Random Process (Overview)

Wha Sook Jeon Mobile Computing & Communications Lab. Seoul National University

Random Process (1)

- Collection of random variables, which are indexed by time *t*
 - $\{X(t), t \in T\},\$
 - *T* is time domain of a system
 - X(t) is a r.v. representing the state of system at time t
- describe the evolution through time of physical process

$$\begin{array}{ccc} X(t_1) & X(t_2) \\ \hline t_1 & t_2 \end{array} \xrightarrow{time}$$

- It is very useful to evaluate the average performance of the system

Random Process (2)

• Classification

- Time
 - Countable time domain \rightarrow discrete-time process
 - Uncountable time domain \rightarrow continuous-time process
- State space (the set of possible values that X(t) may take on)
 - Countable state space \rightarrow discrete-state process (or chain)
 - Uncountable state space \rightarrow continuous-state process
- Statistical dependency among random variables with different time index
 - If the state duration follows geometric or exponential distribution, it is a Markov process

Example

- Barbershop example
 - Consider a barbershop (a system) with a barber (server) and several waiting chairs (queue)
 - Customer arrival rate and service time are given as system parameters
 - X(t): the number of customers in the shop at time t
 - <Assumption>
 - One waiting chair $\rightarrow 0, 1, \text{ or } 2$ customers in the shop
 - Observe the number of customers in the shop only at four time instants t_1, t_2, t_3, t_4 ,

< Evolution of the process: 81 feasible sample paths >

Classification by Statistical Dependency

