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Chapter 12  Feedback

 12.1  General Considerations

 12.2  Types of Amplifiers

 12.3  Sense and Return Techniques

 12.4  Polarity of Feedback

 12.5  Feedback Topologies

 12.6  Effect of Finite I/O Impedances

 12.7  Stability in Feedback Systems
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Negative Feedback System

 A negative feedback system consists of four components: 

 1) feedforward system

 2) sense mechanism

 3) feedback network

 4) comparison mechanism
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Close-loop Transfer Function
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Close-loop Transfer Function
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Example 12.1: Feedback

 A1 is the feedforward network, 
R1 and R2 provide the sensing and feedback capabilities, 
and comparison is provided by differential input of A1.
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Comparison Error

 As A1K increases, the error between the input and fed back 
signal decreases. Or the fed back signal approaches a good 
replica of the input.
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Comparison Error 
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Loop Gain

 When the input is grounded, and the loop is broken at an 
arbitrary location, the loop gain is measured to be KA1.
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Example 12.3: Alternative Loop Gain Measurement 
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Incorrect Calculation of Loop Gain

 Signal naturally flows from the input to the output of a 
feedforward/feedback system.  If we apply the input the 
other way around, the “output” signal we get is not a result 
of the loop gain, but due to poor isolation. 
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Gain Desensitization

 A large loop gain is needed to create a precise gain, one 
that does not depend on A1, which can vary by ±20%.

11 KA
KX

Y 1




CH 12 Feedback 12

Ratio of Resistors

 When two resistors are composed of the same unit resistor, 
their ratio is very accurate.  Since when they vary, they will 
vary together and maintain a constant ratio.



Example 12.4: Gain Desensitization
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 Determine the actual gain if A1=1000. Determine the 
percentage change in the gain if A1 drops to 500.  

0.4% drop



CH 12 Feedback 14

Merits of Negative Feedback

 1)  Bandwidth enhancement

 2)  Modification of I/O Impedances

 3)  Linearization
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Bandwidth Enhancement

 Although negative feedback lowers the gain by (1+KA0), it 
also extends the bandwidth by the same amount.
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Bandwidth Extension Example

 As the loop gain increases, we can see the decrease of the 
overall gain and the extension of the bandwidth.
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Example 12.6: Unity-gain bandwidth 

 We can see the unity-gain bandwidth remains independent 
of K, if 1+KA0 >>1 and K2<<1
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Example12.7: Open Loop Parameters 
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Example12.7: Closed Loop Voltage Gain
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Example12.7: Closed Loop I/O Impedance 
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Example:  Load Desensitization 
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Before feedback
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Linearization

Before feedback

After feedback
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Four Types of Amplifiers
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Ideal Models of the Four Amplifier Types 

(a) Voltage amplifier

(c) Transconductance amplifier (d) Current amplifier

(b) Transresistance amplifier
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Realistic Models of the Four Amplifier Types
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Examples of the Four Amplifier Types
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Sensing a Voltage 

 In order to sense a voltage across two terminals, a 
voltmeter with ideally infinite impedance is used.
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Sensing and Returning a Voltage 

 Similarly, for a feedback network to correctly sense the 
output voltage, its input impedance needs to be large.

 R1 and R2 also provide a means to return the voltage.

 21 RR

Feedback
Network
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Sensing a Current

 A current is measured by inserting a current meter with 
ideally zero impedance in series with the conduction path.  

 The current meter is composed of a small resistance r in 
parallel with a voltmeter. 
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Sensing and Returning a Current

 Similarly for a feedback network to correctly sense the 
current, its input impedance has to be small.

 RS has to be small so that its voltage drop will not change 
Iout.
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Addition of Two Voltage Sources

 In order to add or substrate two voltage sources, we place 
them in series.  So the feedback network is placed in series 
with the input source. 

Feedback
Network
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Practical Circuits to Subtract Two Voltage Sources

 Although not directly in series, Vin and VF are being 
subtracted since the resultant currents, differential and 
single-ended, are proportional to the difference of Vin and VF. 
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Addition of Two Current Sources

 In order to add two current sources, we place them in 
parallel.  So the feedback network is placed in parallel with 
the input signal.  

Feedback
Network
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Practical Circuits to Subtract Two Current Sources

 Since M1 and RF are in parallel with the input current source, 
their respective currents are being subtracted.  Note, RF has 
to be large enough to approximate a current source. 
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Example 12.10: Sense and Return 

 R1 and R2 sense and serve as the feedback network.

 M1 and M2 are part of the op-amp and also act as a voltage 
subtractor.
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Example 12.11: Feedback Factor 
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Input Impedance of an Ideal Feedback Network

 To sense a voltage, the input impedance of an ideal 
feedback network must be infinite.

 To sense a current, the input impedance of an ideal 
feedback network must be zero. 
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Output Impedance of an Ideal Feedback Network

 To return a voltage, the output impedance of an ideal 
feedback network must be zero.

 To return a current, the output impedance of an ideal 
feedback network must be infinite. 



 1)  Assume the input goes either up or down.

 2)  Follow the signal through the loop.

 3)  Determine whether the returned quantity enhances 
or opposes the original change.
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Determining the Polarity of Feedback
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Example 12.12: Polarity of Feedback

inV  21 , DD II  xout VV ,  12 , DD II

Negative Feedback
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Example 12.13: Polarity of Feedback

inV  AD VI ,1  xout VV ,  AD VI ,1

Negative Feedback
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Example 12.14: Polarity of Feedback

inI  XD VI ,1  2, Dout IV  XD VI ,1

Positive Feedback
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Voltage-Voltage Feedback
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Example 12.15: Voltage-Voltage Feedback 
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Input Impedance of a V-V Feedback 
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Example12.16: V-V Feedback Input Impedance 
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Output Impedance of a V-V Feedback
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Example 12.17: V-V Feedback Output Impedance 
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Voltage-Current Feedback

O

O

in

out

KR

R

I

V




1



CH 12 Feedback 50

Example 12.18: Voltage-Current Feedback 
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Example 12.18: Voltage-Current Feedback 
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Example 12.18: Voltage-Current Feedback 
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Input Impedance of a V-I Feedback
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Example 12.19: V-I Feedback Input Impedance 
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Output Impedance of a V-I Feedback

 A better voltage source.
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Example12.20: V-I Feedback Output Impedance 
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Current-Voltage Feedback
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Example12.21: Current-Voltage Feedback 
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Example12.21: Current-Voltage Feedback 
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Example12.21: Current-Voltage Feedback 
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Input Impedance of a I-V Feedback

 A better voltage sensor.
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Output Impedance of a I-V Feedback 

 A better current source.
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Laser

Example: Current-Voltage Feedback 
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Wrong Technique for Measuring Output Impedance

 If we want to measure the output impedance of a C-V 
closed-loop feedback topology directly, we have to place VX 

in series with K and Rout.  Otherwise, the feedback will be 
disturbed.  
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Current-Current Feedback
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Input Impedance of I-I Feedback

 A better current sensor.
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Output Impedance of I-I Feedback

 A better current source.
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Example 12.24: Test of Negative Feedback 

inI  outD IV ,1  FP IV ,  outD IV ,1

Negative Feedback

Laser
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Example 12.24: I-I Negative Feedback  
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Example:  I-I Negative Feedback  
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How to Break a Loop

 The correct way of breaking a loop is such that the loop 
does not know it has been broken.  Therefore, we need to 
present the feedback network to both the input and the 
output of the feedforward amplifier.
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Rules for Breaking the Loop of Amplifier Types 
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Intuitive Understanding of these Rules

 Since ideally, the input of the feedback network sees zero 
impedance (Zout of an ideal voltage source), the return 
replicate needs to be grounded.  Similarly, the output of the 
feedback network sees an infinite impedance (Zin of an ideal 
voltage sensor), the sense replicate needs to be open.

 Similar ideas apply to the other types.

Voltage-Voltage Feedback
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Rules for Calculating Feedback Factor
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Intuitive Understanding of these Rules

 Since the feedback senses voltage, the input of the 
feedback is a voltage source.  Moreover, since the return 
quantity is also voltage, the output of the feedback is left 
open (a short means the output is always zero).

 Similar ideas apply to the other types.

Voltage-Voltage Feedback
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Example 12.26: Breaking the Loop
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Example 12.26: Feedback Factor
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Example 12.27: Breaking the Loop
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Example 12.27: Feedback Factor
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Example 12.29: Breaking the Loop
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Example 12.29: Feedback Factor
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Example 12.30: Breaking the Loop
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Example 12.31: Breaking the Loop
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Example 12.31: Feedback Factor
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Example 12.32: Breaking the Loop
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Example 12.32: Feedback Factor
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Example 12.33: Breaking the Loop
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Example 12.33: Feedback Factor
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Example 12.34: Phase Response 

 As it can be seen, the phase of H(jω) starts to drop at 1/10 
of the pole, hits -45o at the pole, and approaches -90o at 10 
times the pole.
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Example 12.35: Three-Pole System 

 For a three-pole system, a finite frequency produces a 
phase of -180o, which means an input signal that operates 
at this frequency will have its output inverted.  
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Instability of a Negative Feedback Loop

 Substitute jω for s.  If for a certain ω1, KH(jω1) reaches 

-1, the closed loop gain becomes infinite. This implies for a 
very small input signal at ω1, the output can be very large.  
Thus the system becomes unstable. 
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“Barkhausen’s Criteria” for Oscillation
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Time Evolution of Instability
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Oscillation Example

 This system oscillates, since there’s a finite frequency at 
which the phase is -180o and the gain is greater than unity.  
In fact, this system exceeds the minimum oscillation 
requirement.
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Condition for Oscillation

 Although for both systems above, the frequencies at which 
|KH|=1 and KH=-180o are different, the system on the left 
is still unstable because at KH=-180o, |KH|>1.  Whereas 
the system on the right is stable because at KH=-180o, 
|KH|<1.
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Condition for Stability

 ωPX, (“phase crossover”), is the frequency at which        
KH=-180o.

 ωGX, (“gain crossover”), is the frequency at which |KH|=1.

PXGX  
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Example 12.38: Stability
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Example 12.38: Stability

For the unity-gain feedback system (K=1) to remain stable,

| | 1pH 
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Example 12.38: Stability (Analytical Approach)
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Stability Example II

What if 0.5?

0.5 | | 1p

K

H







Example 12.39: Single-Stage Amplifier

 A common-source stage in a unity-gain feedback loop does 
not oscillate. Since the circuit contains only one pole, the 
phase shift cannot reach 180˚ at any frequency. The circuit 
is thus stable.
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Marginally Stable vs. Stable

Marginally Stable Stable



 Phase Margin = H(ωGX)+180

 The larger the phase margin, 
the more stable the negative feedback becomes 
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Phase Margin
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Example 12.41: Phase Margin

45PM
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Frequency Compensation

 Phase margin can be improved by moving ωGX closer to 
origin while maintaining ωPX unchanged.

PX

'GX GX
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Example 12.42: Frequency Compensation

 Ccomp is added to lower the dominant pole so that ωGX 

occurs at a lower frequency than before, which means 
phase margin increases.
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Frequency Compensation Procedure

 1) We identify a PM, then -180o+PM gives us the new ωGX, or ωPM.

 2) On the magnitude plot at ωPM, we extrapolate up with a slope 
of +20dB/dec until we hit the low frequency gain then we look 
“down” and the frequency we see is our new dominant pole, ωP’. 
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Example 12.43: 45o Phase Margin Compensation 

2pPM  



CH 12 Feedback 110

Miller Compensation

 To save chip area, Miller multiplication of a smaller 
capacitance creates an equivalent effect.

cOOmeq CrrgC )]||(1[ 655




