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Capacitors

 A capacitor is a two terminal elements that is a model of a device 
consisting of two conducting plates separated by a nonconducting material. 

Table 7.2-1 Relative Dielectric Constant

Material εr= ε/εo

Glass
Nylon
Bakelite

7
2
5

C= εA/d, q= CV
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Capacitors (cont’d)

 A capacitor is a measure of the ability of a device to store energy in the 
form of separated charge of an electric field.

 C (capacitance)
 The constant of proportionality
 The unit is coulomb per volt

and is called farad (F) in honor
of Faraday.

 The current i is 
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Displacement Current 

James Clerk Maxwell noticed a logical inconsistency when 
applying Ampère's law to a charging or discharging capacitor. 
If surface S passes between the plates of the capacitor, and 
not through any wires, then even though there is no 
conduction current, magnetic field is induced. He concluded 
that Ampere’s law law had to be incomplete. To resolve the 
problem, he came up with the concept of displacement 
current and made a generalized version of Ampère's law 
which was incorporated into Maxwell's equations.

In linear media, this is the 
displacement flux density 
(in coulombs per square 
meter).
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Example 7.2-1 Capacitor current and voltage

 Find the current for a capacitor C=1mF when the voltage across the 
capacitor is represented by the signal shown in Figure 7.2-6
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Solution

 The voltage is given by

Then, since i=Cdv/dt, where C=10-3 F,
we obtain

Therefore, the resulting current is a series of two pulses of magnitudes 10-2A 
and 10-2A, respectively, as shown in Figure 7.2-6
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Capacitors (cont’d)

 Now consider the waveform shown in Figure 7.2-3.
Since i=Cdv/dt, we obtain

Thus, we obtain a pulse of height
equal to C/Δt.
Clearly, Δt cannot decline to zero 
or we experience an infinite current.
An infinite current is an impossibility.

 Therefore, the voltage across a 
capacitor cannot change instantaneously.
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Capacitors (cont’d)

 The capacitor voltage can be found by integrating the capacitor current 
from time -∞ until time t.
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 Find the voltage v for a capacitor C=1/2 F when the current is as shown in 
Figure 7.2-8.

Example 7.2-2 Capacitor Current and Voltage
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Solution

 The current is given by

Then since

And C=1/2, we have


t

di
C

v
0

1 
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 Figure 7.2-11 shows a circuit together with two plots. The plots represent 
the current and voltage of the capacitor in the circuit. Determine the values 
the constants, a and b, used to label the plot of the capacitor current.

Example 7.2-3 Capacitor current and voltage 
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Solution
 The current and voltage of the capacitor are related by

Pick convenient values t and t0, for example, t0=1s and t=3s. Then

Using Eq. 7.2-6 gives
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(7.2-6)

The difference between the values of voltage at times t and t0

The area under the plot of i(t) versus t, for times between t and t0
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 Figure 7.2-11 shows a circuit together with two plots. The plots represent 
the current and voltage of the capacitor in the circuit. Determine the values 
the constants, a and b, used to label the plot of the capacitor current.

Example 7.2-4 Capacitor Current and Voltage
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Solution

 The current and voltage of the capacitor are related by

To determine the value of a pick t=3ms

Using Eq. 7.2-7 gives

To determine the value of b, pick t=6ms;

Using Eq. 7.2-7 gives

)()( tv
dt
dCti 

s
V8000

005.0002.0
240)003.0( 



v
dt
d

mA40)8000)(105( 6  a
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007.0005.0
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


v
dt
d

mA60)1012)(105( 36  b

(7.2-7)
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Example 7.2-5 Capacitor Current and Voltage

 The input to the circuit shown in Figure 7.2-12 is the current

The output is the capacitor voltage

Find the value of the capacitance, C

0for tA75.3)( 2.1   teti

0for tV25.14)( 2.1   tetv
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Solution

 The capacitor voltage is related to the capacitor current by

That is,

Equating the coefficients of e-1.2t gives
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Energy Storage in a Capacitor

 The energy stored in a capacitor is

Since

we have

Since the capacitor was uncharged at t=-∞, set v(-∞)=0
Therefore,

J)()(
2
1)( 2 tCvtwc 

c
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Energy Storage in a Capacitor (cont’d)

 Since q=Cv,

we have

 The voltage and charge on a capacitor cannot change instantaneously.

 In Figure 7.3-1 

J)()(
2
1)( 2 tq
C

twc 
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Example 7.3-1 Energy stored by a capacitor

 A 10-mF capacitor is charged to 100V, as shown in the circuit of Figure 
7.3-2. Find the energy stored by the capacitor and the voltage of the 
capacitor at t=0+ after the switch is opened
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Solution

 The voltage of the capacitor is v=100V at t=0-. Since the voltage at t=0+ cannot 
change from the voltage at t=0-, we have

 The energy stored by the capacitor at t=0+ is

J50)100)(10(
2
1

2
1 222  Cvwc

V100)0()0(   vv
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Example 7.3-2 Power and Energy for a Capacitor

 The voltage across a 5-mF capacitor varies as shown in Figure 7.3-3. 
Determine and plot the capacitor current, power and energy
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Solution

 Figure 7.3-4a
 Current
 ic =Cdv/dt

 Figure 7.3-4b
 Power
 P(t)=v(t)i(t)

 Figure 7.3-4c
 Energy

  dtp
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Series and Parallel Capacitors

 Consider Parallel connection of N capacitors as shown in Figure 7.4-1. 
Using KCL, we have

Since

Fig 7.4-1
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Series and Parallel Capacitors 

 For the equivalent circuit shown in Figure 7.4-2

It is clear that

 The equivalent capacitance of a set of N parallel capacitors is simply the 
sum of the individual capacitances. It must be noted that all the parallel 
capacitors will have the same initial condition, v(0)

Fig 7.4-1





N

n
nNp CCCCCC

1
321 

Fig 7.4-2
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Series and Parallel Capacitors 

 Consider series connection of N capacitors as shown in Figure 7.4-3.
Using KVL, we have

Since

Fig 7.4-3
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Series and Parallel Capacitors 

 Since

we obtain

For the equivalent circuit shown in Figure 7.4-4

we find that

Fig 7.4-3





N

n ns CC 1

11 Fig 7.4-4
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Example 7.4-1 Parallel and Series Capacitors

 Find the equivalent capacitance for the circuit of Figure 7.4-5 when 
C1=C2=C3=2mF, v1(0)=10V, and v2(0)=v3(0)=20V

Figure 7.4-5
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Solution
 Cp and Cs

The voltage at t=0 across Cs is

v(0)=v1(0)+vp(0)

Where vp(0)=20V, the voltage across the capacitance Cp at t=0. 

v(0)=10+20=30V

Thus, we obtain the equivalent circuit shown in Figure 7.4-7

7.4-5

7.4-6

7.4-7



Department of Electrical and Computer Engineering, SNU
Prof. SungJune Kim

 A inductor is a two terminal element consisting of a winding of N turns 
for introducing inductance into an electric circuit.

 Inductance is the property of an electric device by which a time-
varying current through the device produces a voltage across it.

Inductors

Coil of wire connected to a current source Coil wound as a tight helix on 
a core of area A
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 The force experienced by two neighboring current-carrying wires can 
be described in terms of the existence of a magnetic field, which can be 
described in terms of magnetic flux the forms a loop around the coil, as 
shown in Figure 7.5-3. A magnetic flux Φ(t) is associated with a current 
i in a coil. In this case we have an N-turn coil, and each flux line passes 
through all turns. Then the total flux is said to be NΦ.

 According to Faraday, the changing flux creates an induced voltage in 
each turn equal to the derivative of the flux Φ, so the voltage v across 
N turn is

Inductors
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 Since the total flux NΦ si proportional to the current i in a coil, we 
have

where L, inductance, is the constant of proportionality. 
Then the voltage v is

Inductors

dt
diLv 
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 Now consider the current waveform shown in Figure 7.5-7
Since v=Ldi/dt, we obtain

Clearly, t1 cannot decline to zero
or we experience an infinite 
voltage and we would require
infinite power at the terminals of
the inductor.

 The current in an inductor cannot change instantaneously.

Inductors
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 The inductor current can be found by integrating the inductor voltage 
from time -∞ until time t.

Inductors
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Example 7.5-1 Inductor Current and Voltage

 Find the voltage across an inductor, L=0.1H, when the current in the 
inductor is

for t>0 and i(t)=0
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Solution
 The voltage for t>0 is

The voltage is equal to 2V when i=0, as shown in Figure 7.5-11b. The 
current waveform is shown in Figure 7.5-11a. Note that the current 
reaches a maximum value and the voltage is zero at t=0.5s.

Fig. 7.5-11
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Example 7.5-2 Inductor Current and Voltage

 Figure 7.5-12 shows a circuit together with two plots. The plots represent 
the current and voltage of the inductor in the circuit. Determine the value 
of the inductance of the inductor.
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Solution
 The current and voltage of the inductor are related by

Pick convenient values t and t0, for example, t0=2ms and t=6ms. Then

Using Eq. 7.5-8 gives
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(7.5-8)

The difference between the values of current at times t and t0

The area under the plot of v(t) versus t, for times between t and t0
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Example 7.5-3 Inductor Current and Voltage

 The input to the circuit shown in Figure 7.5-13 is the voltage

The output is the current

The initial inductor current is iL(0)=-3.5A. Determine the values of the 
inductance, L and resistance, R.

0forV4)( 20   tetv t

0forA5121)( 20   t.e.ti t
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Solution
 Apply KCL at either node to get

That is

Equating coefficients gives

and
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 The energy stored in an inductor is

 The energy stored in an inductor during the interval t0 to t is given by

 Usually we select t0=-∞ for the inductor and then the current i(-∞)=0. 
 Also we used expression for power

Energy storage in an inductor

2

2
1 Liw 

i
dt
diLvip 






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Example 7.6-1 Inductor Voltage and Current

 Find the current in an inductor, L=0.1H, when the voltage across the 
inductor is

Assume that the current is zero for t≤0.

V10 5ttev 
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Solution
 The voltage as a function of time is shown in figure 7.6-1a. Note that the 

voltage reaches a maximum at t=0.2s
The current is

Since the voltage is zero for t<0, the current in the inductor at t=0 is i(t)=0, 
Then we have

The current as a function of time is shown in Figure 7.6-1b.
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Fig 7.6-1
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Example 7.6-2 Power and Energy for an Inductor

 Find the power and energy for an inductor of 0.1H when the current and 
voltage are as shown in Figures 7.6-2a,b
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Solution
 Current 

 Voltage

 Power

 Energy
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Example 7.6-3 Power and Energy for an Inductor

 Find the power and energy stored in a 0.1-H inductor when i=20te-2t A and 
v=2e-2t(1-2t) V for t≥0 and i=0 for t<0.
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Solution
 The power is

The energy is then

w is positive for all values of t>0. The energy stored in the inductor is shown 
in Figure 7.6-3

  0tW)21(40)21(2)20( 422   tteteteivp ttt

0tJ20)20(05.0
2
1 42222   tt etteLiw

Fig 7.6-3
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 Consider a series connection of N inductors as shown in Figure 7.7-1. 
The voltage across the series connection

Series and Parallel Inductors

Figure 7.7-1
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 Since the equivalent series inductor Ls, as shown in Figure 7.7-2

we require that

 Thus, an equivalent inductor for a series of inductors is the sum of the 
N inductors.

Series and Parallel Inductors





N

n
ns LL

1

Figure 7.7-1

Figure 7.7-2
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 Consider parallel connection of N capacitors as shown in Figure 7.7-3.
Using KCL, we have

Since

we may obtain the expression 

Series and Parallel Inductors

Figure 7.7-3

Figure 7.7-4
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 For the equivalent circuit shown in Figure 7.7-4

we have

and

Series and Parallel Inductors


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
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Figure 7.7-3

Figure 7.7-4



Department of Electrical and Computer Engineering, SNU
Prof. SungJune Kim

Characteristics of Energy Storage Elements

VARIABLE INDUCTORS CAPACITORS

Passive sign convention

Voltage

Current

Power

Energy

An instantaneous change is not 
permitted for the element’s:

current Voltage

Will permit an instantaneous 
change in the element’s:

voltage Current

This element acts as a: Short circuit to a constant 
current into its terminals

Open circuit to a constant 
voltage across its terminals

  )0(1 vid
C

v 

dt
dvCi 

dt
diLv 

  )0(1 ivd
L

i 

dt
diLip 

dt
dvCvp 

2

2
1 Liw  2

2
1 Cvw 
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 An inductor behaves as a short circuit to a dc current.

 An capacitor behaves as a open circuit to a dc voltage.

Initial conditions of switched circuits

00 
dt
diLv

dt
di

dt
dvCi

dt
dv

 0
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 Consider a circuit with an inductor as shown in Figure 7.8-1.
At t=0-, iL is constant current,
so the inductor voltage is zero.

Since the current cannot change 
instantaneously for the inductor,

However, the current in the resistor can change instantaneously. After 
the switch is thrown, we require that the voltage across R1 be equal to 
zero, and therefore

Initial conditions of switched circuits
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 Consider a circuit with a capacitor as shown in Figure 7.8-2
At t=0-, the capacitor appears as
an open circuit.

Since the voltage across a capacitor
cannot change instantaneously,

When the switch is opened, the source is removed from the circuit but 
the voltage across the capacitor remains equal to 5 V.

Initial conditions of switched circuits
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Example 7.8-1 Initial Conditions in a Switched Circuit

 Consider the circuit Figure 7.8-1. Prior to t=0, the switch has been closed 
for a long time. Determine the values of the capacitor voltage and inductor 
current immediately after the switch opens at time t = 0.
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

At t=0-, we may replace the capacitor
by an open circuit and the inductor by
a short circuit, as shown in Figure 7.8-4.

Then we note that

Solution



Department of Electrical and Computer Engineering, SNU
Prof. SungJune Kim

Example 7.8-2 Initial Conditions in a Switched Circuit

 Find iL(0+), vc(0+), dvc(0+)/dt and diL(0+)/dt for the circuit of Figure 7.8-5. 
Assume that switch 1 has been open and switch 2 has been closed for a 
long time and steady-state conditions prevail at t=0-.
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 We redraw the circuit for t=0- by replacing the inductor with a short circuit 
and the capacitor with an open circuit, as shown in Figure 7.8-6

In order to find dvc(0+)/dt and diL(0+)/dt, we throw the 
switch at t=0 and redraw the circuit of Figure 7.8-5, as 
shown in Figure 7.8-7
obtain dvc(0+)/dt, diL(0+)/dt

Solution
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Fig 7.8-7
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Solution
 Using KVL for the right-hand mesh of Figure 7.8-7,

to find ic we write KCL at node a to obtain
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Fig 7.8-7
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 This section describes a procedure for designing op amp circuits that 
implement linear differential equations such as

The solution of this equation is a function, y(t), that depends both on the 
function x(t) and on a set of initial conditions. It is convenient to use the 
initial conditions:

We will treat x(t) as the input to the differential equation and y(t) as the 
output.

Operational amplifier circuits and linear differential 
equations

(7.9-1)
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 Suppose that we were some how to obtain 

We could then integrate three times to obtain

as illustrated in Figure 7.9-2

Operational amplifier circuits and linear differential 
equations
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 Now we must obtain

To do so, solve Eq. 7.9-1 for                  to get

Next, represent this equation by a block diagram as shown in figure 7.9-3

Operational amplifier circuits and linear differential 
equations

(7.9-3)
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 Finally the block diagrams can be combined as shown in Figure 7.9-4

Operational amplifier circuits and linear differential 
equations

Fig. 7.9-2

Fig. 7.9-3
Fig. 7.9-4
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 Op amp circuits to implement differentiation and integration.

Operational amplifier circuits and linear differential 
equations

Differentiation (a)(b)

Integration (c)(d)
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 To see how the integrator works, consider Figure 7.9-6. 
The voltage across the resistor is 

Use Ohm’s law to get

Applying KCL to node 2 gives

The voltage across the capacitor is

The capacitor voltage is related to the capacitor current by

Operational amplifier circuits and linear differential 
equations
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 Recall that y(0)=0. Thus vc(0)=0 and

Since

we obtain

where

Operational amplifier circuits and linear differential 
equations
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 Figure 7.9-7 illustrates a summing integrator. 
Applying KCL at node 3 gives

The voltage across the capacitor is

The capacitor voltage is related to the capacitor current by

Operational amplifier circuits and linear differential 
equations
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 Recall that y(0)=0. Thus vc(0)=0 and

Since

we obtain

where

and

Operational amplifier circuits and linear differential 
equations
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 To accommodate inverting integrators, it is necessary to modify the block 
diagram.

Operational amplifier circuits and linear differential 
equations

Fig. 7.9-8

Fig. 7.9-9

Fig. 7.9-10
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 Figure 7.9-11 emphasize the blocks the can be implemented by a single 
four input summing integrator. 

 Figure 7.9-12 shows the four-input summing integrator.
The signal d2y(t)/dt2 is the output and is also one of the inputs.

Operational amplifier circuits and linear differential 
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Fig. 7.9-11 Fig. 7.9-12
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 The summing integrator is represented by the equation

Integrating both sides of Eq. 7.9-3 gives

For convenience, pick 
Then,

Operational amplifier circuits and linear differential 
equations
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 The finished circuit is shown in figure 7.9-13

Operational amplifier circuits and linear differential 
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 Suppose that the current in a 2-F capacitor is

Where the units of current are A and the units of time are s.
When the initial capacitor voltage is -5V, the capacitor voltage can be 
calculated using

Using MATLAB to plot capacitor or inductor 
voltage and current


