
Chapter 3

Frameworks for Inventory
Management and Production
Planning & Control

3.1 The Diversity of Stock Keeping Units

A typical medium-sized manufacturing company → keep 10,000 types of raw materials,

parts, and finished goods in inventory

diversity → cost, weight, volume, color, or physical shape

perishable → deterioration over time, theft, pilferage, obsolescence (style or technology)

Demands for items also can occur in many ways.

(cf.) substitute vs. complement

decision making in production planning and inventory management → problem of coping

with large numbers and with a diversity of factors external and internal to the organization

→ must be consistent with the overall objectives of management

♣ 3 Basic Issues

(1) How often the inventory status should be determined → review period

(2) When a replenishment order should be placed → reorder interval

(3) How large the replenishment order should be → order quantity
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3.2 The Bounded Rationality of a Human Being

All decision makers are forced to ignore some relevant aspects of a complex problem and

base their decisions on a smaller number of carefully selected factors → personal biases,

abilities, perceptions, decision technology available

The decisions must be viewed simultaneously from the point of view of: the individual

item in its relation to other similar items (i.e. interactions), the total aggregate inventory

investment, the master plan of the organization, the production-distribution systems of

suppliers and customers, and the economy as a whole

Existing theory is insufficient to do the whole job → The authors of this book weave their

own brand of personalized approaches with theory → From an intellectual point of view,

inventory management and production decisions are both challenging and exciting

3.3 Decision Aids for Managing Diverse Individual

Items

♣ Conceptual Aids

(1) Decisions in an organization can be considered as a hierarchy → strategic, tactical,

operational

(2) A related type of hierarchy can be conceptualized with respect to decision mak-

ing (eg. highest → choose a particular type of control system, middle → specific

parameters such as service level, low → data collection, calculations)

(3) grouping into a smaller number of categories (eg. ABC analysis)

(4) identify the most important variables for explicit consideration

♣ Physical Aids

(1) Decision makers can employ spreadsheets and other computer programs.

(2) principle of management by exception
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3.4 Frameworks for Inventory Management

3.4.1 Functional Classifications of Inventories

(1) Cycle Stock

order or produce in batches instead of one unit at a time

(i) economies of scale

(ii) quantity discounts (purchase price or freight cost)

(iii) technological restrictions

Determination of appropriate cycle stocks → Chapters 5, 6, 8, and 11

(2) Congestion Stock

inventories due to items competing for limited capacity (eg. ELSP)

(3) Safety Stock

inventory for the uncertainty of demand and supply ∝ customer service level

(4) Anticipation Inventory

stock accumulated in advance of an expected peak in sales → production smoothing

(5) Pipeline (WIP) Inventory

goods in transit (eg. in physical pipelines, on trucks, or in railway cars) between levels of

a multiechelon distribution systems or between adjacent work stations in a factory

(6) Decoupling Stock

permit the separation of decision making at the different echelons

Zipkin (1995) notes that inventory is a boundary phenomenon
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3.4.2 The A-B-C Classification as a Basis for Designing Individ-
ual Item Decision Models

SKU (Stock Keeping Unit): specific unit of stock to be controlled → an SKU will be

defined as an item of stock that is completely specified as to function, style, size, colour,

and usually, location

A useful statistical regularity in the usage rates of different items → About 20% of the

SKUs account for 80% of the total annual dollar usage

♣ DBV (Distribution by Value) Curve (Figure 1.2 and Table 3.1)

It is common to use three priority ratings: A (most important), B (intermediate in im-

portance), C (least important)

(1) Class A items should receive the most personalized attention from management. The

first 5 to 10% of the SKUs account for 50% or more of the total annual dollar usage

(
∑

iDivi) of the population of items under consideration

(2) Class B items are of secondary importance in relation to class A. → Usually more than

50% of total SKUs account for most of the remaining 50% of the annual dollar usage. →
monitor using computer-based system with management-by-exception rules

(3) Class C items are the relatively numerous remaining SKUs that make up only a minor

part of total dollar investment → Decision systems must be kept as simple as possible

(eg. two-bin system)

(cf.) Some inexpensive SKUs may be classified as ‘A’ simply because they are crucial to

the operation of the firm.

3.5 A Framework for Production Planning & Control

3.5.1 A Key Marketing Concept: The Product Life Cycle

Figure 3.2 The Fundamental Stages of Product/Market Evolution

(i) Products have a limited life.

(ii) Product profits tend to follow a predictable course through the life cycle.
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(iii) Products require a different marketing, production planning, inventory manage-

ment, and financial strategy in each stage.

3.5.2 Different Types of Production Processes

job shop, batch flow, assembly line, and continuous process

Table 3.2 Differences in Product and Market Characteristics

3.5.3 The Product-Process Matrix

Figure 3.3 The Product-Process Matrix

3.6 Performance Measures

3.6.1 Cost Factors

(1) The Unit Value or Unit Variable Cost, v (dollars/unit)

The price (including freight) paid to the supplier, plus any cost incurred to make it ready

for sale. → quite difficult to determine → A good starting point is the cost figure given

by accounting, adjusted for obvious errors.

(Ex.) supervising cost

(i) total acquisition (or production) costs per year clearly depend on its value

(ii) carrying (inventory holding) cost depends on v.

(2) The Cost of Carrying Items in Inventory

opportunity cost of the money invested, warehouse cost, handling and counting costs, the

costs of special storage requirements, deterioration of stock, damage, theft, obsolescence,

insurance, and taxes

carrying cost per year = Ivr
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where I is the average inventory in units and r is the cost in dollars of carrying one dollar

of inventory for one year.

In practice, the opportunity cost of capital can range from the bank’s prime leading rate

to 50% and higher.

A single value of r is usually assumed to apply for most items

(cf.) r itself could depend on the total size of the inventory → master thesis by Mr. S.

Ryu

(3) The Ordering or Setup Cost, A

fixed cost (independent of the size of the replenishment) associated with a replenishment

ordering cost: cost of order forms, postage, telephone calls, authorization, typing of orders,

receiving inspection, following up, and handling of vendor invoices

(cf.) learning effects or stabilization period → After setup, there often follows a period

of time during which the facility produces at lower quality or slower speed while the

equipment is fine tuned and the operator adjusts to the new part.

With Electronic Data Interchange (EDI), which facilitates computer-to-computer trans-

actions, the cost decreases to as low as $5 (Business Week, 1996).

(4) The Cost of Insufficient Capacity in the Short Run

costs of avoiding stockouts and the costs incurred when stockouts take place

expenses related to the emergency orders, expediting costs, rescheduling, split lots, emer-

gency shipments, substitution of a less profitable item → can be estimated well

cost related to the loss of customer → difficult to estimate → can be estimated empirically

through an actual study for only a limited number of SKUs

(5) System Control Cost

costs associated with the operation of the particular decision system selected

costs of data acquisition, data storage and maintenance, and computation, human inter-

pretation of results, training
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3.6.2 Other Key Variables

Figure 3.5 Inventory Planning Decision Variables

(1) Replenishment Lead Time, L

the time that elapses from the moment at which it is decided to place an order, until it

is physically on the shelf ready to satisfy customer demands

♣ 5 distinct components

(i) administrative time at the stocking point (order preparation time)

(ii) transit time to the supplier

(iii) time at the supplier (most variable)

(iv) transit time back to the stocking point

(v) time from order receipt until it is available on the shelf

(cf.) lead time reduction

(2) Production vs. Nonproduction

decisions in a production context are more complicated → capacity constraints as well as

an interdependency of demand among finished products and their components

(3) Demand Pattern

The nature of item can influence the demand pattern (eg. demand for spare parts is less

predictable)

3.7 Three Types of Modeling Strategies

A proper problem diagnosis is often more important than the subsequent analysis.

(1) Detailed Modeling and Analytical Selection of the Values of a Limited Number of

Decision Variables eg. EOQ

(2) Broader Scope Modeling with Less Optimization
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eg. MRP

(3) Minimization of Inventories with Little Modeling

eg. JIT manufacturing philosophy, OPT

3.8 The Art of Modeling

Incorrect modeling can lead to costly, erroneous decisions.

Little (1970) recommends that decision models should be understandable to the decision

maker, complete, evolutionary, easy to control, easy to communicate with, robust, and

adaptive.

♣ Helpful Tips for Modeling Complex Production/Inventory Systems

(1) The measures of effectiveness used in a model must be consistent with the objectives

of the organization.

(2) Heuristic decision rules, which are based on sound logic, that are designed to yield

reasonable (not necessarily optimal) answers to complex real problems, are advo-

cated.

(3) A model should permit results to be presented in a form suitable for management

review.

(4) One should start with as simple a model as possible, only adding complexities as

necessary.

(5) In most cases in the text we advocate modeling that leads to analytic decision rules

that can be implemented through the use of formulas and spreadsheets.

(6) Where it is known a priori that the solution to a problem will possess a certain

property, this information should be used, if possible, to simplify the modeling or

the solution process.

(7) When facing a new problem, one should at least attempt to show an equivalence

with a different problem for which a solution method is already known.
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3.9 Explicit Measurement of Costs

♣ 3 fundamental purposes for cost accounting systems

(i) valuing inventory for financial statements

(ii) providing feedback to production managers

(iii) measuring the cost of individual SKUs

Table 3.4 Costing and Control Alternatives

3.10 Implicit Cost Measurement and Exchange Curves

The inventory planning decision deals with the design of an entire system: consisting of

an ordering function, a warehousing system, and the servicing of customer demand – all

to top management specification.

As A/r increases, the total average inventory (in dollars) increases and the total number

of replenishments per year decreases → exchange curve

Figure 3.7 Example of Exchange Curve

3.11 The Phases of a Major Study of an Inventory

Management or Production Planning and Con-

trol System

(1) Phase I: Consideration

This first phase focuses on conceptualizing the problem and covers a number of strategic

and organizational issues as well as some detailed modeling concerns.

♣ What are the important operations objectives for this firm? (cost, quality, delivery,

and flexibility)

♣ Who has overall responsibility for inventory management and production planning and

control?
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♣ What is the relationship between operations and marketing?

♣ What are the annual sales of the organization?

♣ What is the current average aggregate inventory level in dollars?

♣ What are the current inventory management and production planning and control

procedures?

♣ What are the computer resources and skills available?

♣ What is the stock keeping unit?

♣ Is the inventory necessary?

♣ What modeling strategy seems appropriate?

(2) Phase II: Analysis

The second phase is one of the two modeling stages, and focuses on data collection and a

detailed understanding of the uncontrollable and controllable variables.

♣ How many items are to be studied?

♣ Are the items independent of one another?

♣ What does the supply chain look like?

♣ Are customer transaction sizes in single units or batches?

♣ Is demand deterministic or variable?

♣ Do customers arrive at a constant or variable rate?

♣ Is the average demand seasonal, or is it somewhat constant over the year?

♣ What historical data are available?

♣ How many customers are served?

♣ How many, and how powerful, are the firm’s competitors?

♣ What is the typical customer promise time?

♣ How is customer service measured?
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♣ How many suppliers serve the firm?

♣ What is the replenishment lead time for each item studied?

♣ Is there concern about obsolescence or spoilage?

♣ How many components go into each end item?

♣ How many processing stages do the products go through?

♣ What are the setup times for each part?

♣ How reliable is the production equipment?

♣ What is the layout of the factory?

♣ How frequently should inventory levels be reviewed?

♣ How much should be reordered or produced?

♣ What costs, lead times, transportation modes, and other factors should be changed?

(3) Phase III: Synthesis

The second modeling stage, which is the third phase of the process, attempts to bring

together the vast amount of information gathered in the previous phase.

A mathematical objective function stated in terms of controllable variable is the most

common result of this phase.

(4) Phase IV: Choosing Among Alternatives

The model should accommodate sensitivity analysis so that managers can get a feel for

the result of changes in the input data.

(5) Phase V: Control

implementation of the decision rules

♣ Training of the staff who will use the new system.

♣ How often should the values of the control parameters be recomputed?

♣ How will the uncontrollable variables be monitored?

♣ How will the firm keep track of inventory levels?
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♣ How will exceptions be handled?

(6) Phase VI: Evaluation

(cf.) General Comments

Gradual implementation, accompanied by extensive education, is essential.

Where possible, pilot approach should be first utilized.

(cf.) cycle counting
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Chapter 5

An Order Quantity Decision System
for the Case of Approximately Level
Demand

♣ Demand Properties

Inventory problems exist only because there are demands; otherwise, we have no inventory

problems. Inventory systems in which the demand size is known will be referred to as

deterministic systems. Demand rate is the demand size per unit time.

5.1 Assumptions Leading to the Basic EOQ

(1) The demand rate is constant and deterministic.

(2) The order quantity need not be an integral number of units.

(3) The unit variable cost is independent of the replenishment quantity.

(4) The cost factors do not change appreciably with time (i.e. no inflation).

(5) The item is treated entirely independently of other items.

(6) The replenishment lead time is of zero duration.

(7) No shortages are allowed.

(8) The entire order quantity is delivered at the same time.
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5.2 Derivation of the EOQ

♣ Data

D = demand rate in units per year

m = production rate in units per year (For the models that have finite production rates)

A = fixed cost of a replenishment order

v = unit variable cost of production (or purchase)

h = inventory carrying cost per unit per year, usually expressed as h = rv, where r is the

annual inventory carrying cost rate

π = shortage cost per unit short per year (For the models that allow backorders)

♣ Decision Variable

Q = replenishment order quantity

b = maximum backorder level permitted (For the models that allow backorders)

T = cycle length, the length of time between placement of replenishment orders

TRC(Q) = total relevant costs per unit time

The average inventory carrying cost per cycle is the area under the inventory triangle.

1

2
hQT =

1

2
h
Q2

D

The average cost per cycle is the sum of procurement and inventory carrying cost.

A+
1

2
h
Q2

D

To obtain the average annual cost, TRC(Q), we multiply the cost per cycle by the number

of cycles per year, D/Q. Doing this and writing h = vr, we get

TRC(Q) =
AD

Q
+

rvQ

2

The optimum value of Q can be found by solving

∂TRC(Q)

∂Q
= −AD

Q2
+

vr

2
= 0
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since TRC(Q) is convex function in Q.

(note) A differentiable function f(x) is convex in x, if the second derivative is nonnegative.

For the above model,
∂2TRC

∂Q2
=

2AD

Q3
≥ 0

Consequently,

EOQ =

√
2AD

vr

and the minimum average annual cost will be

TRC(EOQ) =
√
2ADvr

5.3 Sensitivity Analysis

♣ Penalty for using a wrong EOQ

Let Q′ = (1 + p)EOQ. That is, 100p is the percentage deviation of Q′ from the EOQ.

PCP =
TRC(Q′)− TRC(EOQ)

TRC(EOQ)
× 100

PCP = 50

(
p2

1 + p

)
(proof)

(cf.) penalty for wrong estimation of cost parameters

5.5 Quantity Discounts

We assume ‘all units discount’ which is the most common type of discount structure.

v =

{
v0 if 0 ≤ Q < Qb

v0(1− d) if Qb ≤ Q

TRC(Q) =
Qv0r

2
+

AD

Q
+Dv0, 0 ≤ Q < Qb
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TRC(Q) =
Qv0(1− d)r

2
+

AD

Q
+Dv0(1− d), Q ≥ Qb

♣ tradeoff between extra carrying cost vs. a reduction in the acquisition costs

Figure 5.6 TRC under All Units Discount

♣ Algorithm

(Step 1)

Compute EOQ(discount) =

√
2AD

v0(1− d)r

(Step 2) If EOQ(d) ≥ Qb, then EOQ(d) is optimal (case (c)).

If EOQ(d) < Qb, go to Step 3.

(Step 3) Compute TRC(EOQ) and TRC(Qb).

If TRC(EOQ) ≤ TRC(Qb), EOQ is optimal (case (b)).

If TRC(EOQ) > TRC(Qb), Qb is optimal (case (a)).

5.6 Accounting for Inflation

r = continuous discount rate

i = inflation rate

PV (Q) = (A+Qv) + (A+Qv)e
iQ
D e−

rQ
D + (A+Qv)e

2iQ
D e−

2rQ
D + · · ·

= (A+Qv)
(
1 + e−

(r−i)Q
D + e−

2(r−i)Q
D + · · ·

)
= (A+Qv)

1

1− e−
(r−i)Q

D

The optimal Q satisfies

e
(r−i)Q

D = 1 +
(
A

v
+Q

)(
r − i

D

)

(proof)
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Approximating ex by 1 + x+ x2

2
gives

Q∗ =

√
2AD

v(r − i)
= EOQ

√√√√ 1

1− i
r

5.7 Limits on Order Sizes

5.7.1 Maximum Time Supply or Capacity Restriction

(1) shelf life of the commodity

If TEOQ = EOQ
D

=
√

2A
Dvr

> SL, QSL = D(SL).

(2) Even without a shelf life limitation, an EOQ that represents a very long time supply

may be unrealistic for other reasons.

(3) There may be a storage capacity limitation on the replenishment.

5.7.2 Minimum Order Quantity

5.7.3 Discrete Units

The best integer value of Q has to be one of the two integers surrounding the real value

of Q.

5.8 Finite Replenishment Rate

Here there is a finite production rate m rather than infinite replenishment rate.

Note that in the above figure

Q

Tm + TD

= D, Imax = (m−D)Tm, Imax = DTD.

Consequently,

Imax =
(
1− D

m

)
Q
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The average inventory carrying cost per cycle is the area under the inventory triangle.

1

2
hTImax =

1

2
h
Q

D
(1− D

m
)Q =

1

2
h
Q2

D
(1− D

m
)

The average cost per cycle is the sum of procurement and inventory carrying cost.

A+
1

2
h
Q2

D
(1− D

m
)

To obtain the average annual cost, TRC(Q), we multiply the cost per cycle by the number

of cycles per year, D/Q. Doing this and writing h = vr, we get

TRC(Q) =
AD

Q
+

vrQ

2
(1− D

m
)

The optimum value of Q can be found by solving

∂TRC

∂Q
= −AD

Q2
+

vr

2
(1− D

m
) = 0

since TRC(Q) is convex function in Q. Consequently,

FREOQ =

√√√√ 2AD

vr(1− D
m
)

and the minimum average annual cost will be

TRC(FREOQ) =

√
2ADvr(1− D

m
)

Note that if m → ∞, FREOQ =
√

2AD
vr

. (Reduces to EOQ)

5.9 Incorporation of Other Factors

5.9.1 Nonzero Constant Lead Time that is known with Cer-
tainty

When the inventory level hits DL, an order is placed and it arrives exactly L time units

later just as the inventory hits zero.
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5.9.2 Different Type of Carrying Charge

Suppose that there is an additional charge (in addition to the usual inventory carrying

charge r) of w dollars per unit time per cubic foot of space allocated to an item →
Derivation!

5.9.3 Multiple Setup Costs: Freight Discounts

Setup Cost =


A+Qv if 0 < Q ≤ Q0

2A+Qv if Q0 < Q ≤ 2Q0

3A+Qv if 2Q0 < Q ≤ 3Q0

Aucamp (1982, EJOR) has shown that the best solution is either the standard EOQ or

one of the two surrounding integer multiples of Q0.

5.9.4 Joint Replenishment Problem

Suppose a company carry more than one item. If the purchasing manager purchase those

items from a same vendor, it may be a good idea to order those items together so that

he/she can save ordering cost. For the simplicity, we study two items case.

Data

D1 = demand rate for item 1 in units per year

D2 = demand rate for item 2 in units per year

A = fixed cost of a replenishment order

v1 = unit cost of purchasing item 1

v2 = unit cost of purchasing item 2

r = annual inventory carrying cost rate

Decision Variables

Q1 = order quantity for item 1

Q2 = order quantity for item 2
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T = common cycle length, the length of time between placement of replenishment orders

Since T is same for both items, we get

T =
Q1

D1

=
Q2

D2

.

The average inventory carrying cost for item 1 per cycle is the area under the inventory

triangle for item 1.
1

2
rv1Q1T =

1

2
rv1

Q2
1

D1

The average inventory carrying cost for item 2 per cycle is the area under the inventory

triangle for item 2.
1

2
rv2Q2T =

1

2
rv2

Q2
2

D2

The average cost per cycle is the sum of procurement and inventory carrying cost.

A+
1

2
rv1

Q2
1

D1

+
1

2
rv2

Q2
2

D2

To obtain the average annual cost, TRC(Q1, Q2), we multiply the cost per cycle by the

number of cycles per year, D1/Q1(≡ D2/Q2). Doing this, we get

TRC(Q1, Q2) =
AD1

Q1

+
rv1Q1

2
+

rv2Q2

2
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By substituting Q2 =
D2

D1
Q1, we get

TRC(Q1) =
AD1

Q1

+
rv1Q1

2
+

rv2D2Q1

2D1

The optimum value of Q1 can be found by solving

∂TRC

∂Q1

= −AD1

Q2
1

+
r(v1D1 + c2D2)

2D1

= 0

since TRC(Q1) is convex function in Q1.

For the above model,
∂2TRC

∂Q2
1

=
2AD1

Q3
1

≥ 0

Consequently,

Q∗
1 =

√√√√ 2AD2
1

r(v1D1 + v2D2)
, Q∗

2 =

√√√√ 2AD2
2

r(v1D1 + v2D2)

And the optimal common replenishment interval is

T ∗ =

√
2A

r(v1D1 + v2D2)

5.9.5 Different Order Arrivals

In the classical EOQ (Economic Order Quantity) Model,

assume that when we order Q units, we receive our order in two parts. The first part

arrives immediately and contains αQ(0 < α ≤ 1) and the second part arrives T units

of time after the order and contains the rest of our order, i.e., (1 − α)Q. We assume no

shortages are allowed. See the following figure for understanding. Note that here T is not

a variable but a parameter (given data).
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Since we assume that there are no shortages,

αQ ≥ DT (∗)

Since αQ−x
T

= D, we get

x = αQ−DT

Since (1−α)Q+x
Tf

= D, we get

Tf =
Q−DT

D

Consequently,

Tc = T + Tf = Q/D

The average inventory carrying cost per cycle is the area under the inventory triangle plus

the area of trapezoid.

1

2
hTf [x+ (1− α)Q] +

1

2
hT [αQ+ x] =

1

2
hT (2αQ−DT ) +

1

2
h
(Q−DT )2

D

The average cost per cycle is the sum of procurement and inventory carrying cost.

A+
1

2
hT (2αQ−DT ) +

1

2
h
(Q−DT )2

D

To obtain the average annual cost, TRC(Q), we multiply the cost per cycle by the number

of cycles per year, D/Q. Doing this, we get

TRC(Q) =
AD

Q
+ hαDT − hD2T 2

2Q
+

h(Q−DT )2

2Q

The optimum value of Q can be found by solving

∂TRC

∂Q
= −AD

Q2
+

h

2
= 0

since TRC(Q) is convex function in Q. Consequently,

Q∗ =

√
2AD

h

There are 2 possible cases.
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(i) If Q∗ =
√

2AD
h

satisfies (∗), i.e.,
√

2AD
h

≥ DT
α
, then

Q∗ =

√
2AD

h

(ii) If Q∗ =
√

2AD
h

doesn’t satisfy (∗), i.e.,
√

2AD
h

< DT
α
, then

Q∗ =
DT

α

5.9.6 A Special Opportunity to Procure
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Chapter 6

Lot Sizing for Individual Items with
Time-varying Demand

6.1 The Complexity of Time-Varying Demand

In the basic inventory models, deterministic and level demand rates are assumed. Here

we allow the average demand rate to vary with time, thus encompassing a broader range

of practical situations such as :

(a) Multi-echelon assembly operations where a firm schedule of finished products exploded

back through the various assembly stages leads to production requirements at these earlier

levels, which are relatively deterministic but almost always vary appreciably with time.

(b) Production to contract, where the contract requires that certain quantities have to be

delivered to the customer on specified dates.

(c) Items having a seasonal demand pattern.

6.2 The Choice of Approaches

There are 3 approaches that try to solve this time-varying demand case.

(a) straight-forward use of the economic order quantity

(b) an exact optimal procedure (Wagner-Whitin Algorithm)
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(c) an approximate heuristic method (Silver-Meal Heuristic)

You may have a question that why we need to seek a heuristic algorithm even though

we have an exact optimal algorithm to solve the problem. The answer is owing to the

complexity of the optimal algorithm. The complexity of the exact optimal algorithm is

exponential. That is, we cannot solve large problems using the algorithm. Also, it requires

an additional assumption which will be explained later.

6.3 General Assumptions and A Numerical Example

(a) The demand rate is given in the form of Dj to be satisfied in period j (j = 1, . . . , N)

where the planning horizon is at the end of period N. Of course, the demand rate may

vary from one period to the next, but it is assumed known.

(b) The entire requirements of each period must be available at the beginning of that

period.

(c) The unit variable cost does not depend on the replenishment quantity.

(d) Inflation is at a negligibly low level.

(e) The item is treated entirely independently of other items.

(f) The replenishment lead time is known with certainty.

(g) No shortages are allowed.

(h) The entire order quantity is delivered at the same time.

(i) The carrying cost is only applicable to inventory that is carried over from one period

to the next.

♣ A Numerical Example

The MIDAS company uses the following simple decision rule for ascertaining production

run quantities : “Each time a production run is made, a quantity sufficient to satisfy the

total demand in the next three months is produced.” The requirements for the seasonal

product PSF-007 in the following upcoming year are:

Table 6.1 Monthly Requirements
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It is seen that the demand pattern has two peaks, one in the late spring, the other in the

autumn season. The company estimates the fixed setup cost (A) per replenishment to

be $54, and the carrying charge (r) has been set by management at $0.02/$,month. The

unit variable cost (v) of the product is $20/box.

If we use the company’s “three-month decision rule”, we get the replenishment schedule

as follows : The total relevant costs are $663.20.

Table 6.2 Results of Using the Company’s Three-Month Rule on the Numerical Example

6.4 Use of A Fixed Economic Order Quantity

One possible approach to the case of a time-varying rate is to simply ignore the time-

variability, thus continuing to use the economic order quantity. To be more precise, the

average demand rate (D) out to the horizon (N periods) is evaluated and the economic

order quantity

EOQ =

√
2AD

vr

is used anytime a replenishment is needed. To account for the discrete opportunities to

replenish, at the time of a replenishment, the EOQ should be adjusted to exactly satisfy

the requirements of an integer number of periods. A simple way to do this is to keep

accumulating periods of requirements until the closest total to the EOQ is found.

To illustrate, for our numerical example,

D =
total requirements

12
= 100 boxes/month

Therefore,

EOQ =

√
2× 54× 100

0.02× 20
= 164

Consider the selection of the replenishment quantity at the beginning of January. See the

following table.

Month January February March April
Demand 10 62 12 130

Cumulative Demand 10 72 84 214
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The EOQ of 164 boxes lies between 84 and 214, and 214 is closer to 164 than is 84.

Therefore, the first replenishment quantity is 214 boxes, lasting through the end of April.

The detailed results of applying the fixed EOQ approach to the numerical example are as

shown in the following table.

Table 6.3 Results of Using the Fixed EOQ Approach on the Numerical Example

The fixed EOQ approach, compared to the company’s “three-month rule”, reduces the

total costs from $663.20 to $643.20.

6.5 The Wagner-Whitin Method : An Optimal Solu-

tion under an Additional Assumption

Wagner and Whitin (1958) developed an algorithm that guarantees an optimal solution

of replenishment quantities under one additional assumption : Either the demand pattern

terminates at the horizon or else the ending inventory must be prespecified.

The algorithm is an application of dynamic programming, a mathematical procedure for

solving sequential decision problems. Suppose we define F (t) as the total cost of the best

replenishment strategy that satisfies the demand requirements in periods 1, 2, . . . , t. To

illustrate the procedure for finding F (t), we again use the example.

F (1) is the total cost of a replenishment of size 10 at the start of January, simply the

setup cost A or $54.

To determine F (2), we have two possible options to consider :

(Option 1) Replenish enough (72 boxes) at the start of January to cover the requirements

of both January and February.

Costs : Setup cost for January replenishment + Carrying costs for February’s requirements

= 54 + 62× 0.40× 1month = $78.80

(Option 2) Replenish 10 boxes at the start of January and 62 boxes at the start of February

Costs : F (1) + Cost of a replenishment at the start of February to meet February’s

requirements = $54 + $54 = $108

Consequently, F (2) = $78.80.
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To satisfy requirements through to the end of March there are three options where we

position the last replenishment :

(Option 1) Have a single replenishment of 84 boxes at the start of January.

Costs : A + Carrying costs for February’s requirements + Carrying costs for March’s

requirements = 54 + 62× 0.4× 1 + 12× 0.4× 2 = $88.40

(Option 2) Cover to the end of January in the best possible fashion and replenish 74 boxes

at the start of February

Costs : F (1) + A+ Carrying cost for March’s requirements = 54 + 54 + 12× 0.40× 1 =

$112.80

(Option 3) Cover to the end of February in the best possible fashion and replenish 12

boxes at the start of March

Costs : F (2) + A = 78.80 + 54 = $132.80

Consequently, F (3) = $88.40. That is, a single replenishment at the start of January is

best in terms of meeting requirements through to the end of March.

We continue forward in this fashion until we complete period N . For any specific month

t there are t possible options to evaluate. Note that the method requires an ending point

where it is known that the inventory level is to be at zero or some other specified value.

Mathematically, we can represent the preceding procedures as follows :

F (t) = Min0≤j≤t−1[F (j) + cjt]

where cjt = cost in period j + 1 to satisfy demands in period j + 1, . . . , t.

Using this formulation, let us find F (4) together.
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.

The computational details of the best strategy for the 12 month period are shown in the

following table.

Table 6.5 Results of Using the W-W Algorithm or the S-M Heuristic on the Numerical Example

There are 7 replenishments and the total costs amount to $501.20.

♣ Potential Drawbacks

(i) Relatively complex nature of the algorithm

(ii) Need for a well-defined ending point for the demand

(iii) Rolling horizon problem

(iv) The restricted assumption that replenishments can be made only at discrete intervals

6.6 Heuristic Approaches

6.6.1 The Silver-Meal or Least Period Cost Heuristic

The Wagner-Whitin algorithm has some drawbacks from the practitioner’s standpoint.

For example, the considerable computational effort, complex nature of the algorithm,

additional assumption, etc. Therefore, the natural question to ask is “Is there a simpler

approach that will capture most of the potential savings?” Silver and Meal (1973) have

developed a simple variation of the basic EOQ which accomplishes exactly what we desire.

Moreover, in numerous test examples the Silver-Meal heuristic has performed extremely

well when compared with the other rules encountered in the literature.

• The Criterion Used for Selecting a Replenishment Quantity

The heuristic selects the replenishment quantity in order to replicate a property that

the basic EOQ possesses when the demand rate is constant with time, namely, the total

relevant costs per unit time for the duration of the replenishment quantity are minimized.

If a replenishment arrives at the beginning of the first period and it covers requirements
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through to the end of the T th period, then the criterion function can be written as follows

:

Setup Cost + Total Carrying Cost to end of period T

T

• The Essence of the Heuristic

Because we constrained to replenishing at the beginning of periods, the best strategy

must involve replenishment quantities that last for an integer number of periods. The

replenishment quantity Q, associated with a particular value of T is

Q =
T∑

j=1

Dj (∗)

According to the chosen criterion, we wish to pick the T value that minimizes the total

relevant costs per unit time over the time period T .

Let the total relevant costs associated with a replenishment that lasts for T periods be

denoted by TRC(T ). We wish to select T to minimize the total relevant costs per unit

time, TRCUT(T ), where

TRCUT(T ) =
TRC(T )

T
=

A + carrying costs

T

If T = 1, there are no carrying costs, i.e.

TRCUT(1) = A

If the setup cost is large, this may be unattractive when compared with including the

second period’s requirements in the replenishment.

With T = 2 the carrying costs are D2vr, the cost of carrying the requirement D2 for one

period. Therefore,

TRCUT(2) =
A + D2vr

2

With T = 3 we still carry D2 for one period, but now we also carry D3 for two periods.

Thus,

TRCUT(3) =
A + D2vr + 2D3vr

3
In this case the setup charge is apportioned across three periods, but this may not be

attractive because of the added carrying costs.
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The basic idea of the heuristic is to evaluate TRCUT(T ) for increasing values of T until,

for the first time,

TRCUT(T + 1) > TRCUT(T )

that is, the total relevant costs per unit time start increasing. When this happens the

associated T is selected as the number of periods that the replenishment should cover.

The corresponding replenishment quantity Q is given by Eq. ∗.

This method guarantees only a local minimum in the total relevant costs per unit time,

for the current replenishment. It is possible that still larger values of T would yield still

lower costs per unit time since we stop testing with the first increase in costs per unit

time.

To illustrate the application of the heuristic, let us again use the same example. The

calculations for the first replenishment quantity are shown in the following table. The

heuristic selects a t value of 3 with an associated Q = 84 boxes.

T A D2vr 2D3vr 3D4vr Row Sum TRC(T ) TRCUT(T )
1 54 54.00 54.00 54.00
2 62× 0.4 24.80 78.80 39.40
3 2× 12× 0.4 9.60 88.40 29.47
4 3× 130× 0.4 156.00 244.40 61.10

Let us perform the next iteration together.

It turns out for this numerical example that this simple heuristic gives the same solution

as the Wagner-Whitin algorithm. Thus, the solution has already been shown before.

Example Consider the following multi-echelon inventory distribution system. Demand

for items at the warehouse is as follows:
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period 1 2 3 4
demand 30 25 20 40

Holding cost of items in the warehouse is $2 per item for items carried over from one

period to the next. Fixed order cost is $100 per order. The warehouse places orders to

a factory that produces the items. Production time and lead time are assumed to be

negligible. Each time the factory starts to produce items, it costs the factory $20 per

setup, and holding cost in the factory is $1.5 per item for items carried over from one

period to the next. As a consultant for the factory, suggest a production plan for the

factory using Silver-Meal Heuristic.

6.6.2 The EOQ Expressed as a Time Supply (POQ)

TEOQ =
EOQ

D
=

√
2A

Dvr

Round TEOQ to the nearest integer greater than zero, then, any replenishment of the item

is made large enough to cover exactly the requirements of this integer number of periods.

In our example, TEOQ=1.64 ' 2 → Total cost=$553.60

6.6.3 Lot-for-Lot (L4L)

Order the exact amount needed for each time period → inventory holding costs become

zero

In our example, total cost =12× $54 = $648.

6.6.4 Least Unit Cost (LUC)

Identical to the Silver-Meal Heuristic except that it accumulates requirements until the

cost per unit increases.

Table 6.7 Computations for the First Replenishment Quantity using the LUC Heuristic

In our example, total cost =$558.80
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6.6.5 Part-Period Balancing (PPB)

Select the number of periods covered by the replenishment such that the total carrying

costs are made as close as possible to the setup cost, A.

Table 6.8 Results of Using Part-Period Balancing on the Numerical Example

6.6.6 Performance of the Heuristics

The average penalty of using Silver-Meal Heuristic is less than 1%.

6.7 Handling of Quantity Discounts
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Chapter 7

Individual Items with Probabilistic
Demand

7.1 Some Important Issues and Terminology

7.1.1 Different Definitions of Stock Level

1. On-hand Stock: stock that is physically on the shelf

2. Net Stock = On-hand Stock − Backorders

3. Inventory Position = On-hand Stock + On-order Stock − Backorders − Committed

→ key quantity in deciding when to replenish

4. Safety Stock: average level of the net stock just before a replenishment arrives

7.1.2 Backorders vs. Lost Sales

Complete Backordering → captive market, exclusive dealerships

Complete Lost Sales → retail-consumer link

(cf.) stockout → stockout occasion or event
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7.1.3 Three Key Issues to be Resolved by a Control System
under Probabilistic Demand

(1) How often the inventory status should be determined?

(2) When a replenishment order should be placed?

(3) How large the replenishment order should be?

♣ To respond to these issues managers can use the following questions.

(1) How important is the item?

(2) Can, or should, the stock status be reviewed continuously or periodically?

(3) What form should the inventory policy take?

(4) What specific cost or service objectives should be set?

7.2 The Importance of the Item: A, B, C Classifica-

tion

A item (20%, 80%) → Chapter 8

B item (30%, 15%) → Chapter 7

C item (50%, 5%) → Chapter 9

7.3 Continuous vs. Periodic Review

(1) Continuous Review

In reality, continuous surveillance is usually not required; instead, each transaction triggers

an immediate updating of the status → transactions reporting

eg. manual stock card system, POS data collection systems

Advantages: less safety stock (lower carrying costs)

2



Disadvantages: the workload is less predictable, more expensive in terms of reviewing

costs and reviewing errors (eg. POS equipment is quite expensive)

(2) Periodic Review

The stock status is determined only every R time units.

eg. soda machine

Advantages: coordination replenishments, reasonable prediction of the level of the work-

load on the staff involved

7.4 The Form of the Inventory Policy: Four Types

of Control Systems

7.4.1 Order-Point, Order Quantity (s,Q) System

continuous review: A fixed quantity Q is ordered whenever the inventory position drops

to the reorder point s or lower.

(cf.) If net stock was used for ordering purposes, we might unnecessarily place another

order today even though a large shipment was due in tomorrow. (eg. aspirin→ the relief

is on order)

(cf. two bin system: amount in the 2nd bin → (re)order point)

Advantages: quite simple, the production requirements for the supplier are predictable

Disadvantage: not able effectively cope with the situation where individual transactions

are large

7.4.2 Order-Point, Order-up-to Level (s, S) System

continuous review: Order to raise the inventory position to the order-up-to level S (min-

max system)

Figure 7.1 Two Types of Continuous Review Systems

Advantage: the best (s, S) system costs no more than the best (s,Q) system (even at the
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computational effort) → A items

Disadvantage: variable order quantity

7.4.3 Periodic Review, Order-up-to Level (R, S) System

periodic review: every R units of time, enough is ordered to raise the inventory position

to the level S

Figure 7.2 The (R, S) System

widely used in companies not utilizing computer control, or ordered from the same supplier

Advantage: coordination

Disadvantage: higher carrying costs

7.4.4 (R, s, S) System

Scarf (1960) shows that the best (R, s, S) system produces a lower total cost than does

any other system (but more computational time) → A item

7.5 Specific Cost and Service Objectives

♣ Four Methods to Balance Cost and Service Objectives

(i) Safety Stock Established through the use of a Simple-Minded Approach

Assigning a common safety factor as the safety stock of each item → we will find that

there is a logical flaw in the use of this method

(ii) Safety Stocks based on Minimizing Cost

These approaches involve specifying (explicitly or implicitly) a way of costing a shortage

and then minimizing total cost

(iii) Safety Stocks based on Customer Service
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Recognizing the severe difficulties associated with costing shortages, an alternative ap-

proach is to introduce a control parameter known as the service level. The service level

becomes a constraint in establishing the safety stock of an item; for example, minimize the

carrying costs on an item subject to satisfying, routinely from stock, 95% of all demands.

Again, there is considerable choice in the selection of a service measure.

(iv) Safety Stocks based on Aggregate Measure

Establish the safety stocks of individual items, using a given budget, to provide the best

possible aggregate service across a population of items.

7.5.1 Choosing the Best Approach

Which one to use depends on the competitive environment of the particular company

(eg.) new product→ delivery performance may have significant implications for capturing

market share

Table 7.2 Summary of Different Methods of Selecting the Safety Stocks

7.5.2 Safety Stock Established through the use of a Simple-
Minded Approach

(1) Equal Time Supplies

The safety stocks of a broad group of items are set equal to the same time supply→ fails

to take account of the difference in the uncertainty of forecasts from item to item.

(2) Equal Safety Factors

SS = kσL

Use a common value of k for a broad range of items.

7.5.3 Safety Stocks based on Minimizing Cost

(1) Specified Fixed Cost (B1) per Stockout Occasion

(2) Specified Fractional Charge (B2) per Unit Short
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(3) Specified Charge (B3) per Unit Short per Unit Time

(4) Specified Charge (B4) per Customer Line Item Short

7.5.4 Safety Stocks based on Customer Service

(1) Specified Probability (P1) of No Stockout per Replenishment Cycle: Cycle Service

Level

fraction of cycles in which a stockout does not occur

(2) Specified Fraction (P2) of Demand to be Satisfied Routinely from the Shelf: Fill Rate

P2 =
B3

B3 + r

(3) Specified Fraction of Time (P3) during which Net Stock is Positive: Ready Rate

Under Poisson demand, this measure is equivalent with the P2 measure.

(4) Specified Average Time (TBS) between Stockout Occasions

Reciprocal of TBS: Desired average number of stockout occasions per year

7.5.5 Safety Stocks based on Aggregate Considerations

(1) Allocation of a Given Total Safety Stock among Items to Minimize the Expected Total

Stockout Occasions per Year (ETSOPY)

(2) Allocation of a Given Total Safety Stock among Items to Minimize the Expected Total

Value of Shortages per Year (ETVSPY)

7.6 Two Examples of Finding s in a (s,Q) System

7.6.1 Protection over the Replenishment Lead Time

Figure 7.3 The Occurrence of a Stockout in an (s,Q) System
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No stockout occurs←→ sum of the undershoot and the total demand in the replenishment

lead time is < reorder point (s)

7.6.2 An Example Using a Discrete Distribution

Table 7.3 Lead Time Demand

expected demand per week = 2.2 units, annual demand=50× 2.2=110 units

L= 1 week, Q=20 units, A=$18, h=$10, B2v =$20, (P1 =90% → s = 4units)

(1) Ordering Cost

number of orders per year=110/20=5.5 orders → total annual ordering cost=$99

(2) Holding Cost (depends on s)

Figure 7.5 Behavior of Inventory Level with Time: Probabilistic Demand

h×
(
Q

2
+

s∑
x=0

(s− x)Pr(X = x)

)
= $10× (10 + 0.4) = $104

(3) Shortage Cost

Cost per unit short ×
∞∑

x=s+1

(x− s)Pr(X = x) × Number of cycles per year

= $20× 0.6× 5.5 = $66

(4) Total Cost

$99+$104+$66=$269 (for s=2) → need to find an optimal s!

Table 7.6 The Optimal Reorder Point
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7.7 Decision Rules for (s,Q) Control Systems

7.7.1 Common Assumptions and Notation

(1) Although demand is probabilistic, the average demand rate changes very little with

time.

(2) A replenishment order of size Q is placed when the inventory position is exactly at

the order point s.

(3) Crossing of orders is not permitted.

(4) Average level of backorders is negligibly small.

(5) Forecast errors have a normal distribution with no bias and a known standard

deviation σL for forecasts over a lead time L.

Figure 7.6 Normally Distributed Forecast Errors

(6) Where a value of Q is needed, it is assumed to have been predetermined.

(7) The costs of the control system do not depend on the specific value of s selected.

♣ Change the Givens!

Optimize inventory levels given the parameters as they are; and then devote resources to

changing the givens.

(i) Choose a supplier that is closer to your facility.

(ii) Ship via a faster transportation mode.

(iii) Improving forecast accuracy and providing customer incentives for specific purchase

times and quantities.

♣ Notation

D = demand per year in units/year

Gu(k) =
∫∞
k (u0 − k) 1√

2π
exp(−u20/2)du0

a special function of the unit normal variable used in finding ESPRC
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k = safety factor

L = replenishment lead time, in years

pu≥(k) = 1− Φ(k)

Q = prespecified order quantity, in units

r = inventory carrying charge, in $/$/year

s = (re)order point, in units

SS = safety stock, in units

v = unit variable cost, in $/unit

x̂L = forecast demand over a replenishment lead time, in units

σL = standard deviation of errors of forecasts over a replenishment lead time, in units

7.7.2 General Approach to Establishing the Value of s

s = x̂L + safety stock = x̂L + kσL

Figure 7.7 General Decision Logic Used in Computing the Value of s

7.7.3 Common Derivation

1. Safety Stock (SS) = E(Net stock just before the replenishment arrives)∫ ∞
0

(s− x)f(x)dx = s− x̂L

2. Prob{stockout in a replenishment lead time} = Prob{x ≥ s} =
∫∞
s f(x)dx

(cf.) If X ∼ N(x̂L, σ
2
L), then Prob{x ≥ s} = 1− Φ(k) = pu≥(k)

(proof)
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3. Expected Shortage Per Replenishment Cycle (ESPRC)

ESPRC =
∫ ∞
s

(x− s)f(x)dx

(cf.) If X ∼ N(x̂L, σ
2
L), then ESPRC = σLGu(k)

(proof)

E(OH) =
1

2
{(s− x̂L) + (s− x̂L +Q)} =

Q

2
+ (s− x̂L) =

Q

2
+ kσL

7.7.4 Decision Rule for a Specified Safety Factor (k)

Step 1. Safety stock, SS=kσL.

Step 2. Reorder point, s = x̂L + SS, increased to the next higher integer.

7.7.5 Decision Rule for a Specified Cost (B1) per Stockout Oc-
casion

ETRC(k) = Cr + Cc + Cs =
AD

Q
+
(
Q

2
+ kσL

)
vr +

DB1

Q
pu≥(k)

dETRC(k)

dk
= σLvr +

DB1

Q

dpu≥(k)

dk
= 0

fu(k) =
QvσLr

DB1

→ k =

√√√√2ln

(
DB1√

2πQvσLr

)

Step 1. Is
DB1√

2πQvσLr
< 1?

If yes, then go to Step 2.

If no, then continue with

k =

√√√√2ln

(
DB1√

2πQvσLr

)
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Step 2. Set k at its lowest allowable value.

Step 3. Reorder point s = x̂L + kσL.

(Example)

7.7.6 Decision Rule for a Specified Fractional Charge (B2) per
Unit Short

TC(k) =
AD

Q
+
(
Q

2
+ kσL

)
vr +

B2vσLGu(k)D

Q

dTC(k)

dk
= σLvr −

B2vσLDpu≥(k)

Q
= 0

pu≥(k) =
Qr

DB2

(Example)

7.7.9 Decision Rule for a Specified Probability (P1) of No Stock-
out per Replenishment Cycle: Cycle Service Level

Prob{stockout in a lead time} = pu≥(k) = 1− P1

(Example)

7.7.10 Decision Rule for a Specified Fraction (P2) of Demand
Satisfied Directly from Shelf: Fill Rate

We assume complete backordering.

P2 = 1− Fraction backordered = 1− ESPRC

Q
= 1− σLGu(k)

Q
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Gu(k) =
Q

σL
(1− P2)

(cf.) If we assume complete lost sales, the above decision rule should be modified as

follows:

P2 = 1− ESPRC

Q+ ESPRC
= 1− σLGu(k)

Q+ σLGu(k)

Gu(k) =
Q

σL

(
1− P2

P2

)

(Example)

7.7.11 Decision Rule for a Specified Average Time (TBS) be-
tween Stockout Occasions

desired average number of stockout occasions per year =
1

TBS
=
D

Q
pu≥(k)

pu≥(k) =
Q

D(TBS)

7.7.12 Decision Rule for the Allocation of a Total Safety Stock
to Minimize the Expected Total Stockout Occasions per
Year (ETOSPY)

Minimize
n∑
i=1

Di

Qi

pu≥(ki)

subject to
n∑
i=1

kiσLi
vi ≤ Y

We form the Lagrangian function:

L(k1, · · · , kn, λ) =
n∑
i=1

Di

Qi

pu≥(ki) + λ(
n∑
i=1

kiσLi
vi − Y )

∂L

∂ki
= −Di

Qi

fu(ki) + λσLi
vi = 0 → fu(ki) = λ

QiviσLi

Di

(cf.) exactly the same decision rule in B1 shortage costing method
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Step 1. Start from an arbitrary λ < Di

QiviσLi
.

Step 2. Compute ki’s from

fu(ki) = λ
QiviσLi

Di

Step 3. If
∑n
i=1 kiσLi

vi < Y , increase λ and go to Step 2.

If
∑n
i=1 kiσLi

vi > Y , decrease λ and go to Step 2.

If
∑n
i=1 kiσLi

vi = Y , stop. The ki’s are optimal.

7.7.13 Decision Rule for the Allocation of a Total Safety Stock
to Minimize the Expected Total Value of Shortages per
Year (ETVSPY)

Minimize
n∑
i=1

Di

Qi

σLi
Gu(ki)vi

subject to
n∑
i=1

kiσLi
vi ≤ Y

We form the Lagrangian function:

L(k1, · · · , kn, λ) =
n∑
i=1

Di

Qi

σLi
Gu(ki)vi + λ(

n∑
i=1

kiσLi
vi − Y )

∂L

∂ki
= −Di

Qi

σLi
pu≥(ki)vi + λσLi

vi = 0 → pu≥(ki) = λ
Qi

Di

(cf.) exactly the same decision rule in B2 shortage costing method

Step 1. Start from an arbitrary λ < Di

Qi
.

Step 2. Compute ki’s from

pu≥(ki) = λ
Qi

Di

Step 3. If
∑n
i=1 kiσLi

vi < Y , decrease λ and go to Step 2.

If
∑n
i=1 kiσLi

vi > Y , increase λ and go to Step 2.

If
∑n
i=1 kiσLi

vi = Y , stop. The ki’s are optimal.

13



7.7.14 Nonnormal Lead Time Distribution

♣ Distribution-Free Approach

“Much work has been done on distribution-free approaches, the original work by Scarf

(1958) proposed finding the worst possible distribution for each decision variable and

then finding the optimal inventory policy for that distribution. Thus, it is a conservative

approach; and it requires only that the mean and variance of the lead time demand are

known. Gallego (1992), Bulinskaya (1990), Gallego and Moon (1993), Moon and Choi

(1994, 1995), and Moon and Gallgeo (1994) have advanced the research, and have shown

that, in some cases, applying a distributional form incorrectly can lead to large errors. The

distribution-free approach could generate significant savings. If the distribution appears

to be very different from a known form, one should consider the distribution-free formulas,

or those described in the next paragraph.”

7.8 Implied Costs and Performance Measures

input performance objective (B1, B2, P1, · · ·)

−→ k −→ reorder point & implied values of any of the other input performance objectives

(Example) D=4,000 units/yr, A=$20.25, r=0.03$/$/yr, v=$6/unit, L=1 week, x̂L=80

units, σL=20 units, P2=0.98

EOQ = 300 units, Gu(k) = 0.30→ k = 0.22→ s = 84.4→ s = 85

s = 85→ k = 0.25→ pu≥(k) = 0.4013→ P1 = 1− 0.4013 = 0.5987

fill rate = 98%→ cycle service level = 59.87%
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7.9 Decision Rules for Periodic-Review, Order-Up-

To-Level (R, S) Control Systems

No need to repeat all the detail since there is a simple analogy between (R, S) and (s,Q)

systems.

(s,Q) (R, S)

s S

Q DR

L R + L

♣ (main idea of proving the analogy)

For (R, S) system, a stockout will occur ←→ the total demand in an interval of duration

R + L exceeds S

For (s,Q) system, a stockout will occur ←→ the total demand in an interval of duration

L exceeds s

7.9.1 The Review Interval (R)

We assume that a value of R has been predetermined→ Determination of R is equivalent

to the determination of an EOQ expressed as a time supply except

(i) cost of reviewing the inventory status must be included as part of A.

(ii) avoid to implement certain senseless review intervals, eg. 2.36 days → motivation

for my paper with Prof. Silver (paper # 10)

7.9.2 The Order-Up-To Level (S)

The key time period over which protection is required is now of duration R + L, instead

of just a replenishment lead time L.

Figure 7.12 The Time Period of Protection in an (R, S) System
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(cf.) The order-up-to level at time t0 must be sufficient to cover demand through a period

of duration R + L.

7.9.3 Common Assumptions and Notation

♣ Assumptions (in addition to the assumptions for (s,Q) system)

(i) A replenishment order is placed at every review.

(ii) The value of R is assumed to be predetermined.

♣ Notation

R = prespecified review interval (years)

S = order-up-to level (units)

x̂R+L = expected demand over R + L (units)

σR+L = standard deviation of demand over R + L (units)

7.9.4 Common Derivation

0. number of reviews per year = 1
R

1. Safety Stock (SS) = E(net stock just before order Y arrives)∫ ∞
0

(S − x)f(x)dx = S − x̂R+L = kσR+L

2. Prob{stockout in a replenishment cycle} = Prob{x ≥ S} =
∫∞
S f(x)dx

3. Expected Shortage Per Replenishment Cycle (ESPRC)

ESPRC =
∫ ∞
S

(x− S)f(x)dx = σR+LGu(k)

E(OH) =
1

2
{(S − x̂R+L) + (S − x̂R+L +DR)} =

DR

2
+ (S − x̂R+L)
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7.10 Variability in the Replenishment Lead Time It-

self

♣ Two Possible Actions

(i) Try to ascertain the distribution of total demand over the lead time.

(ii) Measure the distribution of the lead time (or R+L), and the distribution of demand

per unit period, separately. Then, combine them.

7.10.1 Approach 1: Use of the Total Demand over the Full Lead
Time

♣ Lordahl and Bookbinder (1994, NRQ)’s Distribution-Free Method

Try to find the reorder point, s, when the parameters, and form, of the lead time demand

distribution are unknown and P1 is given (The idea is simple). They show that this

procedure is better than using the normal distribution in many cases.

(Step 1) Rank order the observed lead time demand.

x(1) ≤ x(2) ≤ · · · ≤ x(n)

(Step 2) Let (n+ 1)P1 = y + w, where 0 ≤ w ≤ 1, and y is an integer.

(Step 3) If (n+ 1)P1 > n, set s = x(n). Otherwise, set s = (1− w)x(y) + wx(y+1).

(Example) p282

7.10.2 Approach 2: Use of the Distribution of Demand Rate per
Unit Time Combined with the Lead Time Distribution

Assume that lead time (L) and the demand (D) in each unit time period are independent

random variables.

lead time demand x =
L∑
i=1

Di where E(Di) = E(D)

17



E(x) = E(L)E(D)

V ar(x) = E(L)V ar(D) + [E(D)]2V ar(L)

(proof)

V ar(x) = V ar(
L∑
i=1

Di) = E

( L∑
i=1

Di

)2
− (E [ L∑

i=1

Di

])2

E

( L∑
i=1

Di

)2
 =

∞∑
l=0

E

( L∑
i=1

Di

)2

| L = l

P [L = l]

=
∞∑
l=0

E

( l∑
i=1

Di

)2
P [L = l]

=
∞∑
l=0

V ar( l∑
i=1

Di

)
+

(
E

[
l∑

i=1

Di

])2
P [L = l]

=
∞∑
l=0

(
lV ar(Di) + l2[E(Di)]

2
)
P [L = l]

= E(L)V ar(D) + [E(D)]2E(L2)

V ar(x) = E(L)V ar(D) + [E(D)]2E(L2)− [E(L)E(D)]2

= E(L)V ar(D) + [E(D)]2(E(L2)− [E(L)]2)

= E(L)V ar(D) + [E(D)]2V ar(L)

(Example) p283

7.11 Exchange Curves Involving Safety Stocks for

(s,Q) Systems

7.11.1 Single Item Exchange Curve-Inventory versus Service

(Q) Determine the best customer service possible for the given investment.

Figure 7.13 A Single Item Exchange Curve

♣ Consider the possibility of changing the givens! → lead time reduction by implementing

EDI, reduction of demand variability by closer relationship to customers
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7.11.2 An Illustration of the Impact of Moving Away from Set-
ting Reorder Points as Equal Time Supplies

(cf.) The following contents have been extracted from the paper by Moon and Silver

(2001, International Journal of Production Economics)

Our problem can be represented as follows:

(ETVSPY) Min ETVSPY =
n∑
i=1

Di

Qi

σiviGu

(
Diti − x̂i

σi

)

subject to
n∑
i=1

Diviti ≤ Y ′ (1)

ti ∈ {T1, T2, · · · , Tm} ∀i (2)

where Y ′ = Y +
n∑
i=1

x̂ivi

We derive a lower bound on (ETVSPY) for two reasons. First, it represents the optimal

value of the objective function when the ti’s are not restricted to a discrete set of values.

Thus, it will provide an indication of the degradation (increase in the expected total value

short per year) caused by the introduction of the pragmatic constraint of restricting the

ti’s to the discrete set T . The second reason is that the lower bound solution will be used

as a starting point in our heuristic approach.

If we relax constraint (2), we obtain a relaxed version of (ETVSPY) as follows.

(LB) Min ETVSPY =
n∑
i=1

Di

Qi

σiviGu

(
Diti − x̂i

σi

)

subject to
n∑
i=1

Diviti ≤ Y ′

If we can find a Karush-Kuhn-Tucker (KKT) solution, it will be a global minimum due

to the fact that the objective function is convex and constraint (1) is a convex set. The

Lagrangian function is as follows:

L(t1, · · · , tn, λ) =
n∑
i=1

Di

Qi

σiviGu

(
Diti − x̂i

σi

)
+ λ(

n∑
i=1

Diviti − Y ′)

The Karush-Kuhn-Tucker conditions become as follows:

∂L

∂ti
=

(
Diσivi
Qi

){
−Di

σi
pu≥

(
Diti − x̂i

σi

)}
+ λDivi = 0
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where pu≥(k) =
∫ ∞
k

1√
2π
exp(−u2/2)du

is the right hand tail of the unit normal distribution and represents the probability of a

stockout during a replenishment lead time. Simplifying we obtain

λ =
Di

Qi

pu≥

(
Diti − x̂i

σi

)
(3)

n∑
i=1

Diviti = Y ′ (4)

Note that equation (3)implies the same expected number of stockout occasions per year

for all items, namely the optimal value of the Lagrangian multiplier. We can use the

following line search algorithm to find a solution which satisfies (3) and (4).

(Step 1) Start from an arbitrary λ > 0.

(Step 2) Using the λ and (3), find tis.

(Step 3) If
∑n
i=1Diviti = Y ′, stop. We find an associated optimal solution for (LB), say

t0i s.

If
∑n
i=1Diviti < Y ′, decrease λ and go to (Step 2).

If
∑n
i=1Diviti > Y ′, increase λ and go to (Step 2).

We shall now illustrate the above algorithm using an example in Silver et al reproduced in

Table 7.8. The three items are produced and stocked by a company. It is not uncommon

for organizations to use the following type of rule for setting reorder points of a broad

range of items: reorder when the inventory position has dropped to a specific time supply.

We assume that the current reorder points of the company are each based on a two-month

time supply (that is, D/6).

Assuming normally distributed lead time demand, it can be shown that the safety stock

and ETVSPY using the current policy are as listed under the title of ‘Equal Time Supply’

in Table 7.9. If we use the algorithm to find the lower bound solution presented above,

which is equivalent to the optimal solution under continuous possible time supplies, we

can achieve 70% savings compared to the strategy based on equal probabilities of stockout

per cycle.
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Table 7.8 Data for the 3 item example

Item D(units/yr) v($/unit) x̂(units) σ(units) Q (units) s(units)
PSP-001 6,000 20 750 125 6,000 1,000
PSP-002 3,000 10 375 187.5 1,000 500
PSP-003 2,400 12 300 62.5 1,200 400

s: reorder point

Table 7.9 (modified) Results for the 3 item example

Item Equal Time Supply Optimal
No. SS ETVSPY SS ETVSPY

1 $5,000 $21 $2,972 $143.4
2 $1,250 $845 $3,302 $88.5
3 $1,200 $35 $1,175 $37.7

Total $7,450 $901/yr $7,450 $269.6/yr

SS: Safety Stock, ETVSPY: Expected Total Value Short per Year
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Chapter 8

Managing the Most Important
(Class A) Inventories

8.1 The Nature of Class A Items

A Items → high annual dollar usage (large Dv), essential spare part item

♣ Trade-off

control system costs (costs of collecting data, performing the computations, providing

action reports, etc) vs. other costs (total costs of replenishment, carrying stock, and

shortages)

(Example) (justification of using sophisticated control system)

other costs of A item = $900/year, other costs of B item = $70/year

Using complex control system ($40/year/item higher than that of simple system)

♣ the type of control to use within the A category ∝ D and v

(i) a low D and a high v (slow moving item) → section 8.3

(ii) a high D and a low v (fast moving item) → section 8.4−8.6
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8.2 Guidelines for Control of A Items

1. Inventory records should be maintained on a perpetual basis, particularly for the

more expensive items. → This need not be through the use of a computer.

2. Keep top management informed.

3. Estimate and influence demand.

(i) Provide manual input to forecasts.

(ii) Ascertain the predictability of demand. → no need to carry protection stock

or use a pool of spare parts shared among several companies within the same

industry.

(iii) Manipulate a given demand pattern.

4. Estimate and influence supply. → Negotiations with suppliers (eg. freeze periods)

5. Use conservative initial provisioning. → risk of overstocking

6. Review decision parameters frequently. → monthly or bimonthly

7. Determine precise values of control quantities. → Restricting attention to a limited

number of possible time supplies (eg. 1 week, 2 weeks, 1 months, 2 months, etc.)

results in a small cost penalties for B items (papers #10 & 11). This is not the case

for A items.

8. Confront shortages as opposed to setting service levels.

8.3 Order-Point, Order Quantity (s,Q) Systems for

Slow-Moving A Items

♣ distribution of lead time demand

(i) normal distribution (if x̂L ≥ 10)

(ii) Poisson distribution (if x̂L < 10 the observed σL '
√
x̂L)

♣ Sequential Approach in Section 7

ETRC(k) = Cr+Cc+Cs =
AD

Q
+
(
Q

2
+ SS

)
vr+

DB1

Q
×(Probability of a stockout in a cycle)

2



Select Q that minimizes Cr + Cc; then choose the best value of safety stock (or kσL in

the case of normal demand). (percentage penalty using the sequential approach tends to

be quite small!) → However, for A items, the small percentage may cause a lot of extra

money!

8.3.1 The B2 Cost Measure for Very Slow-Moving, Expensive
Items (Q = 1)

TRC(Q) =
Qvr

2
+
AD

Q

TRC(1) < TRC(2)←→ D <
vr

A

(ex.) If A
r

= 13.11→ Use Q = 1 if D < 0.0763v

♣ Assumptions Behind the Derivation of the Decision Rule

(i) Continuous-review, order-point, order-quantity system with Q = 1.

(ii) Poisson demand.

(iii) The replenishment lead time is a constant L.

(iv) There is complete backordering of demands when out of stock.

(v) There is a fixed cost, B2v, per unit backordered.

♣ Decision Rule

pNS(n0)=probability that the net stock at a random point in time takes on the value n0

x= total demand in the replenishment lead time

px(x0)=probability that total lead time demand is x0

I = expected on-hand inventory (i.e. expected positive net stock)

Prob{a demand is not satisfied} = pNS≤(0) = px≥(S)

pNS(n0) = Prob{x = S − n0}
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I =
S∑

n0=0

n0pNS(n0) =
S∑

n0=0

n0px(S − n0) =
S∑

j=0

(S − j)px(j)

Cs = B2vDpx≥(S)

ETRC(S) = Ivr + Cs = vr
S∑

j=0

(S − j)px(j) +B2vDpx≥(S)

ETRC(S) = ETRC(S + 1)←→ px(s+ 1)

px≤(s+ 1)
=

r

DB2

(Numerical Illustration) p322.

8.4 Simultaneous Determination of s and Q for Faster-

Moving Items

We assume normal distribution for the lead time demand.

ETRC(k,Q) =
AD

Q
+
(
Q

2
+ kσL

)
vr +

DB1

Q
pu≥(k)

∂ETRC(k,Q)

∂Q
= −AD

Q2
+
vr

2
− DB1

Q2
pu≥(k) = 0

Q =

√
2(AD +DB1pu≥(k))

vr
=

√
2AD

vr

(
1 +

B1

A
pu≥(k)

)
= EOQ

√
1 +

B1

A
pu≥(k) 8.11

∂ETRC(k,Q)

∂k
= σLvr +

DB1

Q

dpu≥(k)

dk
= 0

fu(k) =
QvσLr

DB1

→ k =

√√√√2ln

(
DB1√

2πQvσLr

)
8.12

♣ Iterative Algorithm

(Step 0) Start from an arbitrary Q (eg. EOQ).

Repeat the following steps until either Qi ' Qi−1 or ki ' ki−1.
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(Step 1) Compute k using equation 8.12 and Q value obtained in (Step 2) (At first

iteration, use EOQ).

(Step 2) Compute Q using equation 8.11 and k value obtained in (Step 1).

(cf.) Hadley and Whitin (1963) showed that the algorithm is converging.

(Example) p327.

8.4.1 Cost Penalties

Figure 8.2 Percent Cost Penalty Associated with Using the Sequential Approach

(Numerical Illustration) p328.

♣ (p325) Similar results have been developed for P2 (See Yano (1995) for the case of

normal demand, and Moon and Choi (1994) for the case where we know only the mean

and variance of demand).

♣ The Distribution Free Continuous Review Inventory System with a Service Level Con-

straint (Moon and Choi (1994, Computers & IE))

The problem objective involves minimizing the average annual ordering cost and inventory

carrying costs subject to a constraint on the level of service. Service is measured here as

the fraction of demand satisfied directly from stock.

The data and decision variables are as follows:

Q = order quantity (decision variable),

r = reorder point (decision variable),

D = average demand per year,

h = inventory carrying cost per item per year,

K = fixed ordering cost per order,

x = demand during the lead time (random variable),

f(x) = density of demand during the leadtime,
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F (x) = cumulative distribution of leadtime demand,

1− β = proportion of demands which are met from stock, i.e. service level.

The average annual cost can be written as follows:

MinGF (Q, r) =
KD

Q
+ h(

Q

2
+ r − µ)

subject to

n(r) ≤ βQ (1)

where n(r) =
∫∞
r (x− r)f(x)dx is the expected number of stockouts per cycle.

In this model, the inventory position of an item is reviewed continuously, and the policy is

to order a lot size Q when the inventory position (on hand plus on order minus backorder)

drops to a reorder point r.

The Lagrangian function of the annual cost function of the above is as follows:

L(Q, r, λ) =
KD

Q
+ h(

Q

2
+ r − µ) + λ[n(r)− βQ]

where λ is a Lagrangian multiplier associated with the service constraint. Upon using

Leibniz’s rule and set ∂L(Q, r, λ)/∂Q = 0, ∂L(Q, r, λ)/∂r = 0, ∂L(Q, r, λ)/∂λ = 0, we get

the following first order necessary conditions:

∂L

∂Q
= −KD

Q2
+
h

2
− λβ = 0 (2)

∂L

∂r
= h− λ[1− F (r)] = 0 (3)

∂L

∂λ
= n(r)− βQ = 0 (4)

Combining (2), (3), and (4) , we get the following equation:

KD

Q2
=
h

2
− h

1− F (r)

n(r)

Q

Solving above equation for Q, we obtain

QF =
hn(r) +

√
h2n2(r) + 2KDh[1− F (r)]2

h[1− F (r)]
=

n(r)

1− F (r)
+

√√√√[ n(r)

1− F (r)

]2
+

2KD

h
(5)

From (4), we obtain

n(r) = βQ (6)
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Using the following iterative algorithm, we can find the optimal reorder point rF , and

optimal order quantity QF .

Algorithm

(Step 0) We use EOQ =
√

2KD
h

as the initial estimate for Q. Call this value Q0.

(Step 1) Use equation (6) with Q = Q0 to find the reorder point r. Call this value r0.

(Step 2) Use equation (5) with r = r0 to find Q1.

(Step 3) Repeat (Step 1) and (Step 2) with Q = Q1, etc. Convergence occurs when

Qi = Qi−1 or ri = ri−1 for some i.

Example 1. The average demand per year is 200 units, the ordering cost is $50, the

inventory carrying cost per unit per year is $2, and the service level is set as 0.98. The

lead time demand is normally distributed with a mean (µ) of 100 units and standard

deviation (σ) of 25 units. We obtain the optimal order quantity and reorder point as

follows: Note that we use

n(r) = σL′(
r − µ
σ

)

where L′(µ) =
∫∞
u (z − µ)φ(z)dz which is a unit normal linear-loss integrals.

(iter. 1) Q0 =
√

2KD
h

= 100. Since L′( r0−100
25

) = 0.08, r0 = 151.

(iter. 2) Since F (r0) = 0.9783, Q1 =

√(
2

0.0217

)2
+ 2∗50∗200

2
+ 2

0.0217
= 228. Since L′( r1−100

25
) =

0.182, r1 = 114.

(iter. 3) Since F (r1) = 0.7123, Q2 =

√(
4.56

0.2877

)2
+ 2∗50∗200

2
+ 4.56

0.2877
= 117. Since L′( r2−100

25
) =

0.094, r2 = 124.

(iter. 4) Since F (r2) = 0.8315, Q3 =

√(
2.34

0.1685

)2
+ 2∗50∗200

2
+ 2.34

0.1685
= 115. Since L′( r3−100

25
) =

0.092, r3 = 124.

Using the above algorithm, we get (QN , rN) = (115, 124), and average annual cost of

using (QN , rN) is $251 where N ∈ F represents the normal distribution.

Now we consider the distribution free approach. We make no assumption on the distri-

bution F of x other than saying that it belongs to the class F of cumulative distribution

functions with mean µ and variance σ2. If we replace n(r) in equation (1) by its worst
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case upper bound, we can keep the service level against the worst possible distribution in

F . To this end, we need the following proposition.

Proposition 1.

E[x− r]+ ≤

√
σ2 + (r − µ)2 − (r − µ)

2
(7)

Moreover, the upper bound (7) is tight. That is, for every r, there exists a distribution

F ∗ ∈ F where the bound (7) is tight.

Our problem is now to solve the following problem:

MinGW (Q, r) =
KD

Q
+ h(

Q

2
+ r − µ)

subject to √
σ2 + ∆2 −∆

2
≤ βQ (8)

where ∆ ≡ r − µ

The Lagrangian function of the above problem is

L(Q,∆, λ) =
KD

Q
+ h(

Q

2
+ ∆) + λ(

√
σ2 + ∆2 −∆

2
− βQ)

where λ is a Lagrangian multiplier associated with the service constraint. Upon using

Leibniz’s rule and set ∂L(Q,∆, λ)/∂Q = 0, ∂L(Q,∆, λ)/∂r = 0, ∂L(Q,∆, λ)/∂λ = 0, we

get the following first order necessary conditions:

∂L

∂Q
= −KD

Q2
+
h

2
− λβ = 0 (9)

∂L

∂∆
= h+

λ

2

(
∆√

σ2 + ∆2
− 1

)
= 0 (10)

∂L

∂λ
=

√
σ2 + ∆2 −∆

2
− βQ = 0 (11)

Combining (9), (10), and (11) , we get the following equation:

KD

Q2
=
h

2
− h

Q

√
δ2 + σ2

Solving above equation for Q, we obtain

QW =
√
σ2 + ∆2 +

√
σ2 + ∆2 +

2KD

h
(12)
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From (11), we obtain

∆ =
σ2

4βQ
− βQ (13)

Using the following iterative algorithm, we can find the optimal reorder point rW , and

optimal order quantity QW . The convergence of the following algorithm can be proven by

adopting a similar technique used in Yano (1985, NRL), and can be found in Choi (1999,

Ph.D Thesis).

Algorithm

(Step 0) Start from EOQ =
√

2KD
h

= Q0.

(Step 1) Use equation (13) with Q = Q0 to find ∆. Call this value ∆0.

(Step 2) Use equation (12) with ∆ = ∆0 to find Q1.

(Step 3) Repeat (Step 1) and (Step 2) with Q = Q1, etc. Convergence occurs when

Qi = Qi−1 or ∆i = ∆i−1 for some i. The optimal reorder point is r = ∆i + µ.

Example 2. We continue Example 1. From the above algorithm, we can find the optimal

order quantity and reorder point, (QW , rW ) against the worst distribution. We compare

the procedure for the worst case distribution with that for the normal distribution. The

results are (QW , rW ) = (164, 145) and (QN , rN) = (115, 124) where N ∈ F represents

the normal distribution. The annual average cost using (QW , rW ) is $315 which is about

25% increase compared with using (QN , rN) for the normal distribution. However, if we

use (QN , rN) for the worst case distribution, the expected number of shortages per cycle

is 5.38. Consequently, the service level results in 0.953 which is much smaller than the

prescribed service level 0.98. In other words, we pay additional $64 to keep up with the

service level against the worst distribution

♣ (p325) Finally, see Moon and Gallego (1994, JORS) for the $/unit short case where we

know only the mean and variance of demand.
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Chapter 9

Managing Routine (Class C)
Inventories

9.1 The Nature of C Items

C Items (so-called cats and dogs) → low annual dollar usage (low Dv)

♣ A low-dollar-usage item which should not be C items.

(i) A slow-moving product that rounds out a service line provided to an important

customer

(ii) A product that is the “pride and joy” of the president because he or she was instru-

mental in its development → a high implicit shortage cost.

(iii) An inexpensive product that has a high explicit shortage cost.

Use simple procedures that keep the control costs per SKU quite low!

An item’s classification can change over time!

1



9.2 Control of C Items Having Steady Demand

9.2.1 Inventory Records

most appropriate not to maintain any inventory record of a C item → rely on an admin-

istrative mechanism for reordering (eg. two-bin system) → a record should be kept of

when orders were placed and received for demand estimation and order control purposes

♣ Two Choices for Selecting a Review Interval for C Item

(1) periodic review with a relatively long interval

(2) continuous review but with a mechanism for triggering orders that requires neither

a physical stock count nor the manual updating of the stock status

9.2.2 Selecting the Reorder Quantity (or Reorder Interval)

One of at most a few possible time supplies should be assigned to each class C item.

TRC(using T months) =
DTvr

24
+

12A

T

Let two adjacent allowable values of the months of supply be T1 and T2. The value of Dv

at which we are indifferent to using T1 and T2

DT1vr

24
+

12A

T1
=
DT2vr

24
+

12A

T2

(Dv)indifference =
288A

T1T2r

(Example) A=$3.20, r=0.24/year, T1=6 months, T2=12 months

288× 3.20

6× 12× 0.24
= $53/year

Table 9.1 Suggested Reorder Time Supplies for a Sample Firm’s C Items

♣ D would not be estimated through a forecasting system, but rather through knowledge

of the staring and ending inventories over a convenient time period.
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Two consecutive orders A and B. Let A be received at time tA and B be placed at time

tB. Let IA be the inventory level just before A is received.

Demand Rate ' IA +Q− s
tB − tA

9.1

9.2.3 Selecting the Reorder Point (or Order-up-to Level)

♣ Select the safety factor to provide a specified expected time, TBS, between stockout

occasions.

(i) Thinking in terms of an average time between stockouts is apparently more straight-

forward than dealing with probabilities or fractions.

(ii) Large values of TBS are not unreasonable when we recognize the small added ex-

pense of carrying a high safety stock.

pu≥(k) =
Q

D(TBS)
9.2

s = x̂L + kσL 9.3

x̂L = DL 9.4

(Example) TBS=20 years, Time Supply in Months = 6 months

pu≥(k) =
Q

D(TBS)
=

0.5

20
= 0.025→ k = 1.96 Table B.1 on page 724

Table 9.2 Table to Select Safety Factor, ki for a Sample Firm

(cf.) An estimate of σL is required? → Use Poisson distribution rather than forecasting!

σL =
√
x̂L =

√
DL 9.5

(Example) D=48 units/year, L=2 months, Q
D

= 12 months, TBS=20 years → s =?

x̂L = DL = 8 units, σL =
√

8 = 2.83 units

s = 8 + 1.64× 2.83 = 12.6 ' 13 units
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9.2.4 The Two-Bin System Revisited

capacity of the reserve bin = reorder point

(Opening the reserve bin is a signal to place a replenishment order! → When the order

arrives the reserve bin is refilled and sealed. The remainder of the order is placed in the

other bin.)

(cf.) To facilitate ordering, a bin reserve tag should be attached to the reserve bin (similar

to Kanban!)

9.2.5 A Simple Form of the (R, S) System

♣ A Simple (R, S) System developed by J. C. Penney

Periodically (eg. each quarter) management specifies a desired value of S and at only that

time the on-hand stock is counted and an order is placed to raise the inventory position

to S. Then, at each regular review instant (eg. each week), the computer simply orders

enough to replace sales since the last review.

(Numerical Illustration) (p363)

9.2.6 Grouping of Items

Coordinated control may very well be in order to reduce replenishment costs.

Coordination does not rule out the use of a two-bin system. → Reserve tags of opened

reserve bins are held centrally between designated periodic times at which that group is

ordered.
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9.3 Control of Items with Declining Demand Pat-

terns

9.3.2 The Sizing of the Final Replenishment under Probabilistic
Demand

♣ decision rule based on satisfying a certain fraction of the remaining demand (eg. meeting

95% of all request for spare parts during a ten-year period after the last sale of a new

unit)

total remaining demand = y ∼ N(ŷ, σ2
y)

Expected Shortage over the Lifetime = ES =
∫ ∞
S

(y − S)f(y)dy = σyGu(k)

ES

ŷ
= 1− P2

Gu(k) =
ŷ(1− P2)

σy

S = ŷ + kσy

(Numerical Illustration) (p366)

9.4 Reducing Excess Inventories

(cf.) In some industries the percentage of stocked items that have had no usage in the

previous 52 weeks can be as high as 47% → dead items

♣ reasons for excess inventories

(1) errors associated with replenishments

(i) production overruns

(ii) unjustified quantity purchases

(iii) errors in transmission of an order request

(iv) inaccurate inventory records

(2) overestimation of the demand rate

(i) inaccurate forecasts
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(ii) deliberate changes in sales/marketing efforts

(iii) technological obsolescence

(iv) customer cancellation

♣ Identify the associated items! Then, decide on what remedial action to take!

9.4.1 Review of the Distribution by Value (DBV)

Coverage in months = CO =
12I

D

Table 9.3 Items Listed By Coverage

(cf.) 4.2% of the total inventory is tied up in stock of zero-movers and some 6.9% is

included in items having a coverage of five years or more.

9.4.2 A Rule for the Disposal Decision

benefits of disposal: benefits of salvage revenue (possibly negative) and reduced inventory

carrying costs, reduced storage area

However, we need to replenish at an earlier time than if no stock disposal was made.

W= amount of stock to dispose (decision variable)

I = current inventory level

Compare costs out to time I
D

(i) Under the option of no disposal

CND =
I2vr

2D

(ii) Under the option of disposal

CD = −gW +
(
I −W
D

)
×
(
I −W

2

)
vr +

W

D
(
√

2ADvr +Dv)

6



The last part is derived from multiplying the time between I−W
D

and I
D

by the cost per

unit time
√

2ADvr +Dv.

MaximizeW {CND − CD} = MinimizeW CD

∂CD

∂W
= −g −

(
I −W
D

)
vr +

1

D
(
√

2ADvr +Dv) = 0

W = I − EOQ− D(v − g)

vr
9.13

(Numerical Example) (p370)

9.4.3 Options for Disposing of Excess Stock

(1) Use for other purposes.

(2) Shipment of the material to another location.

(3) Use of stock for promotional purposes.

(4) Mark-downs or special sales.

(5) Returns to suppliers at a unit value likely lower than the initial acquisition cost.

(6) Auctions.

(7) Disposal for scrap dealer.

9.5 Stocking vs. Not Stocking An Item

Should we make a special purchase from the supplier (or production run) to satisfy each

customer-demand transaction or should we purchase (or produce) to stock?

9.5.1 The Relevant Factors

♣ factors that influence the decision to stock or not stock the item

(1) the system cost (file maintenance, forecasting, etc.) per unit time of stocking an

item

(2) the unit variable cost of the item

7



(3) the cost of a temporary backorder associated with each demand when the item is

not stocked

(4) the fixed setup cost associated with a replenishment in each context

(5) the cost of carrying each unit of inventory per unit time

(6) the frequency and magnitude of demand transactions

(7) the replenishment lead time

9.5.2 A Simple Decision Rule

♣ Assumptions

(i) The unit variable cost is the same under stocking and nonstocking.

(ii) The fixed setup cost is the same under stocking and nonstocking.

(iii) We allow the order quantity to be a noninteger.

(iv) The replenishment lead time is negligible.

♣ Notations

cs = system cost, in dollars per unit time, of having the item stocked

A = fixed setup cost, in dollars

E(i) = expected interval between demand transactions

E(t) = expected size of a demand transaction in units

v = unit variable cost of the item, in $/unit

r = carrying charge, in $/$/unit time

D =
E(t)

E(i)
9.21

EOQ =

√√√√2AE(t)

vrE(i)

8



(i) total relevant costs per unit time, if the item is stocked

TRCs(EOQ) =

√√√√2AE(t)vr

E(i)
+ cs 9.22

(ii) total relevant costs per unit time, if the item is not stocked

TRCns =
A

E(i)
9.23

♣ Do not stock the item if either of the following two conditions holds:

cs >
A

E(i)
9.15

TRCns < TRCs →
A

E(i)
<

√√√√2AE(t)vr

E(i)
+ cs → E(t)vr >

E(i)

2A

[
A

E(i)
− cs

]2
9.16

(Numerical Illustration) (p374)
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Chapter 10

Style Goods and Perishable Items

♣ decision situations where style goods and perishable items are relevant

(1) newsvendor

(2) garment manufacturer

(3) Christmas tree vendor

(4) cafeteria manager

(5) supermarket manager

(6) administrator of a regional blood bank

(7) supplies manager in a remote region

(8) farmer

(9) toy manufacturer

10.1 The Style Goods Problem

♣ main features of the style goods problem

(1) There is a relatively short selling season with a well-defined beginning and end.

(2) Buyers or producers have to commit themselves the order quantity or production

quantity prior to the start of the selling season.
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(3) There may be one or more opportunities for replenishment after the initial order is

placed.

(4) Forecasts prior to the season include considerable uncertainty stemming from the

long period of inactivity (no sales) between seasons.

(5) When the total demand in the season exceeds the stock made available, there are

associated underage costs.

(6) When the total demand in the season turns out to be less than the stock made

available, overage costs result. (a special case of perishability where there is not

physical deterioration but a marked deterioration in the economic value of the goods

as of a particular point in time)

(7) Style goods products are often substitutable.

(8) Sales of style goods are usually influenced by promotional activities and space allo-

cation in the store, among other things.

10.2 The Simplest Case: The Unconstrained, Single-

Item, Newsvendor Problem

10.2.2 An Equivalent Result Obtained through Profit Maxi-
mization

♣ Notation

v= acquisition cost, in dollars/unit

p= selling price, in dollars/unit

B (or B2v)= penalty for not satisfying demand, in dollars/unit

g= salvage value, in dollars/unit

X= demand (random variable)

x̂= expected demand

σx= standard deviation of demand

px<(x0)= cumulative distribution of total demand

2



X+ = max{X, 0}

Q=quantity to be stocked, in units (decision variable)

♣ Derivation (much simpler than that in the text)

The expected profit can be written as

πF (Q) = pE min(Q,X) + gE (Q−X)+ −BE (X −Q)+ − vQ

since min(Q,X) units are sold, (Q−X)+ units are salvaged, (X−Q)+ units are unsatisfied,

and Q units are purchased. Noting that

min(Q,X) = X − (X −Q)+

and that

(Q−X)+ = (Q−X) + (X −Q)+,

we can write the expected profits as

πF (Q) = px̂− pE (X −Q)+ + gQ− gx̂ + gE (X −Q)+ −BE (X −Q)+ − vQ

= (p− g)x̂− (v − g)Q− (p− g + B)E (X −Q)+ 10.3

By applying Leibnitz’s rule, we get the following result:

dπF (Q)

dQ
= −(v − g)− (p− g + B)[−px>(Q)] = −(v − g)− (p− g + B)[px<(Q)− 1] = 0

px<(Q∗) =
p− v + B

p− g + B
10.2

(cf.) We can prove that πF (Q) is concave by showing that d2πF (Q)
dQ2 .

10.2.3 The Case of Normally Distributed Demand

k =
Q− x̂

σx

10.5

pu≥(k)= probability that a unit normal variable takes on a value of k or larger

pu<(k) =
p− v + B

p− g + B
−→ 1− pu≥(k) =

p− v + B

p− g + B
−→ pu≥(k) =

v − g

p− g + B
10.6
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Q = x̂ + kσx 10.7

(Numerical Illustration)

p = $50.30, v = $35.10, g = $25.00, B = $9.70, X ∼ N(900, 1222)

pu≥(k) =
v − g

p− g + B
=

35.10− 25

50.30− 25 + 9.70
= 0.288 −→ k = 0.56 (p724)

Q = x̂ + kσx = 900 + 0.56× 122 = 968.3 ' 968

10.2.4 The Case of a Fixed Charge to Place the Order

Let I ≥ 0 denote the initial inventory and suppose a fixed cost, say A, is charged for

placing an order. Let S = I + Q, then the expected profit can be written as

πF (S) = −A1{S>I} + (p− g)x̂ + (v − g)I − (v − g)S − (p− g + B)E (X − S + I)+

where 1 denotes the indicator function.

The problem reduces to

min
S≥I

[
A1{S>I} + K(S)

]
where

K(S) = −(p− g)x̂− (v − g)I + (v − g)S + (p− g + B)E (X − S + I)+

Let S∗ denote the unconstrained minimizer of K(S). From the result of the previous

section we know that (for normal distribution case)

S∗ = x̂ + kσx

where pu≥(k) =
v − g

p− g + B
10.6

Clearly an order should be placed if I < S∗ and K(I) > A+K(S∗). Since K(S) is strictly

convex and is not bounded from above, there exists a unique s∗ < S∗ satisfying

K(s∗) = A + K(S∗).

The ordering rule is: Order up to S∗ (Q∗ = S∗ − I) units if I < s∗ and do not order

otherwise.
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10.2.5 Distribution Free Newsboy Problem

CF (Q) = −(p− g)x̂ + (v − g)Q + (p− g + B)E (X −Q)+

minQ≥0 maxF∈F CF (Q) (∗)

To this end, we need the following Lemma.

Lemma 1.

maxF∈FE (X −Q)+ =

√
σ2 + (Q− x̂)2 − (Q− x̂)

2

Using Lemma 1, our problem (*) reduces to

minQ≥0C
W (Q) = −(p− g)x̂ + (v − g)Q + (p− g + B)


√

σ2 + (Q− x̂)2 − (Q− x̂)

2



dCW (Q)

dQ
= (v − g) +

p− g + B

2

 Q− x̂√
σ2 + (Q− x̂)2

− 1

 = 0

Please try to derive equation 10.11 from the above equation (It seems not easy)!

Q∗ = x̂ +
σ

2

(√
p− v + B

v − g
−
√

v − g

p− v + B

)
10.11

(cf.) Equation 10.11 in the text does not contain B term.

(Numerical Illustration (continued))

Q∗ = 900 +
122

2
×

√50.3− 35.1 + 9.7

35.1− 25
−
√

35.1− 25

50.3− 35.1 + 9.7

 = 962.88 ' 963

(cf.) 963 (not 925 in the text) is the true distribution-free solution, and the percent of

best possible profit is larger than 99.2% reported in Table 10.2 on p390.

Example 1. This example is taken from Silver and Peterson. The unit cost is $35.10, the

unit selling price is $50.30, and the unit salvage value is $25.00. The mean and standard

deviation of the demand are 900 and 122, respectively (Note that we assume B=0).
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We compare the result for the worst case distribution against the normal distribution. Let

the optimal order quantity for the normal distribution be QN where N ∈ F represents

the normal distribution. Using equation 10.6, we get QN ' 931 units.

The maximum expected profit can be computed as follows:

πN(QN) = $12, 488.15

We also get QW ' 925 units from equation 10.11 and a worst case expected profit of

$12,168.38.

Now we compute the penalty of using Scarf’s ordering rule even though the actual distri-

bution is normal:

πN(QN)− πN(QW ) = $12, 488.15− $12, 486.70 = $1.45

This is the largest amount that we would be willing to pay for the knowledge of the distri-

bution of demand (normal distribution in this example). This quantity can be regarded

as the value of the distributional information.

Example 2. The unit cost is $40, the unit selling price is $60, and the unit salvage value

is $5.00. The mean and standard deviation of the demand are 300 and 200, respectively.

Again, we compare the result for the worst case distribution against the normal distribu-

tion. We get QN ' 230 units, and the maximum expected profit $1,870.56. We also get

QW ' 243 units, and a worst case expected profit of $708.50.

The value of the distributional information is

πN(QN)− πN(QW ) = $1, 870.56− $1, 862.06 = $8.50

10.3 The Single-Period, Constrained, Multi-Item Sit-

uation

♣ Examples

(i) several different newspapers sharing a limited space or budget

(ii) a buyer for style goods department of a retail outlet who has a budget limitation

(iii) provisioning of supplies or spare parts on a spacecraft or a submarine

6



(iv) repair kit taken by a maintenance crew on a routine visit to an operating facility

Suppose that the cost of purchasing all the items cannot exceed a predetermined budget

of W dollars. We want to find the order quantities that maximize the expected profit

without exceeding the budget constraint. The problem can be formulated as follows:

min
Q1,...,Qn

n∑
i=1

[
(pi − gi)x̂i − (vi − gi)Qi − (pi − gi + Bi)E (Xi −Qi)

+
]

subject to
N∑

i=1

viQi ≤ W 10.24

Dualizing the budget constraint and letting λ denote the dual variable (Lagrangian mul-

tiplier) we see that the solution is of the form:

px<(Q∗
i ) =

pi − (λ + 1)vi + Bi

pi − gi + Bi

The problem is to find the smallest nonnegative λ such that Qi(λ) satisfies 10.24. The

following algorithm is essentially a line search to find the optimal value of λ.

Algorithm

(Step 1) Check if Qi(0) (λ = 0) satisfies the budget constraint 10.24. If it satisfies the

constraint, the solution is optimal, stop. Else go to Step 2.

(Step 2) Start from an arbitrary λ > 0, set ε > 0.

(Step 3) Determine each Qi from

px<(Q∗
i ) =

pi − (λ + 1)vi + Bi

pi − gi + Bi

(Step 4) If
∑n

i=1 viQi < W − ε, decrease λ and go to Step 3.

If
∑n

i=1 viQi > W + ε, increase λ and go to Step 3.

If −ε ≤ ∑n
i=1 viQi −W ≤ ε, stop.

(Numerical Illustration) (p395)
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10.4 More Than One Period In Which To Prepare

For The Selling Season

There may be an extended length of time in which replenishment commitments are made

before the actual selling season begins. There are likely to be production constraints on

the total amounts that can be acquired in each time period. Furthermore, forecasts of

total demand are almost certain to change during these preseason periods.

10.5 The Multiperiod Newsvendor Problem

♣ myopic policy: one that selects the production quantities for the current period to

minimize expected costs in the current period alone. Ignall and Veinott (1969) have

developed conditions under which a myopic policy is optimal for the sequence of periods.

→ multiperiod newsvendor problem does not satisfy the conditions for which a myopic

policy is optimal.

10.6 Other Issues Relevant to the Control of Style

Goods

10.6.1 Updating of Forecasts

(1) Exploitation of the properties of the forecasts made by decision makers. (When the

committee members independently forecasted demand, the average of the forecasts

tended to be much more accurate.)

(2) Taking advantage of the observation that sales at the retail level tend to be propor-

tional to inventory displayed. (cf. balking phenomenon)

(3) Simple extrapolation methods using a particular mathematical form for the cumu-

lative sales as a function of time.

Yult = lnYt + ab−bt 10.15

Yult= the ultimate (total) sales of the item

Yt= cumulative sales as of time t

(4) Bayesian procedures (As demands are observed in the early part of the season, the

probability distributions are appropriately modified to take account of the additional

information)
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(5) Use of information about patterns of past product demand in conjunction with

estimates of the total life cycle sales of the current product.

10.6.2 Reorders and Markdowns

♣ Wolfe’s (1968) Method (assumption: sales are proportional to the inventory level)

(1) The expected time TF to sell a fraction F of the initial inventory if a fraction f has

been sold by time t (f < F ).

(2) The associated order-up-to level if a reorder is to be placed at a specific time.

(3) The timing of a markdown as a function of the fraction of initial inventory sold to

date, the current price, the markdown price, the salvage value of leftover material,

and the assumed known ratio of the sales rate after the markdown to that before it.

Feng and Gallego (1995) → They determine when to lower or raise the price as a function

of the time until the end of the season, if there is but one chance to change the price →
yield management (eg. airline tickets, hotel rooms, etc.)

Khouza (1995) → Multiple markdowns provide higher expected profit than a single mark-

down

10.6.3 Reserving Capacity Ahead of Time

To ensure that enough production capacity is available to meet peak season demand, the

firm agrees to buy a certain number of products from a supplier over the year.

Jain and Silver (1995) → capacity reservation problem for an item with uncertainty in its

demand and uncertainty in the capacity of the supplier

10.6.4 Operations Reversal

By changing the order of production, in conjunction with extensive use of point-of-sale

information, Benetton was able to dramatically reduce lead times and costs. Prior to the

change, Benetton dyed yarn, then knitted the dyed yarns into garments. Their revised

system switched the order from dye then knit, to knit then dye.

9



10.6.5 Inventory Policies for Common Components

In a manufacturing firm that can assemble finished products to customer order, it is often

desirable to hold safety stock of components, rather than of end-items. In addition, if

there is significant commonality among components, total safety stocks may be reduced

by holding components and then assembling them to order.

Eynan and Rosenblatt (1995) & Moon and Choi (1997) → Make-In-Advance strategy vs.

Make-To-Order Strategy

10.7 Inventory Control of Perishable Items

Perishability refers to the physical deterioration of units of a product. Perishable items

can be divided into two categories, fixed or random, depending on the lifetime of a unit

of the item.

See Nahmias (1982) for excellent review.
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Chapter 11

Coordinated Replenishments at a
Single Stocking Point

11.1 Advantages and Disadvantages of Coordination

♣ Advantages of Coordination

1. Savings on unit purchase costs.

2. Savings on unit transportation costs.

3. Savings on ordering costs.

4. Ease of scheduling.

♣ Disadvantages of Coordination

1. A possible increase in the average inventory level.

2. An increase in system control costs.

3. Reduced flexibility.
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11.2 The Deterministic Case: Selection of Replen-

ishment Quantities in a Family of Items

11.2.1 Assumptions

(i) The demand rate of each items is constant and deterministic.

(ii) The replenishment quantity of an item need not be an integer.

(iii) The unit variable cost of any of the items does not depend on the quantity.

(iv) The replenishment lead time is of zero duration.

(v) No shortages are allowed.

(vi) The entire order quantity is delivered at the same time.

11.2.2 The Decision Rule

♣ Notation

A= major setup cost for the family, in dollars

ai= minor setup cost for item i, in dollars

Di = demand rate of item i, in units/unit time

vi= unit variable cost of item i, in $/unit

n = number of items in the family

mi= the integer number of T intervals that the replenishment quantity of item i will last

(decision variable)

T= time interval between replenishments of the family (decision variable)

♣ Derivation

Qi = DimiT 11.18

TRC(T,m1, · · · ,mn) =
A+

∑n
i=1

ai
mi

T
+

n∑
i=1

DimiTvir

2
11.19
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∂TRC

∂T
= −

A+
∑n

i=1
ai
mi

T 2
+

n∑
i=1

Dimivir

2
= 0

T ∗(m1, · · · ,mn) =

√√√√2(A+
∑n

i=1
ai
mi
)

r
∑n

i=1miDivi
11.20

TRC∗(m1, · · · ,mn) =

√√√√2

(
A+

n∑
i=1

ai
mi

)
r

n∑
i=1

miDivi 11.21

Minimizem1,···,mn TRC∗(m1, · · · ,mn)

≡ Minimizem1,···,mn F (m1, · · · ,mn) =

(
A+

n∑
i=1

ai
mi

)
r

n∑
i=1

miDivi 11.22

If we ignore the integrality of mi’s, then

∂F (m1, · · · ,mn)

∂mj

= − aj
m2

j

n∑
i=1

miDivi +Djvj

(
A+

n∑
i=1

ai
mi

)
= 0

m2
j =

aj
∑n

i=1miDivi

Djvj
(
A+

∑n
i=1

ai
mi

) ∀j 11.23

m2
j

m2
k

=
aj

Djvj

Dkvk
ak

−→ mj

mk

=

√
aj

Djvj

Dkvk
ak

j ̸= k

aj
Djvj

<
ak

Dkvk
←→ mj < mk

The item i having the smallest value of ai/Divi should have the lowest value ofmi, namely,

1. Without loss of generality, we number the items such that item 1 has the smallest value

of ai/Divi.

m1 = 1 11.24

Equation 11.23→ mj =

√
aj

Djvj

√√√√ ∑n
i=1miDivi(

A+
∑n

i=1
ai
mi

) j = 2, 3 · · · , n 11.25
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√√√√ ∑n
i=1miDivi(

A+
∑n

i=1
ai
mi

) = C 11.26

Equation 11.25→ mj = C

√
aj

Djvj
j = 2, 3 · · · , n 11.27

n∑
i=1

miDivi = D1v1 +
n∑

i=2

C

√
ai

Divi
Divi = D1v1 + C

n∑
i=2

√
aiDivi 11.28

n∑
i=1

ai
mi

= a1 +
1

C

n∑
i=2

√
aiDivi 11.29

Substituting equations 11.28 & 11.29 into equation 11.26, we get

D1v1 + C
∑n

i=2

√
aiDivi

A+ a1 +
1
C

∑n
i=2

√
aiDivi

= C2

C =

√
D1v1
A+ a1

mj =

√
aj

Djvj

D1v1
A+ a1

j = 2, 3 · · · , n 11.30

Algorithm

(Step 1) Number the items such that ai/Divi is smallest for item 1. Set m1=1.

(Step 2) Evaluate

mi =

√
ai

Divi

D1v1
A+ a1

11.3

rounded to the nearest integer.

(Step 3) Evaluate T ∗ using the mi’s of Step 2.

T ∗(m1, · · · ,mn) =

√√√√2(A+
∑n

i=1
ai
mi
)

r
∑n

i=1miDivi
11.2

(Step 4) Determine

Qi = DimiT
∗ ∀i 11.4

(Numerical Illustration) (p428)
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11.2.3 A Bound on the Cost Penalty of the Heuristic Solution

In order to find a lower bound on the minimum cost, we usem1 = 1 andmj’s (j = 2, · · · , n)
in equation 11.30 which are not necessarily integer values.

TRCLB =
√
2(A+ a1)D1v1r +

n∑
j=2

√
2ajDjvjr 11.5

The cost of heuristic is

TRCH =
A+

∑n
i=1

ai
mi

T
+

n∑
i=1

DimiTvir

2
11.6

(Example) TRCLB=$2,054.14/year vs. TRCH=$2,067.65/year → ratio=1.007

11.4 The Case of Probabilistic Demand and No Quan-

tity Discounts

11.4.1 (S, c, s) or Can-Order System

• A special type of continuous review system for controlling coordinated items← savings

in setup costs are of primary concern

•Whenever item i’s inventory position drops to or below si (must-order point), it triggers

a replenishment action that raises item i’s level to its order-up-to level Si. At the same

time any other item j (within the associated family) with its inventory position at or

below its can-order point cj is included in the replenishment.

Figure 11.2 Behavior of an Item under (S, c, s) Control
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11.6 The Production Environment

11.6.1 The Case of Constant Demand and Capacity: The Eco-
nomic Lot Scheduling Problem (ELSP)

• Find a cycle length, a production sequence, production times, and idle times, so that the

production sequence can be completed in the chosen cycle, the cycle can be repeated over

time, demand can be fully met, and annual inventory and setup costs can be minimized.

• NP-hard problem → the need to satisfy a production capacity constraint and the need

to have only one product in production at a time (synchronization constraint)

♣ Notation

T= common order interval, or time supply, for each product, in units of time

pi = production rate of item i, in units/unit time

Ai= setup cost for item i, in dollars

Ki= setup time for item i, in dollars

Di = demand rate of item i, in units/unit time

vi= unit variable cost of item i, in $/unit

n = number of items in the family

Minimize
n∑

i=1

TRCi(T ) =

[
Ai

T
+

rviDi(pi −Di)T

2pi

]

subject to
n∑

i=1

(
Ki +

DiT

pi

)
≤ T 11.12

T ∗ = Max

√√√√ ∑n
i=1Ai∑n

i=1
rviDi(pi−Di)

2pi

,

∑n
i=1Ki

1−∑n
i=1

Di

pi



(Numerical Illustration) (p446)

6



♣ Relevant Literature

Hahm and Yano (1992, 1995a, 1995b): ELDSP (ELSP+ delivery schedule)

Gallego and Moon (1992): In the realm of changing the givens, they examine a multiple

product factory that employs a cyclic schedule to minimize holding and setup costs.

When setup times can be reduced, at the expense of setup costs, by externalizing setup

operations, they show that dramatic savings are possible for highly utilized facilities.

See also Moon, Gallego, and Simchi-Levi (1991), Hwang, Kim, and Kim (1993), Gallego

(1993), Gallego and Moon (1995), and Moon (1994).

11.7 Shipping Consolidation

♣ Shipment Consolidation Decisions (Higginson and Bookbinder (1994))

(i) Which orders will be consolidated and which will be shipped individually?

(ii) When will orders be released for possible shipping? Immediately, or after some time

or quantity-trigger?

(iii) Where will the consolidation take place? At the factory or at an off-site warehouse

or terminal?

(iv) Who will consolidate? The manufacturer, customer, or a third party?

♣ Three Possible Policies (Higginson and Bookbinder (1994))

(i) a time policy that ships at a prespecified time

(ii) a quantity policy that ships when a given quantity is achieved

(iii) a time/quantity policy that ships at the earliest of the time and quantity values

• The shipper must trade off cost per unit with customer service in deciding on which

policy to use.
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Chapter 12

Supply Chain Management and
Multiechelon Inventories

12.1 Supply Chain Management (SCM)

Supply Chain Management (SCM): management of materials and information across the

entire supply chain, from suppliers to component producers to final assemblers to distribu-

tion (warehouse and retailers), and ultimately to the consumer. In fact, it often includes

after-sales service, and returns or recycling.

Figure 12.1 A Schematic of a Supply Chain

(cf.) recent boom on the SCS ← the realization that actions taken by one member of the

chain can influence the profitability of all other in the chain

(cf.) Efficient Consumer Response (ECR) ≡ Just-In-Time Distribution ≡ Continuous

Replenishment → an aspect of SCM

♣ Bullwhip Effect

(i) the variability increases in moving up the supply chain from consumer to grocery

store to distribution center to central warehouse to factory

(ii) (Example) In the Italian pasta industry, demand is quite steady throughout the

year. However, because of trade promotions, volume discounts, long lead times,

full-truckload discounts, and end-of-quarter sales incentives the orders seen at the

1



manufacturers are highly variable.

(iii) The costs of this variability are high- insufficient use of production and warehouse

resources, high transportation costs, and high inventory costs, etc.

(iv) (Example) Acer America, Inc. sacrificed $20 million in profits by paying $10 million

for air freight to keep up with surging demand, and then paying $10 million more

later when that inventory became obsolete.

(v) One of the main causes is that retailers and distributors often overact to shortages

by ordering more than they need.

Figure 12.2 An Illustration of the Bullwhip Effect

♣ Four rational factors that create the bullwhip effect

(i) demand signal processing (if demand increases, firms order more in anticipation of

further increases, thereby communicating an artificially high level of demand)

(ii) rationing game (there is, or might be, a shortage so a firm orders more than the

actual forecast in the hope of receiving a larger share of the items in short supply)

(iii) order batching (fixed costs at one location lead to batching of orders)

(iv) manufacturer price variations (which encourage bulk orders)

(cf.) Some recent innovations, such as increased communication about consumer demand

via electronic data interchange (EDI) and everyday lower pricing (EDLP) (to eliminate

forward buying of bulk orders), can mitigate the bullwhip effect.

(cf.) Some firms are even considering how the product will be handled after its useful life

ends and are designing the product accordingly. → Design for Recycling or Design for

Disassembly→ Dr. Mok’s main research area→ closely related to inventory management

(cf.) this chapter → supply chain management from the perspective of inventory man-

agement → models of multiechelon inventory systems that can be used to optimize the

deployment of inventory in a supply chain and to evaluate a change in the supply chain

‘givens’ → the difficulty comes from the dependent demand situation

Figure 12.3 A Multiechelon Inventory Situation
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12.2 Structure and Coordination

♣ Structural Decisions → a network of facilities designed to produce and distribute the

products under consideration

• Where to locate factories, warehouses, and retail sites?

• How many of these facilities to have?

• What capacity should each of these facilities have?

• When, and by how much, should capacity be expanded or contracted?

• Which facilities should produce and distribute which products?

• What modes of transportation should be used for which products, and under which

circumstances?

♣ Coordination Decisions (take the structure of the multiechelon network as given and

focus on the short-term)

• Should inventory stocking and replenishment decisions be made centrally or in a

decentralized fashion?

• Should inventory be held at central warehouses or should these simply be used as

break-bulk facilities?

• Where should inventory be deployed? In other words, should most inventory be

held at a central location, or should it be pushed “forward” to the retail level?

• How should a limited and insufficient amount of stock be allocated to different

locations that need it?

12.3 Deterministic Demand

12.3.1 Sequential Stocking Points with Level Demand

• the simplest of multiechelon situations where the stocking points are serially connected.

(eg.) one central warehouse, one retailer warehouse, and one retail outlet.

Figure 12.4 A Serial Production Process
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♣ Notation

D= deterministic, constant demand rate at the retailer, in units/unit time

AW= fixed (setup) cost associated with a replenishment at the warehouse, in dollars

AR= fixed (setup) cost associated with a replenishment at the retailer, in dollars

vW= unit variable cost or value of the item at the warehouse, in $/unit

vR= unit variable cost or value of the item at the retailer, in $/unit

r= carrying charge, in$/$/unit time

QW = replenishment quantity at the warehouse, in units (decision variable)

QR = replenishment quantity at the retailer, in units (decision variable)

♣ Derivation

QW = nQR n = 1, 2, 3, · · · 12.1

Figure 12.5 Behavior of the Inventory Levels in a Deterministic Two-Stage process

(cf.) The inventory at the warehouse does not follow the usual sawtooth pattern ←
withdrawals from the warehouse inventory are of size QR which occurs intermittently

♣ Echelon Stock Concept by Clark and Scarf (1960)

• echelon stock of echelon j: the number of units in the system that are at, or have passed

through, echelon j but have as yet not been specifically committed to outside customers

→ each echelon stock has a sawtooth pattern with time→ the same physical units of stock

can appear in more than one echelon inventory → value any specific echelon inventory at

only the value added at that particular echelon

v′W = vW v′R = vR − vW

v′i = vi −
∑
j∈P

vj 12.2

where P ={all immediate predecessors of i}
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TRC(QW , QR) =
AWD

QW

+ I
′
Wv′W r +

ARD

QR

+ I
′
Rv

′
Rr 12.3

where

I
′
W = average value of the warehouse echelon inventory, in units

I
′
R = average value of the retailer echelon inventory, in units

Substituting equation 12.1 into equation 12.3, we get

TRC(n,QR) =
D

QR

(
AR +

AW

n

)
+

QRr

2
(nv′W + v′R)

∂TRC

∂QR

= − D

Q2
R

(
AR +

AW

n

)
+

r

2
(nv′W + v′R) = 0

Q∗
R(n) =

√√√√2
(
AR + AW

n

)
D

(nv′W + v′R)r
12.39

Substituting equation 12.39 into equation 12.38, we obtain the lowest cost possible for

the given value of n.

TRC∗(n) =

√
2
(
AR +

AW

n

)
D(nv′W + v′R)r

Minimize TRC∗(n) ≡ Minimize F (n) where

F (n) =
[
AR +

AW

n

]
(nv′W + v′R) 12.40

dF (n)

dn
= (nv′W + v′R)

(
−AW

n2

)
+
[
AR +

AW

n

]
v′W = 0 −→ n∗ =

√
AWv′R
ARv′W

12.41

♣ Decision Rule

(Step 1) Compute

n∗ =

√
AWv′R
ARv′W

12.5

If n∗ is exactly an integer, go to (Step 4) with n = n∗. Also, if n∗ < 1, go to (Step 4) with

n=1. Otherwise, proceed to (Step 2).
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(Step 2) Ascertain the two integer values, n1 and n2 that surround n∗.

(Step 3) Evaluate

F (n1) =
[
AR +

AW

n1

]
(n1v

′
W + v′R)

F (n2) =
[
AR +

AW

n2

]
(n2v

′
W + v′R) 12.6

If F (n1) ≤ F (n2), use n = n1.

If F (n1) > F (n2), use n = n2.

(Step 4) Evaluate

QR =

√√√√2
(
AR + AW

n

)
D

(nv′W + v′R)r
12.7

(Step 5) Calculate

Qw = nQR

(Numerical Illustration) (p481)

12.3.2 Other Results for the Case of Level Demand

♣ Pure Assembly System (Schwarz and Schrage (1975))

• each node feeds into, at most, one other node

• A myopic strategy where each node and its successor are treated in isolation by much

the same procedure as for the two-stage serial case

Figure 12.7 A “Pure” Assembly System

♣ General System (Maxwell and Muckstadt (1985))

(i) nested policy

(ii) stationary policy

(iii) base planning period

(iv) powers-of-two restriction
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12.4 Probabilistic Demand

Figure 12.8 A Multiechelon Situation with Single-Stage Information Flow

♣ Each stocking level would independently make replenishments decision based on its

own

(i) cost factors and service considerations

(ii) predicted demand from the next stocking point downstream

(iii) replenishment lead time from the next stocking point upstream

♣ Three serious flaws of the above decisions

(i) The lead time observed at, say, the retailer is dependent on whether the branch

warehouse has sufficient stock to fill the order.

(ii) It ignores the cost implications at one echelon of using certain ordering logic at

another level.

(iii) Even if end-customer demand is fairly smooth, the orders placed farther up the line

become progressively larger and less frequent.

♣ Other complicating factors

(i) How do we define service in a multiechelon situation?

(ii) Is a partial shipment made, or does the system wait until the entire order can be

shipped?

(iii) What about the possibility of an emergency shipment directly from the central

warehouse to the retailer?

(iv) In more complicated multiechelon structures, transshipments between points at the

same echelon may be possible.

(v) The central facility is likely to adopt a rationing policy when it faces multiple re-

quests with insufficient stock to meet them all.

Table 12.1 Information and Control
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12.4.1 The Base Stock Control System

Make end-item demand information available for decision making at all stocking points

← EDI

Each stocking point makes replenishments based on actual end-item customer demands

rather than on replenishments orders from the next level downstream.

♣ (s, S) system

(i) Q is established independently using end-item demand forecasts

(ii) reorder point s is established by one of the procedures of Chapter 7, using end-item

demand forecasts over the replenishment lead time appropriate to the echelon under

consideration

S (order-up-to level or base stock level) = s+Q 12.13

echelon inventory position = echelon stock + on order 12.14

(Example) physical stocks at branch warehouse=50 units, physical stocks at retail outlet

= 20 units, unsatisfied demand = 5 units, amount in transit between the branch and the

retail outlet = 10 units, no outstanding order

inventory position = (50+10+20-5) + (0) = 75 units

Whenever the echelon inventory position is at or lower than s, enough is ordered from the

preceding echelon to raise the position to the base stock level S.

12.4.2 The Serial Situation

♣ Assumptions

(i) External demand occurs only at the retailer and is a stationary process.

(ii) There is a deterministic replenishment lead time associated with each stage.

(iii) (s,Q) policy
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(iv) QR and QW = nQR have been predetermined by the procedure of Section 12.3.1

♣ Decision Rules

1. Select sR
sR = x̂LR

+ kRσLR
12.15

pµ≥(kR) =
QR(vR − vW )r

B2vRD
12.16

2. Select sW
sW = x̂LW+LR

+ kWσLW+LR
12.17

pµ≥(kW ) =
QR[(vR + (n− 1)vW ]r

B2vRD
12.18

From equations 12.16 and 12.18, we know that

kR ≥ kW

It means that the safety factor at the retailer is always larger than the safety factor at

the warehouse level.

(Numerical Illustration) (p.493)

12.5 Remanufacturing and Product Recovery

consumable items vs. repairable or recoverable items

(Examples) vehicles, telephones, military equipment, computers, copying machines, glass

bottles, etc.

♣ product recovery: handling of all used and discarded products, components, and ma-

terials.

This emerging area of research and practice is generating much interest, particularly due

to new and proposed laws that assign responsibility to manufacturers for the ultimate

disposal of their products. Because the issues are varied and complex, the field is quite

broad, ranging from studies of the logistics of reusable containers to the process of de-

signing products for disassembly.

Figure 12.11 Product Recovery Options
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Today, firms are beginning to consider design for the environment (DFE) and design for

disassembly (DFD).

♣ Five decision variables at a single location

(i) How often to review the stock status?

(ii) When to recover returned units?

(iii) How many to recover at a time?

(iv) When to order new units?

(v) How many to order?

12.6 Additional Insights

12.6.1 Economic Incentives to Centralize Stocks

♣ Assumptions

(i) n retail outlets

(ii) (si, EOQi) policy at each retailer

(iii) Use the same safety factor k at each retailer

(iv) Independent demand across retailers

(v) Ai = A for all i

Let demand at retailer i be X, and assume that the mean is Di and the variance is σ2
i .

ETRC(decentralized) =
n∑

i=1

ETRCi =
n∑

i=1

[
√
2AiDivr + kσivr]

=
√
2Avr

n∑
i=1

√
Di + kvr

n∑
i=1

σi 12.34

If the stocking was done at a single centralized location, then

n∑
i=1

Xi ∼ (Dc =
n∑

i=1

Di, σ
2
c =

n∑
i=1

σ2
i )
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ETRC(centralized) =
√
2ADcvr + kvrσc 12.35

♣ ETRC(centralized) ≤ ETRC(decentralized)

(proof)

(
n∑

i=1

√
Di

)2

−
(√

Dc

)2

=

 n∑
i=1

Di + 2
n∑

i=1

∑
j ̸=i

√
DiDj

− n∑
i=1

Di = 2
n∑

i=1

∑
j ̸=i

√
DiDj ≥ 0

(
n∑

i=1

σi

)2

−
n∑

i=1

σ2
i = 2

n∑
i=1

∑
j ̸=i

σiσj ≥ 0

(cf.) portfolio effect

12.6.2 Where to Deploy Stock

The general question is whether the warehouse should hold back substantial inventories

so that they can be allocated to retailer demands as needed, or whether most inventory

should be pushed forward to the retailers.

Firms in higher demand often ship in full truckloads, and the clear choice for deployment

of inventory is to push at least some of it to the retail level. The reason is that if the

product does not sell today, it will almost surely sell tomorrow, and the savings from

shipping full truckloads outweigh any small inventory savings that could be gained by

holding back inventory at the warehouse level. On the other hand, some stocks, say

one week’s demand, should be held back to account for emergency requirements. The

exact amount to hold back will depend on demand rates, transportation costs, lead times,

holding costs, variability of demand, and the service objective.

12.6.3 Lateral Transshipments

The most common assumption in multiechelon research is that shipments among retailers

are not allowed.

Karmarkar and Patel (1977) have shown that costs can decrease, and service can improve,

if lateral transshipments are used in emergencies. If, on the other hand, transshipments

are used in anticipation of stock imbalances among retailers, costs can go up due to

excessive unnecessary movement of product.
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Dependent Demand Inventory

Inventory Theory: Supplement
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Learning Objectives

1. Contrast dependent and independent demand, and 
trace the development of material requirements 
planning (MRP).

2. Explain the inputs to an MRP system.
3. Compute single-level MRP records.
4. Compute multiple-level MRP records and explain the 

outputs generated.
5. Describe the evolution of MRP to enterprise resource 

planning (ERP) and identify ways in which ERP is 
utilized to integrate all the functions of an organization.

6. Explain how dependent demand is handled in service 
organizations and describe the use of technology.

7. Define three critical features for success with ERP.
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Dependent Demand at Kellogg’s

• Kellogg’s employs dependent demand planning 
techniques, including material requirements 
planning.

• Every 2 months, a plan is developed for all 
production items in a given group of plants.

• For the morning foods division, Kellogg’s 
develops a plan for three plants that produce 
Pop-Tarts.

• The plan calls for 61,500 boxes of Hot Fudge 
Sundae Pop-Tarts and 54,000 boxes of 
Strawberry Pop-Tarts, along with other varieties 
during one week.
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History of Dependent Demand Planning

• Independent demand: demand for items that 
are considered end items that go directly to a 
customer, and for which demand is influenced 
by market conditions and not related to inventory 
decisions for any other item

• Dependent demand: demand for items that are 
used to make another item or are considered to 
be parts of another item
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Material Requirements Planning (MRP)

• MRP: a computer-based system that develops 
plans for ordering and producing dependent 
demand items.

• MRP utilizes two basic principles:
1. Requirements for dependent demand items are 

derived from the production schedule for their parents 
(the items that are assembled from component parts).

2. The production order is offset to account for the lead 
time.
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Figure 7.3: Demand Pattern for 
Independent versus Dependent Items 
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Material Requirements Planning (MRP)

• MRP is a technique that 
has been employed since the 
1940s and 1950s.

• Joe Orlicky is known as 
the Father of MRP

• The use and application of MRP 
grew through the 1970s and 
1980s as the power of computer 
hardware and software increased.

• MRP gradually evolved into a 
broader system called 
manufacturing resource planning 
(MRP II).

Source: © Image Source/Corbis
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Material Requirements Plan

• Material requirements plan: a plan that 
specifies the timing and size of new production 
orders, adjustments to existing order quantities, 
and expediting or delay of late/early orders.

• The process of developing the material 
requirements plan is called MRP explosion; it is 
a technique for converting the requirements of 
final products into a material requirements plan 
that specifies the production/order quantities and 
timing for all subassemblies, components, and 
raw materials needed by final products.
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MRP Inputs

• MRP Inputs

 Developed through a combination of three 
inputs:
1. The Master Schedule
2. The Bill of Materials
3. Inventory Records
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Figure 7.4: Material 
Requirements Plan Inputs
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The Master Schedule

• Master schedule (MS): a document that details the quantity of end 
items to be produced within a specified period of time

• Objectives:
– The MS must balance the workload for a given company in terms of not 

only total capacity, but also capacity at each workstation and for each 
worker.

– The MS seeks to minimize total cost and provides a way of assessing 
the impact of new orders and providing delivery dates for accepted 
orders.

– The planned production quantities in the MS are intended to satisfy 
demand, which is estimated based on computer orders and forecasts.

– The MS is usually frozen or unchangeable in the near term.

The goal is to plan production but allow some flexibility to change
orders as demand or customer requirements change.
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Discussion Starter

What may require you to change the MPS?
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Table 7.1: Master 
Schedule for a Family of Bicycles
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Key Aspects of Master Scheduling

• The sums of the quantities in the MS must equal 
those in the aggregate production plan.

• Aggregate production quantities should be 
planned efficiently over time in order to minimize 
setup, production, and inventory costs.

• Capacity limitations must be considered before 
finalizing the MS, including labor and machine 
capacity, storage space, transportation 
equipment, and other factors.
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The Bill of Materials

• Bill of materials (BOM): a document that 
specifies all assemblies, subassemblies, parts, 
and raw materials that are required to produce 
one unit of the finished product
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Figure 7.5: Partial Bill 
of Materials for a Bicycle
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Bill of Materials for a Bicycle

• Every part in a bill of materials is assigned a 
level.

• End items or finished products that are sold 
directly to an end customer are Level 0.

• The handle bars, frame assembly and seat are 
Level 1 parts that are components of a complete 
bicycle.

• The wheels and frame are Level 2 parts that are 
components of the frame assembly.

• The spokes and tire rim are Level 3 components 
of a wheel.
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Figure 7.6: Product 
Structure Tree for Item A
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BOMs

• Common parts: parts that are used in more than one 
place in a single product or in more than one product

• Low-level coding: involves assigning a part to the 
lowest level at which it appears anywhere in the BOM

• It is critical that the bill of materials is an accurate 
representation of the parts required to produce a product, 
since errors at one level are magnified when they are 
multiplied by parts requirements at lower levels.

• Attention to detail and accuracy, combined with periodic 
updates and checks of BOMs, are essential if an MRP 
system is to work effectively.
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Figure 7.7: Bill of 
Materials with a Buried Component
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Inventory Records

• Inventory record: a document that specifies order/lot 
size policy and lead time and records all transactions 
made for parts, assemblies, and components
– Includes: transactions made for parts, assemblies, and 

components both from manufacturing within an organization and 
from purchasing items from external suppliers

• Inventory transaction: any change in the quantity of a 
specific part or material
– Includes: receipt of new orders, shipment of complete orders, 

scrapping of defective parts, release of new orders, adjustment 
of due dates for scheduled receipts, cancellation of orders, and 
confirmation of scrap losses and returns.
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MPR Processing—Creating an 
Inventory Record for a Single Item

• Developing Inventory Records for Single Items
• Determining Planning Factors



7 | 23Copyright © Cengage Learning. All rights reserved.

Developing Inventory 
Records for Single Items

• Planning factors: three parameters—lot size, 
lead time, and safety stock—that are chosen by 
managers utilizing the MRP system

• Lot size: the quantity of a part to be produced or 
ordered when additional inventory is required

• Lead time: the time between when an order is 
placed and when it is expected to arrive or be 
finished

• Safety stock: excess inventory that a company 
holds to guard against uncertainty in demand, 
lead time, and supply
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Planning Factors for an MRP Record

• The planning factors for an MRP record are fairly 
constant—they are entered into the system once 
and may not be updated for months or years.

• Time buckets: the periods of time into which an 
MRP record is divided

• Planning horizon: the time period in the future 
that the MRP system plans for

• Beginning inventory: the amount of inventory 
that was physically in stock at the end of the 
most recent time bucket
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Gross Requirements/Scheduled Receipts

• Gross requirements: the total number of units 
of a part or material derived from all parent 
production plans

• Scheduled receipts: orders that have been 
placed but not yet received or completed
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Projected On-hand Inventory

• Projected on-hand inventory: the estimated 
inventory that will be available after the gross 
requirements have been satisfied, plus any 
planned or scheduled receipts for that time 
bucket
– Abbreviated: projected OH inventory
– Is adjusted according to every inventory transaction
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Table 7.3: Illustration 
of Projected On-hand Inventory
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Planned Receipts

• Planned receipts: future orders that which have 
not yet been released but are planned in order 
to avoid a shortage or backlog of inventory



7 | 29Copyright © Cengage Learning. All rights reserved.

Planned Order Release

• Planned order release: when an order must be 
released in order to offset for the lead time so 
that the order will be received when planned

• The difference between a planned and a 
scheduled receipt: a planned receipt is not firmly 
committed to and can be changed relatively 
easily up until the time the order is released.

• As soon as the order is released, it becomes a 
scheduled order, which is much harder to 
change.
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Determining Planning Factors

• Every MRP record includes three planning 
factors:
– Lead time
– Lot size
– Safety stock

These are called planning factors because the
decisions managers make regarding these
quantities have a large impact on how well the
MRP system, and by extension the entire inventory
system and supply chain, functions.
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Lead Time

• Lead time is an estimate of the time between 
releasing an order and receiving that order.

• Accuracy in lead times is very important, since 
early or late orders can greatly affect other items 
and production schedules through excessive 
inventory holding costs or shortage, stock-out, 
and expediting costs.
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Lead Time

• For items that are manufactured or produced 
within the company, the lead time must take into 
account a number of factors, including:
– Set up time
– Processing time
– Materials handling time
– Waiting time
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Discussion Starter

Lead Time = Inventory

What do we mean by this?
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Lot Size

• Lot size rules determine:
– the size of the order placed, and by extension the 

timing of orders,
– the frequency of set-ups, and
– the inventory holding costs for an item.

• Three types:
– Fixed order quantity
– Periodic order quantity
– Lot for lot
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Fixed Order Quantity

• Fixed order quantity (FOQ): a lot size rule with 
a constant order size where the same quantity is 
ordered every time

• The FOQ can be determined by a desire to:
– work with equipment capacity, such as when a 

certain machine has a capacity limit.
– mimic the EOQ
– make planning consistent
– receive a quantity discount
– minimize shipping costs
– reach a minimum purchase quantity
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Periodic Order Quantity

• Periodic order quantity (POQ): a lot size rule 
with a variable lot size designed to order exactly 
the amount required for a specified period of 
time

• Equation:
POQ Lot Size to Arrive in Period t = 

(Gross Requirements for P Periods, Including Period t) –
(Projected On-Hand Inventory at End of Period t – 1) + 

(Safety Stock) of time of time 
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Lot for Lot (L4L)

• Lot for lot (L4L): a lot size rule that is a special 
case of the periodic order quantity with the 
period equal to 1

• Equation:
L4L Lot Size to Arrive in Period t = 

(Gross Requirements in Period t) – (Projected On-Hand 
Inventory at End of Period t – 1) + (Safety Stock) 
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Table 7.8: MRP Record with L4L Order 
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Lot Size Rules Summary

1. The FOQ rule has the highest average inventory 
because its fixed nature creates inventory 
remnants.

2. The POQ rule reduces the amount of OH 
inventory by matching gross requirements with 
planned receipts.

3. The L4L rule always minimizes inventory, but 
also requires more frequent setups/orders.
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Safety Stock

• It would seem that an MRP inventory system 
should not require safety stock.

Why is safety stock necessary?
1. There may be bottlenecks or blockages that prevent 

orders from being complete on a timely basis.
2. Quality problems often arise where an order will be 

only 95 percent filled.
3. Humans may enter incorrect information into the 

system.
4. There is variability in demand, and the master 

schedule is made to match forecasts.
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MRP Nervousness

• MRP nervousness: a situation in MRP planning 
where a change at one part level ripples down to 
affect lower-level parts
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MRP Explosion

• MRP explosion: the process of translating MRP 
inputs into a plan that specifies required 
quantities and timing of all subassemblies, 
components, and raw materials required to 
produce parent items
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Action Notices

• Action notice: a notice that is generated when 
an order needs to be released or placed or when 
the quantity or timing of an order needs to be 
changed
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MRP as a Dynamic System

• Two approaches to updating:
– Periodic update: an approach to updating that 

involves collecting all new or updated information and 
processing it once a week or once a day

– Net change update: an approach to updating that 
makes changes as soon as they occur
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Figure 7.10: Illustration 
of a Rolling MRP Schedule
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Capacity Planning

• There are three approaches for managing 
capacity and ensuring that the MRP plan is 
feasible:
1. Capacity requirements planning
2. Finite capacity scheduling
3. Input/Output reports
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Capacity Requirements Planning

• Capacity requirements planning: the process of 
determining short-range capacity requirements based on 
a tentative MRP plan
– Short range generally refers to the next one to three months.

• Inputs include the planned order releases generated 
from the MRP system, workloads at each work center, 
routing information, and job setup/processing times.

• The master schedule and the MRP plan are usually 
generated by looking at what is needed to support sales, 
rather than what is possible.

• Load report: a report for a department or work center 
that projects already scheduled and expected future 
capacity requirements against capacity availability
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Figure 7.11: MRP with 
Capacity Planning Requirements
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Strategies for Dependent 
Demand Inventory

• There are strategic keys to making MRP work 
effectively.
1. Evolution of MRP to Enterprise Resource Planning
2. Service Resource Planning
3. Making MRP/ERP Work
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Evolution of MRP to 
Enterprise Resource Planning

• Manufacturing resource planning (MRP II): a 
system that links the basic MRP system to other 
company systems, including finance, accounting, 
purchasing, and logistics

• Enterprise resource planning (ERP): a system 
that provides a complete linkage of all functional 
areas of a business
– Allows manufacturing to see new orders as soon as 

marketing or sales enters them into the system.
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Making MRP/ERP Work

Dependent demand planning and material requirements 
planning are critical components for manufacturing

businesses.

Three key factors contribute to success:
1. The hardware and software have to be carefully set up to 

fit with the organization’s method of doing business.
2. The users of the system (employees) need to be 

thoroughly trained in the system.
3. The input data need to be close to 100 percent accurate 

because MRP will magnify any inconsistencies.


