y v j Z w k         

 

Let 1  be the angle between 
x

X



  and Y  axis.  

Then 

1

1

cos
1

1

1

X

X

u v wx i j jj
X X XX

x E

X

v

X

E



       
    

 








 



Similarly, for the angle, 2 , between 

x

X



  and Z axis, 

                                 

2cos
1

1 X

x w
k

X X
x E

X



 

  
 


 

For small strains, 1.XE  For  

x

X



  close to X axis, i.e., small rotation of  

dX,  

1 2cos ,cos 1~ , 1
v w

X X
 

 
 

   

In addition, the deformed coordinate x  is close to X .  

Similarly, if we consider the small rotation of the line element  



dy  and    dz ,   
, 1

u w

Y Y

 


  and , 1
u w

Z Z

 


  .. 

Therefore, all nonlinear terms can be neglected since 

                           

2
v v

X X

  
  

  
 

Etc. 

 

2.5  Strain Transformation Law 

 

We will try to find the relationship between two strain components expressed  

with respect to two different coordinate systems,
 

x , and x .  

The position vector of a point P  can be written as 

 



Figure 3.4 : Change in segment PQ  

 

The position vector of a point P  can be written as 

 

x x a 
 

where a is the vector between origins of two coordinate systems. Or using  

unabridged notation,  

x xi yj zk xi yj zk a        

 

Taking a dot product with i , 



( )x x i xi yj zk i xi i yj i zk i a i         

              ( ) ( ) ( )x i i y j i z k i a i   
 

                             

xx yx zxxc yc zc a i   
 

where 
,xx yxc c

and zxc
 are direction consines.  

 

From the above equation, we can obtain  

, ,xx yx zx

x x x
c c c

x y z

  
  
    



 

Taking a dot product with j   or k , we get similar expressions for other 

direction cosines.  

Using index notation, 

j

ij

i

x
c

x




                        (3.30) 

Consider the quantity 
2 2ds dS  defined in Eq. (3.12).  

 

Using index notation (instead of E and X, we use   and x  hereafter,),  



2 2 2 ij i jds dS dx dx 
                         (3.31) 

Or in matrix form, 

2 2

, ,

2[ , , ] ,

..

xx xy xz

xy

xz

dx

ds dS dx dy dz dy

dz

  





   
   

     
     

          

(3.32) 

The quantity 
2 2ds dS  is a scalar and thus invariant under coordinate 

transformation.      

 

In x  coordinate system,  



2 2

, ,

2[ , , ] ,

..

xx xy xz

xy

xz

ds dS dx dx

dx

dx dy dz dy

dz



  





 

   
   

    
     

          (3.33) 

According to the chain rule of differentiation 

...

...

xx yx zx

x x x
dx dx dy dz c dx c dy c dz

x y z

dy

dz

  
     
  



  (3.34) 



 

In matrix form  

 ?
dx dx dx

dy dy T dy

dz dz dz

     
     

      
     
     

                (3.35) 

where 

[?]T                           (3.36) 

In addition  



[ , , ] [ , , ]

T

T

dx

dx dy dz dy dx dy dz T

dz

 
 

  
 
 

        (3.37) 

After substituting Eqs. (3.35) and (3.37) into Eq. (3.32), setting it equal to 

Eq. (3.33), we get  

, , , ,

, ,

.. ..

xx xy xz xx xy xz

T

xy xy

xz xz

T T

     

 

 

   
   

   
   
   

 (3.38) 

In index notation, we can express as 

  



  

ij ik jl ijc c 
                   (3.39) 

 

Expanding Eq. (3.38),  

T 
                          (3.40) 

where   is the engineering strain vector such that 



2

2

2

xx

yy

zz

xy xy

yz yz

zx zx








 

 

 

 
 
 
 
 

  
 

 
 

  

 (3.41) 

and   is the engineering strain vector defined with respect to x  coordinate 

system. 



In addition, the 6 X 6 transformation matrix 
T  is given as  

T   

 

2 ,.........

.

.

.

.

.

xxc 
 
 
 
 
 
 
 
  

 



2,6 Compatibility Equations 

 

Let us consider the strain-displacement relations Eq. (3.27) 

, ,

1 1
( ) ~ ( )

2 2

ji
ij i j j i

j i

uu
u u

x x



  

   

(i) If displacements iu ( i = 1..3) are given, we can readily determine all strain 

components by substituting  iu into the above equation. 

 

(ii) Inversely, when strains are given, we should determine three displacement 

components by integration of six differential equations given by the above 

expression. Then we cannot expect single-valued strains. Furthermore, 



displacements of interest to us will be continuous. The resulting equations are 

called the compatibility equations. 

    

Differentiating Eq. (3.27) twice and rearranging free indices, we can have 

 

2 33

2 3 3

1

2

1

2

ij ji

k l j k l i k l

kl k l

i j l i j k i j

uu

x x x x x x x x

u u

x x x x x x x x





  
           

   
           

 

   

 



2 3 3

2 3 3

1

2

1

2

lj j l

k i l i k j i k

ki k i

l j i j l k j l

u u

x x x x x x x x

u u

x x x x x x x x





   
           

   
           

 

 

By adding the first two equations and then subtracting the last two equations,  

we eliminate iu  components and thus obtain a set of relations involving only 

strains. 

That is 



2 22 2

0
ij ljkl ki

k l i j k i l jx x x x x x x x

    
   

                 (3.43) 

Actually, only 6 of these 81 equations of compatibility are independent, These 

are given as follows in unabridged notation :  

                                               (3.44) 

, , ,

, , ,

, , ,

, , , ,

, , , ,

, , , ,

2 ( )

2 ( )

2 ( )

xx yy yy xx xy xy

yy zz zz yy yz yz

zz xx xx zz zx zx

xx yz yz x zx y xy z

yy zx zx y xy z yz x

zz xy xy z yz x zx y

x

  

  

  

   

   

   

 

 

 

   

   

   

 



2.7 Principal strains and Principle Directions 

 

As the coordinate system changes, the values of strains change according to  

the strain transformation law. Now we like to find those directions for which the 

relative elongations or extensional strains attain extrema (i.e., maxima or 

minima). 

Those directions are called principal directions and the corresponding strains 

are called principal strains. 

Suppose ( , 1...3)ij i j   are given at a material point of a body in xyz -

coordinate system. We like to seek new coordinates ,x y , and z , in which 

xx  is the principal strain.   From the strain transformation law Eq. (3.40), 

 



2 2 2 2 2 2xx xx xx xy yy xz zz xx xy xy xy xz yx xz xx zxc c c c c c c c c             (3.45) 

For simplicity, we introduce new notations , ,x y   and z  such as 

, ,x xx y xy z xzc c c    
                      (3.46) 

Then Eq. (3.45) can be written as 

2( , , ) ...?xx x y z xx x xf                 (3.47) 

Now , we have the following relation or constraint  

2 2 2

2( , , ) 1 ( ) 0x y z x yg                   (3.48) 

Now we will find the extremum of xx  by constructing a function such that 

( , , , ) ( , , ) ( , , )x y z xx x y z x y zF f g                    (3.49) 



According to the Lagrangian multiplier method, the values of 
* for the 

extremum of F are obtained from 

2( ) 2 2 0

?

?

?

xx x xy y xz z

x

y

z

F

F

F

F

      









    


















 

In matrix form  



, ,

,?,? 0

,?,?

xx xy xz x

xy y

xz z

    

 

 

   
   

  
  
  

                                             (3.50) 

If we introduce the following shorthand notation  

, ,

,?,? 0

,?,?

xx xy xz

xy

xz

  

 



 
 

  
 
 

                                       (3.51) 

x

y

z



 



 
 

  
 
 

                                                           (3.52) 



1,0,0

0,1,0 .

0,0,1

I Unity Matrix

 
 

 
 
                   (3.53) 

( ) 0I                             (3.54) 

In order to have nontrivial solutions for  , the determinant ( ) 0I    

Or                             ?                        (3.55) 

This equation holds for special values of  . These special values are called 

eigenvalues.  

Expanding Eq. (3.55), we will have a cubic equation for   ; 

 



 

3 2

1 2 3 0J J J      
                       (3.56)                

where 

1J  =  ?                              (3.57) 

2J  =  ?                              (3.58) 

3J  =  ?                              (3.59) 

First strain invariant 1J  , second strain invariant 2J
 and third strain 

invariant 3J  do not change under coordinate transformation.  

Since   is symmetric, these exist three real eigenvalues which are obtained 

by solving the cubic equation (3.56). These eigenvalues will be denoted as 



, ,I II  and III . Now suppose that we know I and let 
I be   

associated with I .  

Then we have from Eq. (3.50), 

( ) 0II                                     (3.60) 

or in matrix form  

?                          (3.61) 

Only two of the above equation are independent and the third equation is 

provided by the constraint equation 

2 2 2( ) ( ) ( ) 1I I I

x y z             (3.62) 

From the three equations, we calculate 
I

x ,
I

y , and 
I

z .  



In a similar manner, we can calculate 
II  and 

III . 

Now we will show that I  is actually a principal strain. Pre-multiplying Eq. 

(3.60) with ( )I T ,  

( )I T ( ) 0I

I I     

Or 

( )I T ( ) 0I I T I

I                (3.63) 

From the orthonormality condition Eq. (3.62), 

( ) 1I T I    

On the other hand, by noticing Eqs. (3.42) and (3.46), we can show 

( )I I T I

xx    



Therefore we conclude by introducing these two equations into Eq. (3.63) that  

I

I xx                          (3.64) 

In order to indicate , ,I II  and III  are actually principal strains, we use 

, ,I II  and III  such that  

I I

II II

III III

 

 

 






                     (3.65) 

With , ,I II  and III , the cubic equation (3.56) can be expressed as 

3 2

1 2 3 ( )( )( ) 0I II IIIJ J J                   

Expanding, we have  



1

2

3

?

?

?

J

J

J






                       (3.66) 

Therefore, since the principal strains for the given state of strain are unique, 

1 2, ,J J and 3J  are invariant. 

 

Orthogonality of Principal Directions 

The principal directions are orthogonal with each other. For example, if 

I II  , then eigenvectors I  and II  are orthogonal.  

That is 

( )I T 0II                  (3.67) 

In unabridged form, 



0I II I II I II

x x y y z z                                             (2.68) 

 

(Proof !) 

 

2.8 Volume Change 

 

We will determine the volume change of the small parallelepiped as shown in 

Fig. 2. The initial volume before deformation is 0dV dxdydz . The volume after 

deformation is 

( )
x x x

dV dX dY dZ
X Y Z

  
 
                        

 (3.69) 

Using the formula for the product of two triple scalar product such that        



 

, ,

( ) ( ) , ,

, ,

u a u b u c

u v w a b c v a v b v c

w a w b w c

 
 

      
 
  

          (3.70) 

Then  

2

2

2

( ) [ ( )][ ( )]

[ ( )][ ( )]( )

...

..?.. ( )

...

o

x x x x x x
dV dX dY dZ dX dY dZ

X Y Z X Y Z

x x x x x x
dXdYdZ

X Y Z X Y Z

dV

     
  

     

     
  

     



 



2 2

1 2 , ,

,1 2 , ( ) ( )

, ,1 2

XX XY XZ

XY YY YZ o o

XZ YZ ZZ

E E E

E E E dV G dV

E E E



  

  

 

Therefore 

                               odV GdV
                                   

(3.71) 

Expanding,           

                         1 2 31 2 4 8G J J J                    (3.72) 

The relative volume change of the element is defined as    

       
0

1 2 3

0 0

1 1 1 2 4 8 1
dV dV dV

G J J J
dV dV


                      (3.73) 

For small strains, 1 2 31 J J J   .  



Then the relative change becomes 

0
1 1 1

0

1 2 1 1 2 1
dV dV

J J J
dV


      

Therefore, for small strains, 

                 
0

1

0

x x y y z z

d V d V
J

dV
  


  

                  (3.74) 

On the other hand, we can express the volume change in terms of the 

determinant of Jacobian matrix J .  

Rewriting Eq. (3.69), 

( ) o

x x x
dV dXdYdZ J dV

X Y Z

  
  
            

 (3.75) 

where J  is Jacobian matrix between X  and x  coordinate systems and is 



equivalent to F  if F  is written as a 3 x 3 matrix such that 

                

, ,

, ,

, ,

x x x

X Y Z

y y y
J F

X Y Z

z z z

X Y Z

   
   
 
    

   
 
   

    

                   (3.76) 

Comparing Eqs. (3.71) and (3.75), we know that 

                    J  J det(G  F )             (3.77) 

 

 

 

 



2,9 Change of Area 

 

Let us consider a small triangle PAB in the undeformed body with two side 

vectors 
(1)dX  and 

(2)dX . This triangle becomes the triangle pab with two side 

vectors 
(1)dX  and 

(2)dX  after deformation. dS  and dS  are areas of these 

triangles. In addition, let N and n be the unit normal vectors of them. We will 

determine the area change in these triangles. Then 

 

Figure 2.6: Change of a triangle element 

(1) (2) (1) (2)1 1

2 2
rst s t rNdS dX dX P dX dX i    

(1) (2) (1) (2)1 1

2 2
ijk j k indS dX dX P dx dx i    



From Eq. (2.3), 

(1) (1)j

j s

s

x
dx dX

X





 

(2) (2)j

k t

t

x
dx dX

X



  

Then  

(1) (2)j k l
ijk s t i l r

s t r

x x x
ndS F P dX dX i i i

X X X

  
 

  
 

(1) (2)i k k
ijk s t r

r s t

x x x
P dX dX i

X X X

  


  
 

(1) (2)(det )rst s t rP F dX dX i  

(det )F NdS  

Therefore, using Eq. (2.76) 

 



                                            

1
NdS n FdS

J
               (2.78) 

This relationship is called Nanson’s formula. 

 

 


