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Second-Order Circuit

 A second-order circuit is a circuit that is represented by a second-order 
differential equation.

x(t): output of the circuit (=response of the circuit)
f(t) : input to the circuit
α : damping coefficient
ω0  : resonant frequency
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Second-Order Circuit

 To find the response of the second-order circuit,

 Represent the circuit by a second-order differential equation.
 Find the general solution of the homogeneous differential equation. This 

solution is the natural response, xn(t). The natural response will contain two 
unknown constants that will be evaluated later.

 Find a particular solution of the differential equation. This solution is the 
forced response, xf(t).

 Represent the response of the second-order circuit as x(t)=xn(t) + xf(t).
 Use the initial conditions, for example, the initial values of the currents in 

inductors and the voltage across capacitors, to evaluate the unknown constants.



School of Electrical Engineering and Computer Science, SNU
Prof. SungJune Kim

Direct Method

 Let us consider the circuit shown in Figure 9.2-1.
Writing the nodal equation at the top node, we have

We write the equation for the inductor as

Then

This method of obtaining the second-order differential 
equation may be called the direct method and is 
summarized in Table 9.2-1.

S
v dvi C i
R dt
+ + =

div L
dt

=

2

2 S
L di d ii CL i
R dt dt

+ + =



School of Electrical Engineering and Computer Science, SNU
Prof. SungJune Kim

Direct Method

 Table 9.2-1

The Direct Method for Obtaining the Second-Order Differential Equation of a 
Circuit
Step1 Identify the first and second variables, x1 and x2. These variables 

are capacitor voltages and/or inductor currents.

Step2 Write one first-order differential equation, obtaining

Step3 Obtain an additional first-order differential equation in terms of the 
second variable so that 

Step4 Substitute the equation of step3 into the equation of step2, thus 
obtaining a second-order differential equation in terms of x2
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Direct Method-example

 Let us consider the circuit shown in Figure 9.2-2.
Writing KVL around the loop, we have

We write the equation for the capacitor as

Then

This method is the direct method.

S
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Operator Method: using differential operator s

 Another method of obtaining the second-order equation describing a 
circuit is called the operator method.

 Consider the circuit shown in Figure 9.2-3
The mesh equations are

and

Now let us use

Then we have

and

1
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We may rearrange these equations as

The differential operator s, where s=d/dt, is used to transform 
differential equations into algebraic equations. 

We may use Cramer’s rule to solve for i2, obtaining

Therefore

and the differential equation is

1
1 2 S

di i i v
dt

+ − = 2
1 2 2 0dii i

dt
− + + =and

1 2( 1) Ss i i v+ − = 1 2(2 1) 0i s i− + + =and
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Operator Method: Form 2nd order algebraic equation using 
differential operator s, then back to the differential eq.
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see Appendix A.4 “Cramer’s rule” (page 830)

 Cramer’s rule
 A set of simultaneous equations

can be written in matrix form as

 Cramer’s rule states that the solution for the unknown, xk, is

where Δis the determinant of A and Δk is Δ with the kth column 
replaced by the column vector b.
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Operator Method

 Table 9.2-2

Operator Method for obtaining the second-order differential equation of a circuit
Step1 Identify the variable x1 for which the solution is desired
Step2 Write one differential equation in terms of the desired variable x1 and a 

second variable x2

Step3 Obtain an additional equation in terms of the second variable and the first 
variable

Step4 Use the operator s=d/dt and 1/s=∫dt to obtain two algebraic equations in 
terms of s and the two variables x1 and x2.

Step5 Using Cramer’s rule, solve for the desired variable so that 
x1=f(s,source)=P(s)/Q(s), where P(s) and Q(s) are polynomials in s

Step6 Rearrange the equation of step 5 so that Q(s)x1=P(s)
Step7 Convert the operators back to derivatives for the equation of step 6 to 

obtain the second-order differential equation



School of Electrical Engineering and Computer Science, SNU
Prof. SungJune Kim

Operator Method: Example 9.2-1 Representing a Circuit 
by a Differential Equation

 Find the differential equation for the current i2 for the circuit of Figure 9.2-4
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 Write the two mesh equations using KVL to obtain

Using the operator s=d/dt, we have

and

Using Cramer’s rule to solve for i2, we obtain

Rearranging Eq. 9.2-16, we obtain

Therefore, the differential equation for i2 is
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Operator Method Example 9.2-2 Representing a Circuit 
by a Differential Equation

 Find the differential equation for the voltage v for the circuit of Figure 9.2-5
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 The KCL node equation at the upper node

Write the equation for the current through the branch
containing the inductor as

Using the operator s=d/dt, we have the two equations

Substituting the parameter values and rearranging, we have

Using Cramer’s rule, solve for v to obtain

Therefore, 

or the differential equation we seek is
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Solution of the Second-Order Differential Equation 
– The Natural Response
 A circuit with two irreducible energy elements can be represented by a 

second-order differential equation of the form

where the constants a2, a1, a0 are known and the forcing function f(t) is 
specified.

 The complete response is given by

where xn is natural response and xf is forced response. The natural 
response satisfies the unforced differential equation when f(t)=0. The 
forced response xf satisfies the differential equation with the forcing 
function present.

2
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The Natural Response from Characteristic Equation

 The natural response of a circuit, xn, will satisfy the equation

 Since xn and its derivatives must satisfy the equation, we postulate the 
exponential solution

where A and s are to be determined.
 Substituting Eq. 9.3-3 in Eq. 9.3-2, we have

Since               , we may rewrite Eq. 9.3-4 as

 Since we do not accept the trivial solution, it is required that

This equation is called a characteristic equation.

2
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The characteristic equation is derived from the governing differential 
equation for a circuit by setting all independent source to zero value 
and assuming an exponential solution.

 The solution of Eq. 9.3-5 has two roots, s1 and s2, where

 When there are two distinct roots, there are two solutions such that

where A1 and A2 are unknown constants that will be evaluated later.

The roots of the characteristic equation contain all the information 
necessary for determining the character of the natural response. 

2 2
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1 2
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Example 9.3-1 Natural Response of a Second-Order Circuit

 Find the natural response of the circuit current i2 shown in Figure 9.3-2. Use 
operators to formulate the differential equation and obtain the response in 
terms of two arbitrary constants.



School of Electrical Engineering and Computer Science, SNU
Prof. SungJune Kim

 Writing the two mesh equations

Using the operator s=d/dt, we obtain

Using Cramer’s rule, solve for i2

Therefore, 

Solution
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 Note that                                  is the characteristic equation. Thus, the roots of the 
characteristic equation are s1=-2 and s2=-8. Therefore, the natural response is

where x=i2. The roots s1 and s2 are the characteristic roots and are often called the 
natural frequencies. The reciprocals of the magnitude of the real characteristic roots 
are the time constants. The time constants of this circuit are 1/2s and 1/8s. 

Solution
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Natural Response of the Unforced Parallel RLC 
Circuit
 Consider the circuit shown in Figure 9.4-1

Write the KCL at the node to obtain

Taking the derivative, we have

Using the parameter s, we obtain the characteristic equation

The two roots of the characteristic equation are
1/2 1/22 2

1 2
1 1 1 1 1 1   and   

2 2 2 2
s s
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Natural Response of the Unforced Parallel RLC 
Circuit
 When s1 is not equal to s2, the solution to the second-order differential 

Eq. 9.4-2 for t>0 is

 The roots of the characteristic equation may be rewritten as

Where                         and                     

 The roots of the characteristic equation assume three possible 
conditions:

1. Two real and distinct roots when  overdamped
2. Two real equal roots when         critically damped
3. Two complex roots when        underdamped

2 2 2 2
1 0 2 0   and   s sα α ω α α ω= − + − = − − −

1 2
n 1 2

s t s tv A e A e= +

1/(2 )RCα = 2
0 1/( )LCω =

2 2
0α ω>

2 2
0α ω=

2 2
0α ω<

(9.4-6)
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Natural Response of the Unforced Parallel RLC 
Circuit
 Let us determine the natural response for the overdamped RLC circuit 

of Figure 9.4-1 when the initial conditions are v(0) and i(0) for the 
capacitor and the inductor, respectively.
At t=0 for Eq. 9.4-6, we have

Since A1 and A2 are both unknown, we need one more equation at t=0. 
Rewriting Eq. 9.4-1 at t=0, we have

Since i(0) and v(0) are known, we have

n 1 2(0)v A A= +

(0) (0)(0) 0v dvi C
R dt

+ + =

(0) (0) (0)dv v i
dt RC C

= − −

(9.4-9)

(9.4-10)
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Natural Response of the Unforced Parallel RLC 
Circuit
 Thus, we now know the initial value of the derivative of v in terms of 

the initial conditions.
Taking the derivative of Eq. 9.4-6 and setting t=0, we obtain

Using Eqs. 9.4-10 and 9.4-11, we obtain a second equation in terms of 
the two constants as

Using Eqs. 9.4-9 and 9.4-12, we may obtain A1 and A2. 

n
1 1 2 2

(0)dv s A s A
dt

= + (9.4-11)

1 1 2 2
(0) (0)v is A s A

RC C
+ = − − (9.4-12)
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Example 9.4-1 Natural Response of an Overdamped Second-Order Circuit

 Find the natural response of v(t) for t>0 for the parallel RLC circuit shown in 
Figure 9.4-1 when R=2/3Ω, L=1H, C=1/2F, v(0)=10V, and i(0)=2A.
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 Using Eq. 9.4-3, the characteristic equation is 

or

Therefore, the roots of the characteristic equation are

Then the natural response is

The initial capacitor voltage is v(0)=10, so we have

or

We use Eq. 9.4-12 to obtain the second equation for the unknown constants.

Therefore,

Solution
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 Solving Eqs. 9.4-14 and 9.4-15 simultaneously, we obtain A2=24 and A1=-14. 
Therefore, the natural response is

The natural response of the circuit is shown in Figure 9.4-2

Solution

V)2414( 2tt
n eev −− +−=
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Natural Response of the Critically Damped
Unforced Parallel RLC Circuit
 We consider the parallel RLC circuit, and we will determine the 

special case when the characteristic equation has two equal real roots.
 Let us assume that s1=s2 and proceed to find vn(t)

Since the two roots are equal, we have only one undetermined 
constant, but we still have two initial conditions to satisfy. Clearly, Eq. 
9.5-1 is not the total solution. 

1 2 1
n 1 2 3

s t s t s tv A e A e A e= + = (9.5-1)
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recap:Natural Response of the Unforced Parallel 
RLC Circuit
 When s1 is not equal to s2, the solution to the second-order differential 

Eq. 9.4-2 for t>0 is

 The roots of the characteristic equation may be rewritten as

Where                         and                     

 The roots of the characteristic equation assume three possible 
conditions:

1. Two real and distinct roots when  overdamped
2. Two real equal roots when         critically damped
3. Two complex roots when        underdamped

2 2 2 2
1 0 2 0   and   s sα α ω α α ω= − + − = − − −

1 2
n 1 2

s t s tv A e A e= +

1/(2 )RCα = 2
0 1/( )LCω =

2 2
0α ω>

2 2
0α ω=

2 2
0α ω<

(9.4-6)
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Natural Response of the Critically Damped 
Unforced Parallel RLC Circuit
 We try the solution

 Let us consider a parallel RLC circuit where

The characteristic equation for the circuit is

or

The two roots are then
Using Eq. 9.5-2 for the natural response, we have

1
n 1 2( )s tv e A t A= + (9.5-2)

1 H,   1 ,   1/ 4 F,   (0) 5 V,   and   (0) 6 AL R C v i= = Ω = = = −

2 1 1 0s s
RC LC

+ + =

2 4 4 0s s+ + =

1 2 2s s= = −

2
n 1 2( )tv e A t A−= + (9.5-3)
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Natural Response of the Critically Damped 
Unforced Parallel RLC Circuit
 Since vn(0)=5, we have at t=0

Differentiate Eq. 9.5-3 to obtain

Evaluating Eq. 9.5-4 at t=0, we have

Again, we may use Eq. 9.4-10 so that

or

Therefore,

2 5A =

2 2 2
1 1 22 2t t tdv A te A e A e

dt
− − −= − + − (9.5-4)

1 2
(0) 2dv A A

dt
= −

(0) (0) (0)dv v i
dt RC C

= − −

1 2
5 62 4

1/ 4 1/ 4
A A − −
− = − =

1 14A =
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Natural Response of the Critically Damped 
Unforced Parallel RLC Circuit
 The natural response is

 The critically damped natural response of this RLC circuit is shown in 
Figure 9.5-1

2
n (14 5) Vtv e t−= +
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Natural Response of an Underdamped Unforced 
Parallel RLC Circuit
 The characteristic equation of the parallel RLC circuit will have two 

complex conjugate roots when               . This condition is met when

or when

Recall that 

where
When
we have

where

2(2 )LC RC<

2 2
0α ω<

24L R C<

2 2
1,2 0s α α ω= − ± −

1 2
n 1 2

s t s tv A e A e= +

2 2
0ω α>

2 2
1,2 0s jα ω α= − ± −

1j = −
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recap:Natural Response of the Unforced Parallel 
RLC Circuit
 When s1 is not equal to s2, the solution to the second-order differential 

Eq. 9.4-2 for t>0 is

 The roots of the characteristic equation may be rewritten as

Where                         and                     

 The roots of the characteristic equation assume three possible 
conditions:

1. Two real and distinct roots when  overdamped
2. Two real equal roots when         critically damped
3. Two complex roots when        underdamped

2 2 2 2
1 0 2 0   and   s sα α ω α α ω= − + − = − − −

1 2
n 1 2

s t s tv A e A e= +

1/(2 )RCα = 2
0 1/( )LCω =

2 2
0α ω>

2 2
0α ω=

2 2
0α ω<

(9.4-6)
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Natural Response of the Unforced Parallel RLC 
Circuit

Critical damping provides the 
quickest approach to zero 
amplitude for a damped 
oscillator. With less damping 
(underdamping) it reaches the 
zero position more quickly, but 
oscillates around it. With more 
damping (overdamping), the 
approach to zero is slower. 
Critical damping occurs when 
the damping coefficient is equal 
to the undamped resonant 
frequency of the oscillator.

http://hyperphysics.phy-astr.gsu.edu/hbase/oscda.html%23c1
http://hyperphysics.phy-astr.gsu.edu/hbase/oscda.html%23c3
http://hyperphysics.phy-astr.gsu.edu/hbase/oscda.html%23c2
http://hyperphysics.phy-astr.gsu.edu/hbase/shm2.html%23c2
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Natural Response of an Underdamped Unforced 
Parallel RLC Circuit
 The complex roots lead to an oscillatory-type response. We define the 

square root                as        , which we will call the damped resonant 
frequency. The factor       , called the damping coefficient, determines 
how quickly the oscillator subside. Then the roots are

Therefore, the natural response is

or

1,2 ds jα ω= − ±

d d
n 1 2

j t j tt tv A e e A e eω ωα α −− −= +

2 2
0ω α− dω

α

( )d d
n 1 2

j t j ttv e A e A eω ωα −−= +
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using Euler identity

 Let us use the Euler identity

The natural response can be rewritten as

 We replace (A1+A2) and j(A1–A2) with new constants B1 and B2. A1 and 
A2 must be complex conjugates so that B1 and B2 are real numbers.

 The natural underdamped response is oscillatory with a decaying 
magnitude. The rapidity of decay depends on     , and the frequency of 
oscillation depends on        .dω

α

( )
( ) ( )

n 1 1 2 2

1 2 1 2

cos sin cos sin

cos sin

t
d d d d

t
d d

v e A t jA t A t jA t

e A A t j A A t

α

α

ω ω ω ω

ω ω

−

−

= + + −

= + + −  

cos sinj te t j tω ω ω± = ±

( )n 1 2cos sint
d dv e B t B tα ω ω−= + (9.6-5)
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Back to basics: in Appendix D “Euler’s Formula”
 Euler’s formula

 Euler’s formula is

An alternative form of Euler’s formula is

To derive Euler’s formula, let

Differentiating, we obtain

When               , we have

as required. Thus we obtain the result, Eq. D-1

θθθ sincos je j +=

θθθ sincos je j −=−

θθ sincos jf +=

if
jj

j
d
df

=
+=

+−=

)sin(cos

cossin

θθ

θθ
θ

θjef = if
d
df

=
θ

(D-1)
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Finding coefficients using initial conditions

 Let us find the general form of the solution for B1 and B2 in terms of 
the initial conditions when the circuit is unforced.
Then at t=0 we have

The derivative of vn is

at t=0 we obtain

Recall that we found earlier that Eq. 9.4-10 provides dv(0)/dt for the 
parallel RLC circuit as

Therefore, we use Eqs. 9.6-6 and 9.6-7

n 1(0)v B=

( ) ( )n
2 1 1 2cos sint

d d d d
dv e B B t B B t
dt

α ω α ω ω α ω−= − − +  

n
2 1

(0)
d

dv B B
dt

ω α= −

(0) (0) (0)dv v i
dt RC C

= − − (9.6-7)

2 1
(0) (0)

d
v iB B
RC C

ω α= − − (9.6-8)
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Example 9.6-1 Natural Response of an Underdamped Second-Order Circuit

 Consider the parallel RLC circuit when R=25/3Ω, L=0.1H, C=1mF, 
v(0)=10V, and i(0)=-0.6A. Find the natural response vn(t) for t>0
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Solution
 First, we determine        and         to determine the form of the response. 

Consequently we obtain

Therefore,                 and the natural response is underdamped. The damped 
resonant frequency is

Hence, the characteristic roots are

and

Consequently, the natural response is obtained as

1/(2 ) 60RCα = = 2 4
0 1/( ) 10LCω = =

2α 2
0ω

and
2 2
0ω α>

( ) ( )1/ 2 1/ 22 2 4 3
d 0 10 3.6 10 80 rad/sω ω α= − = − × =

1

2

60 80d

d

s j j
s j
α ω

α ω

= − + = − +

= − −

60 60
n 1 2( ) cos80 sin80t tv t B e t B e t− −= +
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Solution
 Since v(0)=10, we have

We can use Eq. 9.7-8 to obtain

 Therefore, the natural response is

 A sketch of this response is shown in Figure 9.6-1.

60
n ( ) 10 cos80  Vtv t e t−=

1 (0) 10B v= =

2 1

3

(0) (0)

60 10 10 0.6
80 80 25 / 3000 80 10

7.5 15.0 7.5 0

d d d

v iB B
RC C

α
ω ω ω

−

= − −

× −
= − −

× ×
= − + =
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Natural Response of an Underdamped Unforced 
Parallel RLC Circuit
 The period of the oscillation is the time interval, denoted as Td. 

expressed as

However, the natural response of an underdamped circuit is not a pure 
oscillatory response. Thus we may approximate Td by the period 
between the first and third zero crossings, as shown in Figure 9.6-1.

 The frequency in hertz is

 The period of the oscillation of the circuit of example 9.6-1 is

2  sd
d

T π
ω

=

1  Hzd
d

f
T

=

2 79 ms
80dT π

= =
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Forced Response of an RLC Circuit
 The forced response of an RLC circuit described by a second-order 

differential equation must satisfy the differential equation and no 
arbitrary constants. The response to a forcing function will often be of 
the same form as the forcing function.

 We consider the differential equation for the second-order circuit as

The forced response xf must satisfy Eq. 9.7-1.

 If the forcing function is a constant, we expect the forced response also 
to be a constant since the derivatives of a constant are zero.

 If the forcing function is of the form                    , we expect

2

2 1 02 ( )d x dxa a a x f t
dt dt

+ + =

2
f f

2 1 0 f2 ( )d x dxa a a x f t
dt dt

+ + =

( ) atf t Be−=

f
atx De−=

(9.7-1)
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Forced Response of an RLC Circuit

 If the forcing function is a sinusoidal function, we can expect the forced 
response to b a sinusoidal function. If                                 , we will try

 Table 9.7-1 summarizes selected forcing functions and their associated 
assumed solutions.

0( ) sinf t A tω=

f 0 0 0sin cos sin( )x M t N t Q tω ω ω θ= + = +

Forcing Function Assumed solution

K A

Kt At + B

Kt2 At2 + Bt + C

K sin ωt A sin ωt + B cos ωt 

Ke-at Ae-at
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Example 9.7-1 Forced Response to an Exponential Input

 Find the forced response for the inductor current if for the parallel RCL 
circuit shown in Figure 9.7-1 when is=8e-2tA. Let R=6Ω, L=7H, and 
C=1/42F.
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Solution
 The source current is applied at t=0 as indicated by the unit step function u(t). 

The KCL equation at the upper node is

We wish to obtain the second-order differential equation in terms of i.

Substituting the component values and the source is, we obtain

S
v dvi C i
R dt

+ + =

2

2     and   di dv d iv L L
dt dt dt

= =

2

2

1 1 1
S

d i di i i
dt RC dt LC LC

+ + =

2
2

2 7 6 48 td i di i e
dt dt

−+ + =
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Solution
 We wish to obtain the forced response, so we assume that the response will be

where B is to be determined. Substituting the assumed solution into the 
differential equation, we have

or

Therefore, B=-12 and

2
f

ti Be−=

2 2 2 24 7( 2 ) 6 48t t t tBe Be Be e− − − −+ − + =

2 2(4 14 6) 48t tBe e− −− + =

2
f 12 ti e−= −
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Example 9.7-2 Forced Response to  a Constant Input

 Find the forced response if of the circuit of Example 9.7-1 when is=I0, where 
I0 is a constant.
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Solution

 Since the source is a constant applied at t=0, we expect the forced response to be a 
constant also. 
As a 1st method, we will use the differential equation to find the forced response. 
2nd method, we will demonstrate the alternative method that uses the steady-state 
behavior of the circuit to find if.

 The differential equation with the constant source is obtained, 

Again, we assume that the forced response is if=D, a constant,. Since the first and 
second derivatives of the assumed forced response are zero. We have

or
Therefore,

02

2

667 Ii
dt
di

dt
id

=++

6D=6I0

D=I0

if=I0
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Solution

 Another approach is to determine the steady-state response if of the circuit of 
Figure 9.7-1 by drawing the steady-state circuit model.

if=I0

Fig 9.7-1 Fig 9.7-2
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Forced Response of an RLC Circuit
 Again, consider the circuit of Example 9.7-1 and 9.7-2 (Figure 9.7-1) 

when the differential equation is

The characteristic equation of the current is

or

Thus, the natural response is

2

2 7 6 6 S
d i di i i
dt dt

+ + =

2 7 6 0
( 1)( 6) 0
s s
s s
+ + =
+ + =

6
n 1 2

t ti A e A e− −= +

(9.7-9)

(9.7-10)
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Forced Response of an RLC Circuit
 Consider the special case where                  .

Then we at first expect the forced response to be

However, the forced response and one component of the natural 
response would then both have the form          .
Let’s try substituting Eq. 9.7-11 into the differential equation (9.7-9). We 
then obtain

or

which is an impossible solution. Therefore, we need another form of the 
forced response when one of the natural response terms has the same 
form as the forcing function.

6
S 3 ti e−=

6
f

ti Be−=

6tDe−

(9.7-11)

6 6 6 6

6

36 42 6 18
0 18

t t t t

t

Be Be Be e
e

− − − −

−

− + ≠

=
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Forced Response of an RLC Circuit
 Let us try the forced response 

 Then, substituting Eq. 9.7-12 into Eq. 9.7-9, we have

where                        . We have

In general, if the forcing function is of the same form as one of the 
components of the natural response, xn1, we will use

where the integer p is selected so that the xf is not duplicated in the 
natural response. Use the lowest power, p, of t that is not duplicated in 
the natural response.

( 6 6 36 ) 7 ( 6 ) 6 18B g g tg B g tg Btg g− − + + − + =

6
f

ti Bte−=

6( ) tg g t e−= =

6
f

18 18    and    
5 5

tB i te−= − = −

f n1
px t x=

(9.7-12)
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Complete Response of an RLC Circuit
 The complete response is the sum of the natural response and the forced 

response; thus

 Let us consider the series RLC circuit of Figure 9.2-2 with a differential 
equation (9.2-8) as

When                                                     , we obtain

We let                                                                .

n fx x x= +

2

2 S
d v dvLC RC v v
dt dt

+ + =

1 H,    1/ 6 F,    and    5 L C R= = = Ω
2

2 5 6 6 S
d v dv v v
dt dt

+ + =

2 (0)V,  (0) 10 V,  and 2 V/s
3

t

S
e dvv v

dt

−

= = = −

(9.8-1)

Fig. 9.2-2
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Complete Response of an RLC Circuit
 To obtain natural response, we write the characteristic equation using 

operators as

or

Therefore the natural response is

 The forcing response is obtained by examining the forcing function and 
noting that its exponential response has a different time constant than the 
natural response, 

We can determine B by substituting Eq. 9.8-2 into Eq. 9.8-1. Then we 
have
or

2 5 6 0
( 2)( 3) 0

s s
s s

+ + =
+ + =

2 3
n 1 2

t tv A e A e− −= +

f
tv Be−=

( ) ( )5 6 4

2

t t t tBe Be Be e

B

− − − −+ − + =

=

(9.8-2)
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Complete Response of an RLC Circuit
 The complete response is then

In order to find A1 and A2 we use the initial conditions.
At t=0 we have v(0)=10, so we obtain

From the fact that dv/dt=-2 at t=0, we have

Solving the Eqs. 9.8-3 and 9.8-4 by Cramer’s rule,
We have A1=24 and A2=-16. Therefore,

1 210 2A A= + +

2 3
n f 1 2 2t t tv v v A e A e e− − −= + = + +

2 3
n f 24 16 2  Vt t tv v v e e e− − −= + = − +

1 22 3 2 2A A− − − = − (9.8-4)

(9.8-3)
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Example 9.8-1 Complete Response of a Second-Order Circuit

 Find the complete response v(t) for t>0 for the circuit of Figure 9.8-1. 
Assume the circuit is at steady state at t=0-
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Solution
 First, we determine the initial conditions of the circuit. At t=0- we have the circuit 

model shown in Figure 9.8-2, where we replace the capacitor with an open circuit 
and the inductor with a short circuit. Then the voltage and inductor current is

After the switch is thrown, we can write KVL for the right-hand mesh of Figure 
9.8-1 to obtain

The KCL equation at node a will provide a second equation in terms of v and i as

06 =++− i
dt
div

Fig 9.8-1 Fig 9.8-2

V(0-)=6V, i(0-)=1A

0
4
1

4
=++

−
dt
dvivv s

(9.8-5)

(9.8-6)
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Solution
 Equations 9.8-5 and 9.8-6 may be rearranged as

We will use operators so that s=d/dt, s2=d2/dt2, and 1/s=∫dt.

The characteristic equation is obtained from Cramer’s rule as the determinant Δ

Set the determinant to zero to obtain

Therefore, the roots of the characteristic equation are

44
1

4

06

sv
dt
dvvi

vi
dt
di

=





 ++

=−





 +

4
)1(

4
1

0)6(

svvsi

vis

=++

=−+ (9.8-9)

(9.8-10)

1)1)(6(
4
1

+++=∆ ss

04)1)(6( =+++ ss

5and2 21 −=−= ss
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Solution
 To find the second-order differential equation describing the circuit, we use 

Cramer’s rule for Eqs. 9.8-9 and 9.8-10 to solve for v in order to obtain

Of course, this equation can be rewritten as

and hence the second-order differential equation is

The natural response vn is

The forced response is assumed to be of the form

Substituting vf  into the differential equation, we have

Therefore,

107
)6()4/)(6(

2 ++
+

=
∆

+
=

ss
vsvsv ss

svsvss )6()107( 2 +=++

s
s v

dt
dvv

dt
dv

dt
vd 61072

2

+=++

tt
n eAeAv 5

2
2

1
−− +=

t
f Bev 3−=

t
f

ttttt

ev
B

eeBeBeBe

3

33333

9
9

361810219

−

−−−−−

−=

−=
+−=+−

(9.8-11)

(9.8-12)
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Solution
 The complete response is then

Since v(0)=6, we have

or

We also know that i(0)=1A. We can use Eq. 9.8-8 to determine dv(0)/dt and then 
evaluate the derivative of Eq. 9.8-13 at t=0. Eq. 9.8-8 states that

At t=0 we have

ttt
fn eeAeAvvv 35

2
2

1 9 −−− −+=+=

15
96)0(

21

21

=+
−+==

AA
AAv

svvi
dt
dv

+−−= 4

4664)0()0()0(4)0(
−=+−−=+−−= svvi

dt
dv

(9.8-13)

(9.8-14)
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Solution
 Let us take the derivative of Eq. 9.8-13 to obtain

At t=0 we obtain

Since dv(0)/dt=-4, we have

Solving Eqs. 9.8-15 and 9.8-14 simultaneously, we obtain

Therefore, 

ttt eeAeA
dt
dv 35

2
2

1 2752 −−− +−−=

2752)0(
21 +−−= AA

dt
dv

3152 21 =+ AA

3
1and

3
44

21 == AA

V9
3
1

3
44 352 ttt eeev −−− −+=

(9.8-15)
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State Variable Approach to Circuit Analysis
 The state variables of a circuit are a set of variables associated with the 

energy of the energy storage elements of the circuit.
Thus, they describe the complete response of a circuit to a forcing 
function and the circuit’s initial conditions.
We will choose as the state variables those variables that describe the 
energy storage of the circuit
Thus, we will use the independent capacitor voltages and the 
independent inductor currents.

 Consider the circuit shown in Figure 9.9-1. The state variables are v1 
and v2.
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State Variable Approach to Circuit Analysis
 Writing the KCL at nodes 1 and 2, we have

node 1:

node 2:

Equations9.9-1 and 9.9-2 can be rewritten as

11 2 1
1

1 2

22 1 2
2

3 2

a

b

v vdv v vC
dt R R

v vdv v vC
dt R R

− −
= +

− −
= +

1 1 1 2

1 1 1 2 1 2 1 1

2 2 2 1

2 3 2 2 2 2 2 3

a

b

vdv v v v
dt C R C R C R C R

vdv v v v
dt C R C R C R C R

+ + − =

+ + − =

(9.9-1)

(9.9-2)

(9.9-3)

(9.9-4)
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State Variable Approach to Circuit Analysis
 Assume that                                                             .

Then we have

Using operator, we have

If we wish to solve for v1, we use Crammer’s rule to obtain

1
1 22 a

dv v v v
dt

+ − =

1 1 1 2 2 3 2 21,  1,   1,  and  1/ 2C R C R C R C R= = = =

1 2

2 2

( 2)
2 ( 3)

a

b

s v v v
v s v v
+ − =

− + + =

1
( 3)

( 2)( 3) 2
a bs v vv

s s
+ +

=
+ + −

2
2 22 3 b

dvv v v
dt

− + + =

(9.9-7)

(9.9-5)

(9.9-6)
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State Variable Approach to Circuit Analysis
 The characteristic equation is obtained from the denominator and has the 

form

The characteristic roots are s=-4 and s=-1. The second-order differential 
equation can be obtained by rewriting Eq. 9.9-7 as

Then the differential equation for v1 is

( ) ( )2
15 4 3 a bs s v s v v+ + = + +

2 5 4 0s s+ + =

2
1 1

12 5 4 3a
a b

dvd v dv v v v
dt dt dt

+ + = + + (9.9-8)
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State Variable Approach to Circuit Analysis
 We now proceed to obtain the natural response

and forced response, which depends on the form of the forcing function. 
If va=10 V and vb=6 V, v1f will be a constant. (see Table 9.7-1)
We obtain v1f by substituting va and vb into Eq. 9.9-8, obtaining

or

Therefore,

Then

1f4 3 a bv v v= +

4
1n 1 2

t tv A e A e− −= +

1f4 30 6 36v = + =

1f 9v =

4
1 1n 1f 1 2 9t tv v v A e A e− −= + = + + (9.9-9)
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State Variable Approach to Circuit Analysis
 If we know that v1(0)=5 V and v2(0)=10 V, we first use v1(0)=5 along 

with Eq. 9.9-9 to obtain

and, Therefore,

Now we need the value of dv1/dt at t=0. Referring back to Eq. 9.9-5, we 
have

Therefore, at t=0 we have

The derivative of the complete solution at t=0 is

Therefore,

1 1 2(0) 9v A A= + +

1 2 4A A+ = − (9.9-10)

1
2 12a

dv v v v
dt

= + −

1
2 1

(0) (0) (0) 2 (0) 10 10 2(5) 10a
dv v v v

dt
= + − = + − =

1
1 2

(0) 4dv A A
dt

= − −

1 24 10A A+ = − (9.9-11)
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State Variable Approach to Circuit Analysis
 Solving Eqs. 9.9-10 and 9.9-11, we have

Therefore,

As you encounter circuits with two or more energy storage elements, you 
should consider using the state variable method of describing a set of 
first-order differential equations.

 The state variable method uses a first-order differential equation for 
each state variables to determine the complete response of a circuit.

1 22   and    2A A= − = −

4
1( ) 2 2 9 Vt tv t e e− −= − − +
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summary table 
Table 9.9-1 State Variable Method of Circuit Analysis

1. Identify the state variables as the independent capacitor voltage and inductor currents.

2. Determine the initial conditions at t=0 for the capacitor voltages and the inductor currents

3. Obtain a first-order differential equation for each state variable using KCL or KVL.

4. Use the operator s to substitute for d/dt

5. Obtain the characteristic equation of the circuit by noting that it can be obtained by setting the 
determinant of Cramer’s rule equal to zero.

6. Determine the roots of the characteristic equation, which then determine the form of the natural 
response. 

7. Obtain the second-order (or higher-order) differential equation for the selected variable x by 
Cramer’s rule.

8. Determine the forced response xf by assuming an appropriate form of xf and determining

9. Obtain the complete solution x= xn + xf

10. Use the initial conditions on the state variables along with the set of first-order differential 
equations  (step3) to obtain dx(0)dt

11. Using x(0) and dx(0)/dt for each state variable, find the arbitrary constants A1, A2, … An to 
obtain the complete solution x(t)
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Example 9.9-1 Complete Response of a Second-Order Circuit

 Find i(t) for t>0 for the circuit shown in Figure 9.9-2 when R=3Ω, L=1H, 
C=1/2F, and is=2e-3tA. Assume steady state at t=0-.
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Solution
 First, we identify the state variables as i and v. The initial conditions at t=0 are 

obtained by considering the circuit with the 10-V source connected for a long time 
at t=0-. Then v(0)=10V and i(0)=0A. At t=0, the voltage source is disconnected 
and the current source is connected.

 The first differential equation is obtained by using KVL around the RLC mesh 

The second differential equation is obtained by using KCL at the node at the top of 
the capacitor

Substituting the component values, we have

vRi
dt
diL =+

sii
dt
dvvi

dt
di 22and03 =+=−+

sii
dt
dvC =+
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Solution
 Using the operator s=d/dt, we have

Therefore the characteristic equation obtained from the determinant is

Thus, the roots of the characteristic equation are

Since we wish to solve for i(t) for t>0, we use Cramer’s rule to solve Eqs. 9.9-14 
and 9.9-15 for i, obtaining

Therefore, the differential equation is

The natural response is 

sisvi
vis
22

0)3(
=+
=−+

02)3( =++ ss

(9.9-14)

(9.9-15)

23
2

2 ++
=

ss
ii s

sii
dt
di

dt
id 2232

2

=++

1and2 21 −=−= ss

tt
n eAeAi 2

21
−− +=

(9.9-16)



School of Electrical Engineering and Computer Science, SNU
Prof. SungJune Kim

Solution
 We assume the forced response is of the form 

Substituting if into Eq. 9.9-16, we have

Therefore, B=2 and

The complete response is

Since i(0)=0,

We need to obtain di(0)/dt from Eq. 9.9-12, which we repeat here as

Therefore, at t=0 we have

10)0()0(3)0(
=+−= vi

dt
dv

)2(22)3(3)9( 3333 tttt BeBeBeBe −−−− =+−+

20 21 ++= AA

03 =−+ vi
dt
di

ttt eeAeAi 32
21 2 −−− ++=

t
f Bei 3−=

(9.9-17)

t
f ei 32 −=

V should be i
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Solution
 The derivative fo the complete response at t=0 is

Since di(0)/dt=10, we have

and repeating Eq. 9.9=17, we have

Adding these two equations, we determine that A1=12 and A2=-14. Then we have 
the complete solution for i as

62)0(
21 −−−= AA

dt
dv

162 21 =−− AA

)A(21412 32 ttt eeei −−− +−=

221 −=+ AA

V should be i
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Roots in the Complex Plane
 Let us consider the roots of a parallel RLC circuit. The characteristic 

equation (9.4-3) is

and the roots are

where                       and                  

When,                the roots are complex and

 In general, roots are located in the complex plane, the location being 
defined by coordinates measured along the real of σ-axis and the 
imaginary or jω-axis. This is referred to as the s-plane of as the 
complex frequency plane.

2 1 1 0s s
RC LC

+ + =

2 2
1,2 0s α α ω= − ± −

2 2
0ω α>

2 2
1,2 0s jα ω α= − ± −

1/(2 )RCα = 2
0 1/( )LCω =
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Roots in the Complex Plane
 Figure 9.10-1 

The complete s-plane showing the 
locations of the two roots, s1 and s2,  
of the characteristic equation in the 
left-hand portion of the s-plane. The 
roots are designated by the x simble

for the four conditions: 
(1) undamped, α=0
(2) underdamped,
(3) critically damped,
(4) overdamped,. 2 2

0α ω>

2 2
0α ω=

2 2
0α ω<
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Roots in the Complex Plane
 A summary of the root locations, the type of response, and the form of the response 

for v(0)=1 and i(0)=0 is presented in Table 9.10-1

Table 9.10-1 The Natural Response of a Parallel RLC Circuit
Root Location Type of Response Form of Response for v(0)=1V and i(0)=0
s=-r1, -r2
two real roots

Overdamped

s=-r1, -r2
two equal roots

Critically damped
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Roots in the Complex Plane

Table 9.10-1 The Natural Response of a Parallel RLC Circuit

Root Location Type of Response Form of Response for v(0)=1V and i(0)=0

s=-α±jωd Underdamped

s=±jω0 Undamped
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