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Markovian Property

e Markovian Property

— Given past states and present state, conditional distribution of any
future state is independent of past states and depends only on the
present state.

e Markov Process

— A stochastic process that satisfies the Markovian property.
e Types

— Discrete time Markov chain (DTMC)

— Continuous time Markov chain (CTMC)
— Embedded Markov chain
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Discrete Time Markov Chain

event
S S I S
Time index:m 0 1 2 3 4 5 6 7 8 9
State: X, 0 0 1 1 2 2 2 3 3 3
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State duration

« The state duration has a geometric distribution.
¢ pl](m) — PI‘{Xm+1 =] | XO - il' X1 - iz, e Xm — l}
= PriXpmy1 =J | Xin = 1}

- p;;(m) : one-step transition probability from state i to state |
at the m-th time index



Continuous Time Markov Chain

Event Event Event
Continuous ¢ ¢ ¢
time domain u A
t ks time
S
State X u X t X t+s
> < > << ><€

State duration

» The state duration has an exponential distribution.
* pij(S)zpr{XHs:let:i» Xy=xy, 0Su<t}
= PriXy s =Jj | X =i}



Embedded Markov Chain

arrival departure
Original process * + + + + + + + + *
state i 10 il i 11 Q2 i-1

General < :
distribution | State duration
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EMC state i-1 i i-1 i-1 i-2

Exponential < >i< Si< >< >
distribution ' State duration . ' .

» The state duration of original process has general distribution; not Markov process.

* When observing the system only at departure epochs , the process has Markovian
property. Then, the process at observation times is called Embedded Markov chain.

» The original process and the embedded Markov chain have the same statistical
properties.



Mathematically analyzable process

« Markovian property
* Time homogeneity

o Homogeneous
» Ergodicity Ergodic
— Irreducible Markov Process

— Positive recurrent

— Aperiodic



Time homogenelity (1)

o If the conditional probability, Pr{X,,,.; =j | X;,, = i}, IS
Independent of m, the DTMC is said to be homogeneous.

Event : ¢ ¢ ¢ ¢
Observation time
. .| Pij . | Dij .
State : Xy =1 /\tXHl =] Xm =1 Xm+1 =]
Current state Next state Current state Next state

- pl] - Pr{Xl+1 _] IXl l} — l:)r'{Xm+1 _] IX i}
without respect to time index |, m

— The next state depends only on the current state and is independent of
observation times.



Time homogenelity (2)

The homogeneous DTMC is described with the state space, S,
and one-step transition probability matrix, 2= [p;;],
or state transition probability diagram.

Example
— State space: S=1{1,2,3} 010,
1 1 1
— One-step transition probability matrix;: P= |+ 4 2
1 1
| - 0 — |
— State transition Probability diagram : 22

P12=1 l




Time homogenelity (3)

— One-step transition probability
pij = PriXpmy1 = j | X = i}

— N-step transition probability
Py™ = Pr{Xmin = j | Xm = i}

— Chapman-Kolmogorov equation
Py = Fes P ™ P
pmtn) — pMm) o pM)



An Ergodic Markov Chain (1)

* An ergodic Markov chain has a limiting distribution.

— State transition probability to state j is converge to only one value
without respect to an initial state.

n—oo

— After a long period of time, an ergodic Markov chain has a distribution
Independent of the starting condition (limiting distribution).
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An Ergodic Markov Chain (2)

Ensemble average distribution

— Let 7;(™ be the unconditional probability that DTMC is in state j at the n-th
time index, i.e., ;™ 2 Pr{X,, = j}

- ™= ¥ em© Pij(n)
state Space

— mj = lim nj(")

n—>00

= lim %57, O P; ™

n—>0o

= Yiesm @ lim P ™

n—-0o

The ensemble average distribution is the same as the limiting
distribution

— Since lim P;;(W =q;, m;=q;Niesm@ =¢q; =  m=gq

n—>00
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An Ergodic Markov Chain (3)

lim ;™ = lim ¥,;com;""VP;;

n—0o n—>00 Y

=) = ies TP
=Ycs ( lim ni("_l)) P

n—0o

Lj

« \We can obtain the state distribution of ergodic Markov chain,
by solving (1) and (2).

- T[izszST[iji foralliesS ... (1)
- ZiEST[i =1 (2)
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An Ergodic Markov Chain (4)

o Example
— State space S={1,2,3}

— State transition Probability diagram :
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Necessary Conditions for an Ergodic MC (1)

\/

s+ lrreducible

o State j is reachable from state i if there is an integer n > 1 such
that Pl](n) > 0.

« If state i is reachable from state j and state j is reachable from state i,
state i and j are said to communicate.

o |f all states in the Markov chain communicate to each other, the
Markov chain is called “irreducible”.

» QD an b

reducible irreducible
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Necessary Conditions for an Ergodic MC (2)

s Positive recurrent
* fi; : the probability of ever making a transition into state j, given that
Markov chain is in state i.
o Stateiissaidto berecurrent if f;; =1
» If the mean recurrent time is finite, state i is a positive recurrent state.

» If all states in the Markov chain are positive recurrent, the Markov
chain is called “positive recurrent”.

* Anirreducible Markov chain having the finite number of states is
positive recurrent.
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Necessary Conditions for an Ergodic MC (3)

»» Aperiodic

« State i is said to have a period of d, if P;™ = 0 whenever n is not
divided by d and d is the greatest integer with this property.

o A state with period 1 is an aperiodic state.

« If all states in the Markov chain are aperiodic, the Markov chain is

called “aperiodic™. aperiodic if there is
at least one self-loop

Periodic Aperiodic Aperiodic
GCD;(2,4,6,8,...) =2 GCD;(2,3,4,5,...) =1 GCD;(2,4,5,6,7,8,...) =1
GCD;(2) =2 GCD;(2,3,4,5,...)=1 GCD;(2,3,456,7,...)=1
GCD,(2,4,6,8,...) =2 GCD,(2,3,45,...) =1 GCD.(1,2,3,45,6,...)=1

GCDg(nq,n,, ... ) : the greatest common divisor of the state transition steps (n,, n,, ...) for back to the state s.
15



Time Average and Ensemble Average

If a system is an ergodic Markov chain, the ensemble average is
equal to the time average.

m; can be interpreted as two aspects; one is the time average, and
the other is the ensemble average.
— Time average

« 1; IS the long-run time proportion that the Markov Chain is in state i. on
any sample path

— Ensemble average
- 1; IS the probability that the state of Markov chain is i in steady state.

{X(t)} is ergodic in the most general sense if all its measures can
be determined or well approximated from a single realization of
the process.

It is often done in analyzing simulation outputs
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Stationary DTMC

° Tl:](n) — ZiES ni(n_l)Pij' = H(n) — H(Tl—l)P

e If the initial state distribution I1(9) is set to the limiting distribution,

MO =1m1@p =11P=1I

(2): (1) = —
I [MWP=I1P~P=II = MNM =11, foralln

The state distribution is invariant over time, ;= Pr{X,, = i} foralln
= stationary process

e Insummary, DTMC of which the initial state distribution is set to the

limiting distribution is stationary, and then the limiting distribution is
called the stationary distribution.
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