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Second-Order Circuit

A second-order circuit is a circuit that is represented by a second-order
differential equation.

2

X0+ 20X+ X0 = £

X(t): output of the circuit (=response of the circuit)
f(t) : input to the circuit

o . damping coefficient

o, : resonant frequency
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Second-Order Circuit

To find the response of the second-order circuit,

o Represent the circuit by a second-order differential equation.

o Find the general solution of the homogeneous differential equation. This
solution is the natural response, X (t). The natural response will contain two
unknown constants that will be evaluated later.

o Find a particular solution of the differential equation. This solution is the
forced response, x(t).

o Represent the response of the second-order circuit as X(t)=x,(t) + X«(t).

o Use the initial conditions, for example, the initial values of the currents in
inductors and the voltage across capacitors, to evaluate the unknown constants.
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Direct Method

Let us consider the circuit shown in Figure 9.2-1.
Writing the nodal equation at the top node, we have

vV vV .
—+|+C%: I
We write the equation for the inductor as L4
di Vi
; ] 1
Then V LE LS () R L T C
L d| dii .
+CL— =1 — Ground
R dt dt’

This method of obtaining the second-order differential
equation may be called the direct method and is
summarized in Table 9.2-1.
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Direct Method

Table 9.2-1

The Direct Method for Obtaining the Second-Order Differential Equation of a

Circuit
Stepl Identify the first and second variables, X, and Xx,. These variables
are capacitor voltages and/or inductor currents.
Step2 Write one first-order differential equation, obtaining 9% _ f (%, %,)
dt ’
Step3 Obtain an additional first-order differential equation in terms of the
second variable so that dx, _ Kx, of ¥ = 1 dx,
dt K dt
Step4 Substitute the equation of step3 into the equation of step2, thus

obtaining a second-order differential equation in terms of x,
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Direct Method-example

Let us consider the circuit shown in Figure 9.2-2.
Writing KVL around the loop, we have

' . di v R. v
Lﬂ+v+R|:vS or —+—t+—i=—
dt dt L L L
We write the equation for the capacitor as
dv
1=C— L C
at — Y TYN {(
—— -+ —
Then d°v Rdv 1 Vg i v

G Ld LcLc vsC)

This method is the direct method.




Operator Method: using differential operator s

Another method of obtaining the second-order equation describing a
circuit is called the operator method.

Consider the circuit shown in Figure 9.2-3

The mesh equations are di ..
| le—;;_R(Il—nz)ﬂs
o |
and RGi,-i)+L —2=0
(2 1) 2 dt

Now letususe R=1Q, L =1H, and L,=2H

Thenwe have di, . . L
E‘Hl_lzzvs Y YY)
and - +252 =0 vsC)q Rq v
dt
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Operator Method: Form 2"d order algebraic equation using
differential operator s, then back to the differential eq.

We may rearrange these equations as

di, . . A
d_tl‘Hl_'z—Vs and —I1+I2+2d—t2=0

The differential operator s, where s=d/dt, is used to transform
differential equations into algebraic equations.

(s+1i,—i,=v, and - +(2s+1)i,=0

We may use Cramer’s rule to solve for i,, obtaining

i A
* (s+D(2s+1)-1
Therefore (252 +3s)i, =V,
and the differential equation is
a4, _di,
2—=+3—==V;
dt dt
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see Appendix A.4 “Cramer’s rule” (page 830)

Cramer’s rule
o A set of simultaneous equations

A X, +a,X, - +a, n:bl
8y X, +8,,X, ++-+8, X =D,

2n“*n
a X, +a,X +--+a X =hb
can be written in matrix formas Ay _p

o Cramer’s rule states that the solution for the unknown, x,, is

where Ais the determinant of A and A, is A with the kth column
replaced by the column vector b.
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Operator Method

Table 9.2-2

Operator Method for obtaining the second-order differential equation of a circuit

Stepl Identify the variable x, for which the solution is desired

Step?2 Write one differential equation in terms of the desired variable x, and a
second variable X,

Step3 Obtain an additional equation in terms of the second variable and the first
variable

Step4 Use the operator s=d/dt and 1/s=/dt to obtain two algebraic equations in
terms of s and the two variables x; and X,.

Step5 Using Cramer’s rule, solve for the desired variable so that
X,=f(s,source)=P(s)/Q(s), where P(s) and Q(s) are polynomials in s

Step6 Rearrange the equation of step 5 so that Q(s)x,=P(s)

Step7 Convert the operators back to derivatives for the equation of step 6 to
obtain the second-order differential equation
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Operator Method: Example 9.2-1 Representing a Circuit

py a Ditterential Equation

Find the differential equation for the current i, for the circuit of Figure 9.2-4

2.0 1H
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Solution

Write the two mesh equations using KVL to obtain

2|+%_%:V 2 Q 1H
gt odt

—AW
Ay g S, |
Olt+3|2+2dt_0 USCj) q lHq 30

Using the operator s=d/dt, we have

(2+9)i, —si, =V
and — Si1 + (3+ 28)i2 =0

Using Cramer’s rule to solve for i,, we obtain
sV SV,

S

i: =
2 (2+5)(3+25)—s® s*+7s+6

(9.2-16)

Rearranging Eq. 9.2-16, we obtain (52 | 75, )i = sy

Therefore, the differential equation for i, is  d°i, 7di2 6i. — av,
a "t 2 dt

#p3*,  School of Electrical Engineering and Computer Science, SNU
W& Prof. SungJune Kim




Operator Method Example 9.2-2 Representing a Circuit

py a Ditferential Equation

Find the differential equation for the voltage v for the circuit of Figure 9.2-5

R,
U
—\N\NN—2
1 kQ
R 1Q
USCD C==<1mF
L»>1mH
i |
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Solution

Ry
NN—0
The KCL node equation at the upper node 1 kQ
v-v, . _dv K § ks
+1+C—=0
R, dt vs () C==1mF
Write the equation for the current through the branch L 1mH
containing the inductoras ., di __ i
Using the operator s=d/dt, we have the two equations = Ground
\" .V
—+Csv+i=—
1 1
—V+Ri+Lsi=0
Substituting the parameter values and rearranging, we have
(10° +10°s)v+i =10"v,
—v+(107°s+2i=0
(s+1000)v, (s+1000)v,

- ] i V = —
Using Cramer’s rule, solve for v to obtain (s+1)(s+1000)+10° _ 57 +1001s +1001x10°

Therefore, (s*+1001s+1001x10°%)v = (s+1000)v,

- - - - 2
or the differential equation we seek is M+10013—\;+1001x103v _ ddvts

dt?

+1000v,



Solution of the Second-Order Differential Equation
— The Natural Response

A circuit with two irreducible energy elements can be represented by a
second-order differential equation of the form

‘; ;(+ald—+a x=f(t)
where the constants a,, a,, a, are known and the forcing function f(t) is
specified.

The complete response is given by
X=X +X

where X, is natural response and x; is forced response. The natural
response satisfies the unforced differential equation when f(t)=0. The
forced response x; satisfies the differential equation with the forcing
function present.
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The Natural Response from Characteristic Equation

The natural response of a circuit, x,,, will satisfy the equation

2
22 +a1%+ax 0 (9.3-2)

Since x, and its derivatives must satisfy the equation, we postulate the

exponential solution ¢
X = Age’ (9.3-3)

where A and s are to be determined.
Substituting Eq. 9.3-3 in Eqg. 9.3-2, we have

a,As’e™ +a,Ase” +a,Ae” =0 (9.3-4)

Since x = Ae® we may rewrite Eq. 9.3-4 as
(8,8 +a,5+3,)x=0

Since we do not accept the trivial solution, it is required that
a,s’+a,s+a,=0 (9.3-5)

This equation is called a characteristic equation.
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Characteristic Equation

The characteristic equation is derived from the governing differential
equation for a circuit by setting all independent source to zero value
and assuming an exponential solution.

The solution of Eq. 9.3-5 has two roots, s, and s,, where

_ _a1+\/a12_4a2a0 and s, = _ai_\/af_Afazao

S
' 2a, 2a,

When there are two distinct roots, there are two solutions such that

X, = Ae™ + Ae”

where Al and A2 are unknown constants that will be evaluated later.

The roots of the characteristic equation contain all the information
necessary for determining the character of the natural response.




Example 9.3-1 Natural Response of a Second-Order Circuit

Find the natural response of the circuit current i, shown in Figure 9.3-2. Use
operators to formulate the differential equation and obtain the response in
terms of two arbitrary constants.

.!72 1 H
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Solution
8Q 2 H

_/\/\/\,_{'YW\
z@(z) B 4 Q /f;\) 1 H

Writing the two mesh equations  12i, + 2%—45 =V,
t

_ai,+4i +1%% _ g
dt

Using the operator s=d/dt, we obtain (12 + 2s)i, —4i, = v,
—41,+(4+5s)i, =0

Using Cramer’s rule, solve for i,
4v, 4v 2V

S S

i = = =
? (12+2s)(4+5)-16 252+20s+32 s?+10s+16

Therefore, (s +10s+16)i, = 2v,



Solution

Note that (s®+10s+16) =0 is the characteristic equation. Thus, the roots of the
characteristic equation are s,=-2 and s,=-8. Therefore, the natural response is

X, =Ae ™ +Ae™

where x=i,. The roots s, and s, are the characteristic roots and are often called the
natural frequencies. The reciprocals of the magnitude of the real characteristic roots
are the time constants. The time constants of this circuit are 1/2s and 1/8s.
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Natural Response of the Unforced Parallel RLC
Circuit

Consider the circuit shown in Figure 9.4-1 o

Write the KCL at the node to obtain
v 1t . dv
—+—| vdr+1(0)+C—=0 9.4-1
R Ljo r+1(0) dt ( )

I

Taking the derivative, we have =
2
Cd—;/-|-£y-|-£V:0 (9.4-2)
dt® Rdt L

Using the parameter s, we obtain the characteristic equation

S° + L S+ 1 _ 0
RC LC
The two roots of the characteristic equation are

2 12 2 1/2
1 1 1 1 1 1
S, =———+ — and s, =- — —
2RC |:(2RC) LC] 2RC [(ZRCJ LC}
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Natural Response of the Unforced Parallel RLC

Circuit
When s, is not equal to s,, the solution to the second-order differential
Eqg. 9.4-2 fort>01s

v =Ae" +Ae” (9.4-6)

The roots of the characteristic equation may be rewritten as
s, =—a+ya’—w and s, =-a—+a’ -}

Where «=1/(2RC) and @?=1/(LC)

The roots of the characteristic equation assume three possible

conditions:
1. Two real and distinct roots when o’ > @} - overdamped
2. Two real equal roots when  ¢? = &’ —> critically damped

3. Two complex roots when o2 < &’ - underdamped




Natural Response of the Unforced Parallel RLC
Circuit

Let us determine the natural response for the overdamped RLC circuit
of Figure 9.4-1 when the initial conditions are v(0) and i(0) for the
capacitor and the inductor, respectively.

At t=0 for Eq. 9.4-6, we have

Since A; and A, are both unknown, we need one more equation at t=0.
Rewriting Eq. 9.4-1 at t=0, we have

v(0) +i(0)+ Cdv(O) 0

Since 1(0) and v(0) are known, we have
dv(0)  v(0) i(0) (9.4-10)

dt RC C

1}# School of Electrical Engineering and Computer Science, SNU
Wy Prof. SungJune Kim




Natural Response of the Unforced Parallel RLC
Circuit

Thus, we now know the initial value of the derivative of v in terms of
the initial conditions.

Taking the derivative of Eq. 9.4-6 and setting t=0, we obtain

dv_(0)
dt

=S A +S,A (9.4-11)

Using Egs. 9.4-10 and 9.4-11, we obtain a second equation in terms of
the two constants as

0) 1(0
S A +3,A, :_VFEC) - I(C) (9.4-12)

Using Egs. 9.4-9 and 9.4-12, we may obtain A, and A,.
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Example 9.4-1 Natural Response of an Overdamped Second-Order Circuit

Find the natural response of v(t) for t>0 for the parallel RLC circuit shown in
Figure 9.4-1 when R=2/3Q, L=1H, C=1/2F, v(0)=10V, and i(0)=2A.
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Solution v

Using Eqg. 9.4-3, the characteristic equation is I R

21 Lsit g l
RC™ LC l
or s*+3s+2=0

Therefore, the roots of the characteristic equation are

ss=-1 and s,=-2
Then the natural response is  V, = Ale_t + Aze_2t (9.4-13)
The initial capacitor voltage is v(0)=10, so we have
Vi (0)=A+A,
or 10=A+A (9.4-14)
We use Eqg. 9.4-12 to obtain the second equation for the unknown constants.
v(0) (0
10 2
Therefore, ~A~-2A=-77-7,~ 734 (9.4-15)



Solution

= Solving Egs. 9.4-14 and 9.4-15 simultaneously, we obtain A2=24 and Al1=-14.
Therefore, the natural response is

v, =(-14e™" + 24V

The natural response of the circuit is shown in Figure 9.4-2

10
5 —
vn(1)
(V) 3
| | | |
’ N ! 2 B
t(s)
-5
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Natural Response of the Critically Damped
Unforced Parallel RLC Circuit

We consider the parallel RLC circuit, and we will determine the
special case when the characteristic equation has two equal real roots.

Let us assume that s,=s, and proceed to find v, (t)
V, = Ae™ + A = Ae™ (9.5-1)

Since the two roots are equal, we have only one undetermined
constant, but we still have two initial conditions to satisfy. Clearly, Eq.
9.5-1 is not the total solution.
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recap:Natural Response of the Unforced Parallel
RLC Circuit

When s, is not equal to s,, the solution to the second-order differential
Eqg. 9.4-2 fort>01s

v =Ae" +Ae” (9.4-6)

The roots of the characteristic equation may be rewritten as
s, =—a+ya’—w and s, =-a—+a’ -}

Where «=1/(2RC) and @?=1/(LC)

The roots of the characteristic equation assume three possible

conditions:
1. Two real and distinct roots when o’ > @} - overdamped
2. Two real equal roots when  ¢? = &’ —> critically damped

3. Two complex roots when o2 < &’ - underdamped




Natural Response of the Critically Damped
Unforced Parallel RLC Circuit

We try the solution

v =e"(At+A) (9.5-2)

Let us consider a parallel RLC circuit where
L=1H, R=1Q, C=1/4F, v(0)=5V, and i(0)=-6A

The characteristic equation for the circuit is

I IS S
RC LC

or s°+4s+4=0

The two roots are then 5 =S, =2
Using Eqg. 9.5-2 for the natural response, we have

v =e " (At+A) (9.5-3)
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Natural Response of the Critically Damped
Unforced Parallel RLC Circuit

AN | veiux (A
I Tas &

Since v,(0)=5, we have at t=0
A, =5

Differentiate Eq. 9.5-3 to obtain
% =-2Ate™ + Ae? -2Ae™
Evaluating Eq. 9.5-4 at t=0, we have

av(0) ,
o

Again, we may use Eg. 9.4-10 so that
dv(0) _ v(0) i(0)

dt RC C
or -5 -6
A =——— =4
A=2h, 1/4 1/4
Therefore, A =14

School of Electrical Engineering and Computer Science, SNU
Prof. SungJune Kim

(9.5-4)



Natural Response of the Critically Damped
Unforced Parallel RLC Circuit

= The natural response is
v =e'(14t+5) V

= The critically damped natural response of this RLC circuit is shown in

Figure 9.5-1
5
v, (V)
T 25
0 | |
0 1 2
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Natural Response of an Underdamped Unforced
Parallel RLC Circuit

The characteristic equation of the parallel RLC circuit will have two
complex conjugate roots when o’ <@’ . This condition is met when

LC < (2RC)?

or when
L < 4R*C

Recall that v = A1 Ag™

where S, =—a T a’ -

When 2 2
w, >a
we have
S, =—at jJof —a
where
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recap:Natural Response of the Unforced Parallel
RLC Circuit

When s, is not equal to s,, the solution to the second-order differential
Eqg. 9.4-2 fort>01s

v =Ae" +Ae” (9.4-6)

The roots of the characteristic equation may be rewritten as
s, =—a+ya’—w and s, =-a—+a’ -}

Where «=1/(2RC) and @?=1/(LC)

The roots of the characteristic equation assume three possible

conditions:
1. Two real and distinct roots when o’ > @} - overdamped
2. Two real equal roots when  ¢? = &’ —> critically damped

3. Two complex roots when o2 < &’ - underdamped




Natural Response of the Unforced Parallel RLC

Circuit

Critical damping provides the
quickest approach to zero
amplitude for a damped
oscillator. With less damping
(underdamping) it reaches the
zero position more quickly, but
oscillates around it. With more
damping (overdamping), the
approach to zero is slower.
Critical damping occurs when
the damping coefficient is equal
to the undamped resonant
frequency of the oscillator.

Twice critical
damping

L Critical
- ¢ Damping *

..............

Ly ! b R S SRS )
i T P 1

¥ Time

aaaaaaa

f Underdamped

1z 14-

1.6 {zec)

Oscillator with resonant
frequency 10 radss
started from rest.

After Barger&Olssan


http://hyperphysics.phy-astr.gsu.edu/hbase/oscda.html%23c1
http://hyperphysics.phy-astr.gsu.edu/hbase/oscda.html%23c3
http://hyperphysics.phy-astr.gsu.edu/hbase/oscda.html%23c2
http://hyperphysics.phy-astr.gsu.edu/hbase/shm2.html%23c2

Natural Response of an Underdamped Unforced
Parallel RLC Circuit

The complex roots lead to an oscillatory-type response. We define the
square root Ve -o° as @ , which we will call the damped resonant
frequency. The factor « , called the damping coefficient, determines
how quickly the oscillator subside. Then the roots are

S, =—0% o,
Therefore, the natural response is
Vn _ Aie—ateja)dt 4 Aze—ate—ja)dt
or

Vn _ e—at (Aiejwdt n Aze—ja)dt)
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using Euler identity

Let us use the Euler identity
eI = cos ot £ jsin wt
The natural response can be rewritten as
v, =e " (Acosat+ jAsinet+ A, cosest— jA, sina,t)

=e [ (A+A)cosat+j(A-A)sinot]

We replace (A;+A,) and j(A,—A,) with new constants B, and B,. A, and
A, must be complex conjugates so that B, and B, are real numbers.

v, =e (B, cosw,t+ B, sin w;t) (9.6-5)

n

The natural underdamped response is oscillatory with a decaying
magnitude. The rapidity of decay depends on & , and the frequency of
oscillation depends on @ .
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Back to basics: in Appendix D “Euler’s Formula”

Euler’s formula

o Euler’s formula is
e’ =cos@+ jsiné (D-1)

An alternative form of Euler’s formula is
e 1% =cos@d— jsing

To derive Euler’s formula, let f =c0sé+ jsing
Differentiating, we obtain
ﬂ:—sin¢9+ jcoséd
de
= j(cos@+ jsinO)

= if
_ df .
When f =ei? |, we have @=|f

as required. Thus we obtain the result, Eq. D-1



Finding coefficients using initial conditions

Let us find the general form of the solution for B, and B, in terms of
the initial conditions when the circuit is unforced.

Then at t=0 we have v (0)=B,

The derivative of v, is

V .
ddtn =e|(w,B,~aB,)cosw,t —(w,B, + B, )sinm,t |
at t=0 we obtain v, (0) =w,B,-aB,
dt

Recall that we found earlier that Eq. 9.4-10 provides dv(0)/dt for the
parallel RLC circuitas  dv(0) __v(0) i(0)

9.6-7
dt RC C ( )
Therefore, we use Eqgs. 9.6-6 and 9.6-7
v(0) (0
@,B, =aB, - ©) 10 (9.6-8)

RC C



Example 9.6-1 Natural Response of an Underdamped Second-Order Circuit

Consider the parallel RLC circuit when R=25/3Q2, L=0.1H, C=1mF,
v(0)=10V, and i(0)=-0.6A. Find the natural response v (t) for t>0
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Solution

First, we determine @® and @ to determine the form of the response.
Consequently we obtain

a =1/(2RC) =60 and w; =1/(LC) =10*

Therefore, @ >a® and the natural response is underdamped. The damped
resonant frequency is

1/2

o, =(0f -a?) " =(10*~3.6x10°)" =80 radis

Hence, the characteristic roots are
s, =—a+ jo, =-60+ j80

and S, =—a — o,
Consequently, the natural response is obtained as

v_(t) = Be™ cos80t + B,e ™" sin80t
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Solution

Since v(0)=10, we have

B, =v(0) =10 10
We can use Eg. 9.7-8 to obtain i
v
V)
2820 ——
P “ 5 | | AN |-
~ 60x10 10 -0.6 20\y 60 80 \100_120
80  80x25/3000 80x107 fima) =
=7.5-15.0+75=0

Therefore, the natural response is

v_(t) =106 cos80t V

A sketch of this response is shown in Figure 9.6-1.
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Natural Response of an Underdamped Unforced
Parallel RLC Circuit

The period of the oscillation is the time interval, denoted as T,.

expressed as
P 27

Wy

However, the natural response of an underdamped circuit is not a pure
oscillatory response. Thus we may approximate T, by the period
between the first and third zero crossings, as shown in Figure 9.6-1.

The frequency in hertz is

fo,:i Hz

d
The period of the oscillation of the circuit of example 9.6-1 is

T, =2—”=79 ms
80
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Forced Response of an RLC Circuit

The forced response of an RLC circuit described by a second-order
differential equation must satisfy the differential equation and no
arbitrary constants. The response to a forcing function will often be of
the same form as the forcing function.

We consider the differential equation for the second-order circuit as
d2

—+a1—+a0x_ f(t) (9.7-1)
The forced response x; must satlsfy Eqg. 9.7-1.
ddxf +a1 rag = ()

If the forcing function is a constant, we expect the forced response also
to be a constant since the derivatives of a constant are zero.

If the forcing function is of the form f(t)=Be™ , we expect
x. = De™
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Forced Response of an RLC Circuit

If the forcing function is a sinusoidal function, we can expect the forced
response to b a sinusoidal function. If ~ f(t)=Asinagt , we will try

X, =M sinw,t + N cos a,t = Qsin(a,t + 6)

Table 9.7-1 summarizes selected forcing functions and their associated
assumed solutions.

Forcing Function Assumed solution
K A

Kt At + B

Kt? At? + Bt + C

K sin wt A sin wt + B cos wt
Ke-at Aeat
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Example 9.7-1 Forced Response to an Exponential Input

Find the forced response for the inductor current i. for the parallel RCL
circuit shown in Figure 9.7-1 when is=8e-2'A. Let R=6Q, L=7H, and
C=1/42F.

)

i u(t) CD R L
l
l

\
/1
B

— Ground
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Solution

The source current is applied at t=0 as indicated by the unit step function u(t).
The KCL equation at the upper node is

We wish to obtain the second-order differential equation in terms of i.

V= Lﬂ and Q—LE
dt dt dt?

Substituting the component values and the source i, we obtain

dii 1 di 1. 1.

—+——+ =—I, o
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Solution

We wish to obtain the forced response, so we assume that the response will be
i =Be™

where B is to be determined. Substituting the assumed solution into the
differential equation, we have

4Be™' +7(-2Be™") +6Be ™ =48e™
or (4-14+6)Be™ = 48e™

Therefore, B=-12 and

i =-12¢*
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Example 9.7-2 Forced Response to a Constant Input

Find the forced response i; of the circuit of Example 9.7-1 when i.=1,, where
|, Is a constant.

— Ground
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Solution

Since the source is a constant applied at t=0, we expect the forced response to be a
constant also.

As a 15t method, we will use the differential equation to find the forced response.
2" method, we will demonstrate the alternative method that uses the steady-state
behavior of the circuit to find i;.

The differential equation with the constant source is obtained,
dii _di .
-+ 1—+61=06I,
dt dt

Again, we assume that the forced response is i.=D, a constant,. Since the first and
second derivatives of the assumed forced response are zero. We have

60=6/,
or D=/,
Therefore, i=/
o
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Solution

Another approach is to determine the steady-state response if of the circuit of

Figure 9.7-1 by drawing the steady-state circuit model.
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Forced Response of an RLC Circuit

Again, consider the circuit of Example 9.7-1 and 9.7-2 (Figure 9.7-1)
when the differential equation is

di _di .. .

F+7a+6| = 6'8 (97_9)
The characteristic equation of the current is

$°+7s+6=0
or (s+1)(s+6)=0

Thus, the natural response is

i =Ae ' +Ae™ (9.7-10)
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Forced Response of an RLC Circuit

Consider the special case where is=3¢™
Then we at first expect the forced response to be

i =Be™ (9.7-11)

However, the forced response and one component of the natural
response would then both have the form Dg=t.
Let’s try substituting Eq. 9.7-11 into the differential equation (9.7-9). We

then obtain
36Be ™ —42Be® + 6Be ™ ~£18e™

or 0£18e™

which is an impossible solution. Therefore, we need another form of the
forced response when one of the natural response terms has the same
form as the forcing function.
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Forced Response of an RLC Circuit

Let us try the forced response
i = Bte™ (9.7-12)

Then, substituting Eq. 9.7-12 into Eq. 9.7-9, we have
B(-6g —-69 +36tg) + 7B(g —6tg) + 6Btg =18

where 9=9(t)=e™ _We have

18 ang if:—§te‘6t

B=
In general, if the forcing function is of the same form as one of the
components of the natural response, x,,, we will use

— P

where the integer p is selected so that the x; is not duplicated in the
natural response. Use the lowest power, p, of t that is not duplicated in
the natural response.
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Complete Response of an RLC Circuit

The complete response is the sum of the natural response and the forced
response; thus

X=X +X

Let us consider the series RLC circuit of Figure 9.2-2 with a differential

equation (9.2-8) as L C
) :rwv\_Jr'%
dv dv :
LC—+RC—+Vv=V; : 0
dt dt o5 () SR
When L=1H, C=1/6F, and R=5Q ,we obtain Fig. 9.2-2
dv _dv
+5—+6V=06V -
dt? - dt ° (9-8-1)
2¢™ dv(0)

Welet v, = 2 V, v(0)=10V, an T:—ZV/S
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Complete Response of an RLC Circuit

To obtain natural response, we write the characteristic equation using

operators as
s +55+6=0

or (s+2)(s+3)=0
Therefore the natural response is
v,=Ae " +Ae™

The forcing response is obtained by examining the forcing function and
noting that its exponential response has a different time constant than the
natural response,

Vf — Be_t (98-2)
We can determine B by substituting Eq. 9.8-2 into Eq. 9.8-1. Then we
have Be +5(~Be™)+6(Be ) =4
or B2
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Complete Response of an RLC Circuit

The complete response is then
V=V +Vv, = Ae '+ Ae +2e

In order to find A, and A, we use the initial conditions.
At t=0 we have v(0)=10, so we obtain

10=A+A +2 (9.8-3)

From the fact that dv/dt=-2 at t=0, we have

—2A -3A, -2=-2 (9.8-4)
Solving the Egs. 9.8-3 and 9.8-4 by Cramer’s rule,
We have A,;=24 and A,=-16. Therefore,

V=V +V, =24 16 +2¢7 V
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Example 9.8-1 Complete Response of a Second-Order Circuit

Find the complete response v(t) for t>0 for the circuit of Figure 9.8-1.
Assume the circuit is at steady state at t=0-

~1/a F
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Solution

First, we determine the initial conditions of the circuit. At t=0- we have the circuit
model shown in Figure 9.8-2, where we replace the capacitor with an open circuit
and the inductor with a short circuit. Then the voltage and inductor current is

V(07)=6V, i(0-)=1A

After the switch is thrown, we can write KVVL for the right-hand mesh of Figure

9.8-1 to obtain d
—v+a+6| =0 (9.8-5)

The KCL equation at node a will provide a second equation in terms of v and i as
v—v, . ladv
+i+

___0 _
S o N y W
X * 4 Q
i ANN—

1 H <L+
= 1/aF 1ov(i) §6Q v

| \-|+




Solution

Equations 9.8-5 and 9.8-6 may be rearranged as

(ﬂ+6ij—v:0
dt

. (v ldv) v,
I+ —4+——|=—
(4 4dtJ 4

We will use operators so that s=d/dt, s2=d?/dt2, and 1/s=[dt.
(s+6)i—-v=0 (9.8-9)
i+ Dy

The characteristic equation is obtained from Cramer’s rule as the determinant A
A= %(s+6)(s +1)+1

Set the determinant to zero to obtain (s+6)(s+1)+4=0

Therefore, the roots of the characteristic equation are

ss=—-2 and s,=-5



Solution

To find the second-order differential equation describing the circuit, we use

Cramer’s rule for Eqgs. 9.8-9 and 9.8-10 to solve for v in order to obtain
. (s+6)(vi/4) _ (s+6)v,

A s +7s5+10
Of course, this equation can be rewritten as

(s* +7s+10)v = (s+6)v,

and hence the second-order differential equation is

2
U LTV Y (9.8-11)
dt dt dt

The natural response v, is

v, =Ae +Ae™
The forced response is assumed to be of the form
v, =Be™ (9.8-12)
Substituting v, into the differential equation, we have
9Be ™ —21Be™ +10Be ™ =-18¢ ™ +36e ™™
B=-9
v, =-9¢

Therefore,



Solution

The complete response is then
v=v +Vv, =Ae? +Ae> -9 (9.8-13)

Since v(0)=6, we have
vi0)=6=A+A, -9
o A +A,=15 (9.8-14)

We also know that 1(0)=1A. We can use Eg. 9.8-8 to determine dv(0)/dt and then
evaluate the derivative of Eq. 9.8-13 at t=0. Eq. 9.8-8 states that

av =—4i—-V+V,
dt
At t=0 we have
d‘(’j(to) = —4i(0)~v(0) +V,(0) = —4—-6+6=—4
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Solution
Let us take the derivative of Eq. 9.8-13 to obtain

% =-2Ae " -5Ae ™ +27e™
At t=0 we obtain
VO __5p 54 427
dt
Since dv(0)/dt=-4, we have
2A +5A, =31
Solving Egs. 9.8-15 and 9.8-14 simultaneously, we obtain
A = 44 and A, = 1
Therefore, 3 3
yo el

‘4 e —0eV
3

#p3*,  School of Electrical Engineering and Computer Science, SNU
W& Prof. SungJune Kim

(9.8-15)



State Variable Approach to Circuit Analysis

= The state variables of a circuit are a set of variables associated with the
energy of the energy storage elements of the circuit.
Thus, they describe the complete response of a circuit to a forcing
function and the circuit’s initial conditions.
We will choose as the state variables those variables that describe the
energy storage of the circuit
Thus, we will use the independent capacitor voltages and the
Independent inductor currents.

= Consider the circuit shown in Figure 9.9-1. The state variables are v1
and v2.

Cj) vpulr)

vault)

— Ground
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State Variable Approach to Circuit Analysis

Writing the KCL at nodes 1 and 2, we have

_ C—t=la 1, (9.9-1)
node 1: 1 dt Rl R2
dv, v,—-v, Vv,—V
_ C 2 — b 2 + 1 2
node 2: 2dt R, R, (9.9-2)
Equations9.9-1 and 9.9-2 can be rewritten as
dv, v V. V V
1 1 1 2 a (9-9_3)

+ + E =
d¢ CR CR, CR, CR
dszr V, s Vv, Vv, Y

d C,R, C,R, C,R, C,R, (9.9-4)
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State Variable Approach to Circuit Analysis

Assume that CR =1 CR,=1 C,R,=1 and C,R,=1/2
Then we have

Vi
E‘szl_vz =Va (9.9-5)

av,
—2V, JFEJFBV2 =V, (9.9-6)

Using operator, we have
(S+2)v, -V, =V,
—2V, +(S+3)v, =V,

If we wish to solve for v,, we use Crammer’s rule to obtain

v - (s+3)v, +V,
YT (s+2)(s+3)-2 (9.9-7)
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State Variable Approach to Circuit Analysis

The characteristic equation is obtained from the denominator and has the
form

s +55+4=0

The characteristic roots are s=-4 and s=-1. The second-order differential
equation can be obtained by rewriting Eq. 9.9-7 as

(5 +55+4)v, =(5+3)V, +V,
Then the differential equation for v, Is
dv,

d’v, dv
+5—+4v, =—2+3v, +V, (9.9-8)
dt?  Tdt ' dt ;
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State Variable Approach to Circuit Analysis

We now proceed to obtain the natural response
v, =Ae" +Ae™

and forced response, which depends on the form of the forcing function.
If v,=10 V and v,=6 V, v will be a constant. (see Table 9.7-1)

We obtain v by substituting v, and v, into Eq. 9.9-8, obtaining

4v,, =3V, +V,

or 4v,, =30+6 =36
Therefore, Vi =9
Then V=V, +V, =Ae" +Ae+9 (9.9-9)

#p3*,  School of Electrical Engineering and Computer Science, SNU
W& Prof. SungJune Kim




State Variable Approach to Circuit Analysis

If we know that v,(0)=5V and v,(0)=10 V, we first use v,(0)=5 along
with Eqg. 9.9-9 to obtain

V1(0)2A1+A2+9

and, Therefore, A+A =4 (9.9-10)
Now we need the value of dv1/dt at t=0. Referring back to Eq. 9.9-5, we
have dv,

— =V, +V, -2V,

dt
Therefore, at t=0 we have

% =V, (0)+V,(0)—2v,(0) =10+10-2(5) =10
The derivative of the complete solution at t=0 is
dv, (0
Therefore,
A +4A,=-10 (9.9-11)
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State Variable Approach to Circuit Analysis

Solving Egs. 9.9-10 and 9.9-11, we have
A=-2 and A =-2

Therefor
STETOTe, v (1) = 26"~ 26 +9 V

As you encounter circuits with two or more energy storage elements, you
should consider using the state variable method of describing a set of
first-order differential equations.

The state variable method uses a first-order differential equation for
each state variables to determine the complete response of a circuit.
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summary table

Table 9.9-1 State Variable Method of Circuit Analysis

1. Identify the state variables as the independent capacitor voltage and inductor currents.

2. Determine the initial conditions at t=0 for the capacitor voltages and the inductor currents
3. Obtain a first-order differential equation for each state variable using KCL or KVL.

4. Use the operator s to substitute for d/dt

5. Obtain the characteristic equation of the circuit by noting that it can be obtained by setting the
determinant of Cramer’s rule equal to zero.

6. Determine the roots of the characteristic equation, which then determine the form of the natural
response.

7. Obtain the second-order (or higher-order) differential equation for the selected variable x by
Cramer’s rule.

8. Determine the forced response xf by assuming an appropriate form of x;and determining
9. Obtain the complete solution x= X, + X:

10. Use the initial conditions on the state variables along with the set of first-order differential
equations (step3) to obtain dx(0)dt

11. Using x(0) and dx(0)/dt for each state variable, find the arbitrary constants A;, A,, ... A, to
obtain the complete solution x(t)




Example 9.9-1 Complete Response of a Second-Order Circuit

Find i(t) for t>0 for the circuit shown in Figure 9.9-2 when R=3Q, L=1H,
C=1/2F, and is=2e-3'A. Assume steady state at t=0-.
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Solution

First, we identify the state variables as i and v. The initial conditions at t=0 are
obtained by considering the circuit with the 10-V source connected for a long time
at t=0-. Then v(0)=10V and i(0)=0A. At t=0, the voltage source is disconnected
and the current source is connected.

The first differential equation is obtained by using KVL around the RLC mesh
Lﬂ+ Ri=v
dt

The second differential equation is obtained by using KCL at the node at the top of
the capacitor

Cﬂﬂ:iS
dt
- di . dv. .. ..
Substituting the component values, we have 1 3j—yv=0 and —+2i =2i,
dt
=1l i L
f — fWY\_._C,)rO_
t=1]

50, c::; §R () 10v




Solution
Using the operator s=d/dt, we have
(s+3)i—-v=0 (9.9-14)
214 SV = 2I, (9.9-15)

Therefore the characteristic equation obtained from the determinant is
(s+3)s+2=0
Thus, the roots of the characteristic equation are
s;=—-2 and s,=-1

Since we wish to solve for i(t) for t>0, we use Cramer’s rule to solve Eqgs. 9.9-14

and 9.9-15 for i, obtaining oi
j=——S
s?2+3s+2

I'herefore, the differential equation IS

The natural response is ; _ pqt p o2



Solution
We assume the forced response is of the form
i =Be™
Substituting if into Eq. 9.9-16, we have
(9Be™)+3(-3Be ™) +2Be™ =2(2Be™)

Therefore, B=2 and
i =2

The complete response is i= Ae™ + Ae™® +2e™

Since 1(0)=0, 0=A+A +2 (9.9-17)
We need to obtain di(0)/dt from Eq. 9.9-12, which we repeat here as
ﬂ+3i -v=0

Therefore, at t=0 we have
dv(0) .
=-31(0 0)=10
i - @O V should be |




Solution

The derivative fo the complete response at t=0 is

dv(0
d( )——A1 2R, -6 V should be i
Since di(0)/dt=10, we have
-~ A -2A,=16
and repeating Eq. 9.9=17, we have
A+ A==

Adding these two equations, we determine that A1=12 and A2=-14. Then we have
the complete solution for i as

i =12e7' —14e™" + 2 (A)
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Roots in the Complex Plane

Let us consider the roots of a parallel RLC circuit. The characteristic
equation (9.4-3) is <2 1 . 1 _ 0
RC LC

and the roots are s, =—at.\a’ -

where ¢ =1/(2RC) and & =1/(LC)

When, @) >a’ the roots are complex and

In general, roots are located in the complex plane, the location being
defined by coordinates measured along the real of c-axis and the
Imaginary or jo-axis. This is referred to as the s-plane of as the

complex frequency plane.
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Roots in the Complex Plane

Figure 9.10-1 ol
. ndampe
The complete s-plane showing the Underdamped X% o= g
locations of the two roots, s1 and s2, a<wg
of the characteristic equation in the \X ________ jeog
left-hand portion of the s-plane. The
. . Overdamped
roots are designated by the x simble o> g
for the four conditions: X /»« X c
(1) undamped, a=0 Critically
(2) underdamped, o <? damped
(3) critically damped, 42 =g Fintentiest -
(4) overdamped,. o> roots) X\ I
X —jﬂJO
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Roots in the Complex Plane

A summary of the root locations, the type of response, and the form of the response
for v(0)=1 and i(0)=0 is presented in Table 9.10-1

Table 9.10-1 The Natural Response of a Parallel RLC Circuit
Root Location Type of Response  Form of Response for v(0)=1V and i(0)=0
S=-ry, -1, Overdamped 2
two real roots !
0
t
S=-1y, -1, Critically damped v(t)
two equal roots 1
0
t
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Roots in the Complex Plane

Table 9.10-1 The Natural Response of a Parallel RLC Circuit

Root Location Type of Response  Form of Response for v(0)=1V and i(0)=0

s=-aEj0, Underdamped "

1
O\ O~

s=tjw, Undamped
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