Chapter 9 Cascode Stages and Current Mirrors

- 9.1 Cascode Stage
- 9.2 Current Mirrors
Boosted Output Impedances

\[R_{\text{out}1} = \left[1 + g_m \left(R_E \parallel r_\pi \right) \right] r_O + R_E \parallel r_\pi \]

\[R_{\text{out}2} = \left(1 + g_m R_S \right) r_O + R_S \]
Bipolar Cascode Stage

\[R_{\text{out}} = [1 + g_{m1} (r_{O2} \parallel r_{\pi1})] r_{O1} + r_{O2} \parallel r_{\pi1} \]

\[R_{\text{out}} \approx g_{m1} r_{O1} \left(r_{O2} \parallel r_{\pi1} \right) \]
If Q_1 and Q_2 in Fig. 9.2(a) are biased at a collector current of 1mA, determine the output resistance. Assume $\beta = 100$ and $V_T = 5V$ for both transistors.

\[
g_m = \frac{I_C}{V_T}, \quad r_O = \frac{V_A}{I_C},
\]

\[
r_{\pi} = \frac{\beta V_T}{I_C}
\]

\[
R_{out} \approx \frac{I_{C1}}{V_T} \cdot \frac{V_{A1}}{I_{C1}} \cdot \frac{V_{A2}}{I_{C2}} \cdot \frac{\beta V_T}{I_{C1} + \frac{\beta V_T}{I_{C1}}}
\]

\[
\approx \frac{1}{I_{C1}} \cdot \frac{V_A}{V_T} \cdot \frac{\beta V_A V_T}{V_A + \beta V_T},
\]

$I_C = I_{C1} = I_{C2}$ and $V_A = V_{A1} = V_{A2}$

$R_{out} \approx 328.9 \text{ k}\Omega.$
The maximum output impedance of a bipolar cascode is bounded by the ever-present r_π between emitter and ground of Q_1.

$R_{out,\text{max}} \approx g_m r_{O1} r_\pi$

$R_{out,\text{max}} \approx \beta_1 r_{O1}$
Example 9.2

Suppose in Example 9.1, the Early voltage of Q_2 is equal to 50V. Compare the resulting output impedance of the cascade with the upper bound given by Eq.(9.12).

Since $g_{m1} = (26 \, \Omega)^{-1}$, $r_{\pi 1} = 2.6 \, k\Omega$, $r_{O1} = 5 \, k\Omega$, and $r_{O2} = 50 \, k\Omega$, we have

$$R_{out} \approx g_{m1} r_{O1} (r_{O1} \parallel r_{\pi 1})$$

$$\approx 475 \, k\Omega.$$

The upper bound is equal to 500 kΩ, about 5% higher.
Example 9.3

We wish to increase the output resistance of the bipolar cascade of Fig. 9.2(a) by a factor of two through the use of resistive degeneration in the emitter of Q₂. Determine the required value of the degeneration resistor if Q₁ and Q₂ are identical.

Typically r_π is smaller than r_O, so in general it is impossible to double the output impedance by degenerating Q₂ with a resistor.

\[
R_{outA} = \frac{2r_{O2}r_\pi}{r_\pi - r_{O2}}
\]

\[
R_{out} \approx g_m r_O (R_{outA} || r_\pi)
\]

\[
R_{out} = [1 + g_m (R_E || r_\pi)] r_{O2} + R_E || r_\pi
\]
PNP Cascode Stage

\[R_{\text{out}} = [1 + g_{m1}(r_{O2} \parallel r_{\pi1})]r_{O1} + r_{O2} \parallel r_{\pi1} \]

\[R_{\text{out}} \approx g_{m1}r_{O1}(r_{O2} \parallel r_{\pi1}) \]
Another Interpretation of Bipolar Cascode

Instead of treating cascode as Q_2 degenerating Q_1, we can also think of it as Q_1 stacking on top of Q_2 (current source) to boost Q_2’s output impedance.

V_{b2} determines the current level.

$R_{out} \approx g_{m1} \cdot r_{o1} \left(r_{o2} \parallel r_{\pi1} \right)$
False Cascodes

When the emitter of Q_1 is connected to the emitter of Q_2, it's no longer a cascode since Q_2 becomes a diode-connected device instead of a current source.

$$R_{out} = \left[1 + g_{m1} \left(\frac{1}{g_{m2} \ || \ r_{O2} \ || \ r_{\pi1}} \right) \right] r_{O1} + \frac{1}{g_{m2} \ || \ r_{O2} \ || \ r_{\pi1}}$$

$$R_{out} \approx \left(1 + \frac{g_{m1}}{g_{m2}} \right) r_{O1} + \frac{1}{g_{m2}} \approx 2r_{O1}$$
MOS Cascode Stage

\[R_{out} = \left(1 + g_{m1} r_{O2} \right) r_{O1} + r_{O2} \]

\[R_{out} \approx g_{m1} r_{O1} r_{O2} \]
Example 9.5

Design an NMOS cascade for an output impedance of 500 kΩ and a current of 0.5 mA. For simplicity, assume M_1 and M_2 in Fig 9.8 are identical (they need not be). Assume $\mu_n C_{ox} = 100 \mu A/V^2$ and $\lambda = 0.1 V^{-1}$.

We must determine W/L for both transistors such that

$$g_{m1} r_{O1} r_{O2} = 500 \, \text{kΩ}.$$

Since $r_{O1} = r_{O2} = (\lambda I_D)^{-1} = 20 \, \text{kΩ}$, we require that $g_{m1} = (800 \, \Omega)^{-1}$ and hence

$$\sqrt{2\mu_n C_{ox} \frac{W}{L} I_D} = \frac{1}{800 \, \Omega}.$$

It follows that

$$\frac{W}{L} = 15.6.$$

We should also note that $g_{m1} r_{O1} = 25 \gg 1$.

CH 9 Cascode Stages and Current Mirrors 12
Another Interpretation of MOS Cascode

- Similar to its bipolar counterpart, MOS cascode can be thought of as stacking a transistor on top of a current source.
- Unlike bipolar cascode, the output impedance is not limited by β.

$R_{out} \approx g_{m1} \cdot r_{o1} \cdot r_{o2}$
PMOS Cascode Stage

\[R_{out} = \left(1 + g_m r_{O2}\right) r_{O1} + r_{O2} \]

\[R_{out} \approx g_m r_{O1} r_{O2} \]
During manufacturing, a large parasitic resistor, R_P, has appeared in a cascode as shown in Fig. 9.11. Determine the output resistance.

R_P is in parallel with r_{O1}.

\[R_{out} = g_{m1}(r_{O1} \parallel R_P)r_{O2}. \]

If $g_{m1}(r_{O1} \parallel R_P)$ is not much greater than unity, we return to the original equation, (9.22),

\[R_{out} = (1 + g_{m1}r_{O2})(r_{O1} \parallel R_P) + r_{O2} \]

R_P will lower the output impedance, since its parallel combination with r_{O1} will always be lower than r_{O1}.
The short-circuit transconductance of a circuit measures its strength in converting input voltage to output current.
Example 9.7

Calculate the transconductance of the CS stage shown in Fig. 9.13(a).

\[G_m = \frac{i_{out}}{v_{in}} = \frac{i_{D1}}{v_{GS1}} = g_{m1}. \]

\[G_m = g_{m1} \]
Derivation of Voltage Gain

By representing a linear circuit with its Norton equivalent, the relationship between V_{out} and V_{in} can be expressed by the product of G_m and R_{out}:

$$v_{out} = -i_{out} R_{out} = -G_m v_{in} R_{out}$$

$$v_{out} / v_{in} = -G_m R_{out}$$
Example 9.8

Determine the voltage gain of the common-emitter stage shown in Fig. 9.15(a).

\[i_{\text{out}} \text{ is simply equal to the } g_{m1} v_{\text{in}}, \text{ i.e., } r_O \text{ does not carry a current} \]

\[G_m = \frac{i_{\text{out}}}{v_{\text{in}}} = g_{m1}. \]

\[R_{\text{out}} = \frac{v_X}{i_X} = r_{O1}. \]

It follows that

\[A_v = -G_m R_{\text{out}} = -g_{m1} r_{O1}. \]
Comparison between Bipolar Cascode and CE Stage

Since the output impedance of bipolar cascode is higher than that of the CE stage, we would expect its voltage gain to be higher as well.
Voltage Gain of Bipolar Cascode Amplifier

- Since r_O is much larger than $1/g_m$, most of $I_{C,Q1}$ flows into the diode-connected Q_2. Using R_{out} as before, A_v is easily calculated.

$$G_m \approx g_{m1}$$

$$A_v \approx -g_{m1}r_{O2}g_{m2}(r_{O1} \parallel r_{\pi2})$$
The bipolar cascade of Fig. 9.16(b) is biased at a current of 1 mA. If $V_A = 5 V$ and $\beta = 100$ for both transistors, determine the voltage gain. Assume the load is an ideal current source.

\[
g_{m1} = (26 \, \Omega)^{-1}, \quad r_{\pi1} \approx r_{\pi2} \approx 2600 \, \Omega, \quad r_{O1} \approx r_{O2} = 5 \, k\Omega. \text{ Thus,} \]
\[
g_{m1} (r_{O1} \parallel r_{\pi2}) = 65.8
\]
\[G_m \approx g_{m1}\]
\[A_v \approx -g_{m1} r_{O2} g_{m2} (r_{O1} \parallel r_{\pi2})\]
\[|A_v| = 12,654.\]

Cascoding thus raises the voltage gain by a factor of 65.8.
A bipolar cascode amplifier is also a CE stage in series with a CB stage.
Since no current source can be ideal, the output impedance drops.

\[R_{out} \approx r_{O3} \parallel g_{m2}r_{O2}(r_{O1} \parallel r_{\pi2}) \]
In order to preserve the high output impedance, a cascode PNP current source is used.

Improved Cascode Stage

\[
R_{out} \approx g_{m3} r_{O3} (r_{O4} \parallel r_{\pi3}) \parallel g_{m2} r_{O2} (r_{O1} \parallel r_{\pi2})
\]
Example 9.10

Suppose the circuit of Example 9.9 incorporates a cascode load using \(pnp \) transistors with \(V_A = 4V \) and \(\beta = 50 \). What is the voltage gain?

\[
R_{on} \approx g_{m2} r_{O2} (r_{O1} || r_{\pi2})
\]

\[
R_{op} \approx g_{m3} r_{O3} (r_{O4} || r_{\pi3}).
\]

The load transistors carry a collector current of approximately 1 mA. Thus,

\[
R_{op} = g_{m3} r_{O3} (r_{O4} || r_{\pi3})
= 151 \text{ k}\Omega
\]

\[
R_{on} = 329 \text{ k}\Omega.
\]

\[
|A_v| = g_{m1} (R_{on} || R_{op})
= 3, 981.
\]

Compared to the ideal current source case, the gain has fallen by approximately a factor of 3 because the \(pnp \) devices suffer from a lower Early voltage and \(\beta \).
MOS Cascode Amplifier

\[A_v = -G_m R_{out} \]

\[A_v \approx -g_{m1}[(1 + g_{m2}r_{o2})r_{o1} + r_{o2}] \]

\[A_v \approx -g_{m1}r_{o1}g_{m2}r_{o2} \]
Improved MOS Cascode Amplifier

Similar to its bipolar counterpart, the output impedance of a MOS cascode amplifier can be improved by using a PMOS cascode current source.

\[R_{on} \approx g_m r_{O2} r_{O1} \]
\[R_{op} \approx g_m r_{O3} r_{O4} \]
\[R_{out} = R_{on} \parallel R_{op} \]

CH 9 Cascode Stages and Current Mirrors
Temperature and Supply Dependence of Bias Current

- Since V_T, I_S, μ_n, and V_{TH} all depend on temperature, I_1 for both bipolar and MOS depends on temperature and supply.

\[
R_2 V_{CC} / (R_1 + R_2) = V_T \ln(I_1 / I_S)
\]

\[
I_1 = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left(\frac{R_2}{R_1 + R_2} V_{DD} - V_{TH} \right)^2
\]
The motivation behind a current mirror is to sense the current from a “golden current source” and duplicate this “golden current” to other locations.
The diode-connected Q_{REF} produces an output voltage V_1 that forces $I_{copy1} = I_{REF}$, if $Q_1 = Q_{REF}$.

\[
I_{copy} = \frac{I_{S1}}{I_{S,REF}} I_{REF}
\]
Without shorting the collector and base of Q_{REF} together, there will not be a path for the base currents to flow, therefore, I_{copy} is zero.
Although a path for base currents exists, this technique of biasing is no better than resistive divider.
Multiple copies of I_{REF} can be generated at different locations by simply applying the idea of current mirror to more transistors.

$$I_{copy,j} = \frac{I_{S,j}}{I_{S,REF}} I_{REF}$$
By scaling the emitter area of Q_j n times with respect to Q_{REF}, $I_{\text{copy},j}$ is also n times larger than I_{REF}. This is equivalent to placing n unit-size transistors in parallel.

$I_{\text{copy},j} = nI_{\text{REF}}$
Example 9.14 : Scaled Current

A multistage amplifier incorporates two current sources of values 0.75mA and 0.5mA. Using a bandgap reference current of 0.25mA, design the require current sources. Neglect the effect of the base current for now.
A fraction of I_{REF} can be created on Q_1 by scaling up the emitter area of Q_{REF}.

\[I_{copy} = \frac{1}{3} I_{REF} \]
Example 9.15: Different Mirroring Ratio

It is desired to generate two currents equal to 50uA and 500uA from a reference of 200uA. Design the current mirror circuit.

Using the idea of current scaling and fractional scaling, I_{copy2} is 0.5mA and I_{copy1} is 0.05mA respectively. All coming from a source of 0.2mA.
Mirroring Error Due to Base Currents

\[I_{\text{copy}} = \frac{nI_{\text{REF}}}{1 + \frac{1}{\beta}(n+1)} \]
Improved Mirroring Accuracy

Because of Q_F, the base currents of Q_{REF} and Q_1 are mostly supplied by Q_F rather than I_{REF}. Mirroring error is reduced β times.

$$I_{copy} = \frac{nI_{REF}}{1 + \frac{1}{\beta^2 (n+1)}}$$
Example 9.16: Different Mirroring Ratio Accuracy

- Compute the I_{copy1} and I_{copy2} in this figure before and after adding a follower.

Before:

\[
I_{copy1} = \frac{I_{REF}}{4 + \frac{15}{\beta}}
\]

\[
I_{copy2} = \frac{10I_{REF}}{4 + \frac{15}{\beta}}
\]

After:

\[
I_{copy1} = \frac{I_{REF}}{4 + \frac{15}{\beta^2}}
\]

\[
I_{copy2} = \frac{10I_{REF}}{4 + \frac{15}{\beta^2}}
\]
Example 9.17: Different Mirroring Ratio Accuracy

- Design this circuit for a voltage gain 100 and a power budget of 2mW. Assume $V_{A,npn} = 5V$, $V_{A,pnp} = 4V$, $I_{REF} = 100uA$, and $V_{CC} = 2.5V$.

$$A_v = -g_{m1}(r_{O1}||r_{O2})$$

$$= - \frac{1}{V_T} \cdot \frac{V_{A,npn}V_{A,pnp}}{V_{A,npn} + V_{A,pnp}}$$

$$= -85.5.$$

- The gain is smaller than 100 because low Early voltages and V_T, a fundamental constant of the technology, independent of the bias current.
PNP Current Mirror is used as a current source load to an NPN amplifier stage.
Generation of I_{REF} for PNP Current Mirror
Let Q_{REF} and Q_1 be discrete NPN devices. I_{REF} and I_{copy1} can vary in large magnitude due to I_S mismatch.
The same concept of current mirror can be applied to MOS transistors as well.
This is not a current mirror since the relationship between V_X and I_{REF} is not clearly defined.

The only way to clearly define V_X with I_{REF} is to use a diode-connected MOS since it provides square-law I-V relationship.
Example 9.20: Current Mirror?

Is this current mirror? Explain what happens.

This circuit is not a current mirror because the gates of M_{REF} and M_1 are floating.
Similar to their bipolar counterpart, MOS current mirrors can also scale I_{REF} up or down ($I_1 = 0.2\text{mA}, I_2 = 0.5\text{mA}$).
The idea of combining NMOS and PMOS to produce CMOS current mirror is shown above.