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M/G/1 (1)

— Poisson Arrival Process
— General service time distribution

e Embedded Markov chain (Semi-Markov chain)

— We observe the system at an instant that the served job departs the
system

— Then, since the service time does not need to be considered, the
system has Markovian property

a job leaves a job leaves
Lr+1 ¢
tr time

 Let X;, be a random variable representing the number of jobs in
the system at the epoch t,

- Embedded Markov chain is described as {X,, ,k =1,2,3,:-}
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o State Probability Distribution in EMC

— Let mr; be the probability of i jobs in system at a departure epoch

mi= X 1 Pj; (1)
- Where P;; Is the one-step transition probability from state j to state |
— We need P;;

— Consider two cases in calculating P;;
e Casel: X, =1>0
« Casell: X;, =0



M/G/1(3)

— Case | a job leaves a job leaves
i J time
° |f]2l—1, Pl]:q]—l+1 (3)

v where q,, Is the probability of m arrivals in a service time

— Case Il

the last job leaves  anew jobarrival a job leaves

inter arrival time service time

0 J

time



M/G/1 (4)

» LetA(z):=E|[z¥] : probability generating function of X

7Pz from (1)
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M/G/1 (5)

— Let Y(z) be PGF of a random variable representing the
number of arrivals during a service time

Y(2) = 520q;2

co

A(z2) =Y (2) + z m; z271Y (2)

i=1
— 7,70 Y (2) o .

=mn,Y(z) + 2 " Y(z) =m,Y(2) + ( )z m;z"t
i=1 i=1

Z Z

(A(z) — o)
Z

=n,Y(z) + Y(2)

_ (z — DmoY(2)

A(2) z—Y(2)




M/G/1 (6)

 Weneed r, and Y (z) for calculating A(z)
— Since A(1) =0and Y(1) = 0,

oY (2) + znyY'(2) — myY'(2)
1-Y'(2)
=1

A(z) = by using L'Hospital's rule

Ty

AD =1y

= T =1-Y'(1)

« Calculation of Y(2)

(At)Me —At
m!

— Probability of m Poisson arrivals during t : f;,,(t) =

— Let b(t) be probability density function of service time distribution

=A™
|

— ” _ -y}
- qm = jo fm(@®)b(t)dt = fo e Mh(t)dt



M/G/1 (7)

(0]

— Laplace transform of service time : B*(s) = j e Sth(t)dt
0

v = " e-0-2tp(pyat = B*(A(1 - 7))
0

~ Y'(2) = j ooAte—m—Z)tb(t)dt = Y'(1) = [, Atb(t)dt =AE[s]
0
— my=1-Y'(1) = mo=1— AE[s]

_ _ -2)meY(2) _ (1-2)(A-2E[s])B"(A(1-2))
4D =50 B*(A(1-2))—2
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e Performance Measures

— N : Mean number of jobs in the system
- By calculating A'(1) using the L'Hospital's rule twice,
N E[s?]

N = A'(1) = AE[s] + 21— 2E)

— T : Mean sojourn time in the system
« By the Little’slaw, T=N/ A
AE[s?]
2(1 = 2E(s))
— p : Utilization (server busy probability)
p = AE(s)

T = E[s] +
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 Note that N is not the mean number of jobs in the system
as seen by outside observer at any time, and the mean
number of jobs left in the system as seen by the departing

jobs

« Equality of state distribution at arrival epoch, departure
epoch, any time

(Question) Are the followings equal?

— The number of jobs seen by departing jobs

— The number of jobs seen by arrival jobs
— The number of jobs seen by outside observers

} Burke theorem
} Wolff theorem



M/G/1 (10)

o Wolff theorem (Poisson arrivals see time average)

— If the arrival process is Poisson, the steady state distribution just
prior to arrival epochs is the same as that for the number of jobs
seen by outside observer at any time

e Burke theorem

— In any queueing system for which the state process is the step
function with unit jump, the steady state distribution just prior to
arrival epochs is the same as that just after departure epochs

10
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Proof of Burke theorem

Let {N(t):t = 0} be a stochastic process of which any sample path is a
step function with unit jump

Let A, (T) be the number of arrivals to the system having k jobs during T

Let D, (T) be the number of departures leaving k jobs in the system
during T

o |[Ax(T) =Dy (T)| <1

Let A(T) be the total number of arriving jobs in the interval [0, T']

Let D(T) be the total number of departing jobs in the interval [0, T]
Let N(T) be the number of jobs in the system at time T

11



M/G/1 (12)

— Let 9 and m, 2 are the state probability seen by a departing job and
arriving job at time limit, respectively

_od — i PR(T) g D(T)—AR(T)+A(T)
T = Him D(T) A N(0)+A(T)=N(T)
_ i Ak(T) .. _
= lim %2 ID(T) — 4D < 1)
= T[ka
. T[kd — T[ka
State probability State probability

at departure epochs  at arrival epochs



M/G/1: Busy Period (1)

e Busy period

— The busy period starts when a job arrives at the system in idle state
and Is continued until there remains no job to be served in the

system
: bus
____idle firstjob -7 __ idle busy
arrival \\\L/// l l N ,/// \\\i//
departure i i i fime

— Let B be a random variable representing the duration of busy
period

— Let S and S; be random variables representing the service times of
the first job and the i-th arrived job after the first job, respectively

— Let A(S) be the number of arrivals while the first job Is served
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M/G/1: Busy Period (2)

— Let B; be the total sum of service times of the i-th arrived job and
its descendants

— Example

. A(S) = 3

° B=S+Bl+Bz+Bg

° Bl=Sl+S4+S5 +S6+S7+S9+510+511

° BZZSZ

°B3253+Sg e

(51 (5 (89

(50 89) o) (52) (89
8 6w Gy
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M/G/1: Busy Period (3)

 Calculating the average of busy period, E[B]
— B*(0) =E[e™] = [ e %*b(x)dx where b(x) is the pdf of B

L L. dB*(6)
ELB] _eh_fglo do

_ B*(Q) — E[e—9(S+Bl+B2+"'+BA(S))]

_yo J-Ooo E[e—Q(S+B1+B2+---+BA(S))|S = x,A(S) = k]
X Pr{S = x,A(S) = k}dx

(') - k
= 3 [ BB mtmi0) B0 o (1) gy

= 370 7 E[e=0¥]E[e=051] - E[e=0%x] BL o-Axp (x)dx

0o o _ — k (Ax)k —
=Zk:0fo e~ 9% (E[e9B]) %e AXh(x)dx

since E[e~?Pi] has the same value for all i
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M/G/1: Busy Period (4)

B*(0) = £ fi” e~0*(B*(0)) BL e b (x)dx

ook
= [ 5 B O) =402 (x) dx

_ fooo e~ (A+6-2B"(O))x (1) dx

= 5*(/1 + 6 — AB*(Q)) <— S*(p): Laplace transform of service time

B dB*(0) .  ds*(A+6-1B*(8))
E[B] - 91—>oo ae 911—>oo ae
: os) dB*(0)\ _ _1R*
= gl_r)glo J (—x + Ax T)e (A+6-2B"(O))xp(x)dx

= [,"(—x — AxE[B])b(x)dx  since B*(0)=1
= — fooo xb(x)dx — AE[B] fooo xb(x)dx
= —E[S] — AE[B]E|S]

E[S]
1—-AE[S]

= E[B] =
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M/G/1: Busy Period (5)

e Another Approach

— N: the number of jobs served during busy period
— E[B] = E[N] X E[S]

— p = AE[S] : server utilization, i.e., server busy probability
- Pr{N =n}=p""'(1-p)
— E[N] =X3-1np" (1 - p)

=1 -p)Xn=inp™
1 1

1-p  1-AE[S]

E[S]

E[B] = 1—AE[S]




M/G/1: Busy Period (6)

« Another Approach for calculating E[N]
— N=1+N1+N2+"'+NA(S)

« N; is the number of arrivals while the i-th job is served
— G(2) = E[zV] = E[z(1*N1#N2++Na(s)]

_ ZlocozoE[Z(1+N1+N2+---+NA(S))|A(S) = k] X Pr{A(S) = k}

= Yo z(E[ZVD* [ “’” e~ b(x)dx

= zfooo Y=o (Axi(!z)) e b(x)dx = zfooo e~ (A=26(@)x b (x)dx

=zS5" (1 —AG(2))

— E[N]=G'(1)
_ fooo e—(A-26(1))x b(x)dx+1 G'(1) f0°° xe~A=2G(D)* p(x)dx
= 1+ AE[N]E[S] since G(1)=1
= E[N]= -
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M/G/oo (1)

N
Poisson arrivals
with rate 4 @

E[S]

Probability of k jobs in the system equals the probability of k arrivals
during E[S], according to Poisson process

k!
Mean number of jobs in the system: N

1. By Little’slaw, N = AE[S]
2. By Probability theory, E[N ] = Yo k Px
— k
N = Zlo(o:1 k (AEIE?D e—AE[S] — AE[S]e—/lE Zk 0 (AE[ !])
= AE[S]
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M/G/oo (2)

k
* Probability of k jobs in the system: P, = (AEED e AELS]

« Derivation of P,
— P, = }1_)r£10 Pr{N(t) = k}
« N(t): r.v. representing the number of jobs in the system at time t
— Let P, (t):= Pr{N(t) = k}. We first derive P, (t).

< Derivation of P, (t) >
— Let A(t) be the total number of arrivals for [0, t]

— P(t) = T2 PrA() = n} X Pr{N(t) = k|A(t) = n}

oo (At)ne—lt
- Zn=k

n!

x Pr{N(t) = k|A(t) = n)
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M/G/oo (3)

— We need Pr{N(t) = k|A(t) = n}, the probability that k jobs among n
arrivals are still being served at time t.
« We focus on any one job denoted by J

« Letg(t) = Pr{]isstill in the server at time t| ] arrived at[0, t]}

« Pr{] arrived at time x and | is in the server at time t| ] arrived at[O0, t]}
= Pr{] arrived at [x, x + dx]| ] arrived at[0, t]}
x Pr{] is in the server at time t | J arrived at time x}

= d—:xPr{S>t—x}

where S is a r.v. representing the service time

J arrived at x

{y time

-t —

X
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M/G/oo (4)

— Probability that a job arrived in [0, t] is still being served at time ¢

q(t) = fot % x Pr{S >t —x}

=if0t Pr{S >t — x}dx
t >y=t—x

=+ Jy Pr(s > y}dy
— Pr{N(t) = k|A(t) = n}
(%) a* @ — gty

(Z) (% fot Pr{s > y} dy)k (1 — %fot Pr{s > y} dy)n
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M/G/ (5)

~ P() = 33 P{N(t) = k|A(t) = n} x Pr{A(t) = n}

=¥k (1) (2 o Pris > 7} dy)k (1-3 /5 Pr{s > y) dy)n_k

A" _
(At) oAt
n!

X

n—-k
. k ,-At o (At—=2 [ t Pr{s>y}dy
:(/1 fO Pr{S > y} d}’) eT X 2n=k( - (n—k)! )

t k
_ ()L Jo Pr{z'>y}dy) e—)t fot Pr{s>y}dy
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M/G/o (6)

- P =thk(t)

k
(/‘lf Pr{S>y}dy) —/'l fooo Pr{s>y}dy
k!

— Since [)"Pr{S > y}Ydy = [" [ fs(dx dy = [ [] dy fs(x)dx
= ["xfs(x)dx = E[S]

Poisson distribution

24



	Single Queue System II
	M/G/1 (1)
	M/G/1 (2)
	M/G/1(3)
	M/G/1 (4)
	M/G/1 (5)
	M/G/1 (6)
	M/G/1 (7)
	M/G/1 (8)
	M/G/1 (9)
	M/G/1 (10)
	M/G/1 (11)
	M/G/1 (12)
	M/G/1: Busy Period (1)
	M/G/1: Busy Period (2)
	M/G/1: Busy Period (3)
	M/G/1: Busy Period (4)
	M/G/1: Busy Period (5)
	M/G/1: Busy Period (6)
	M/G/∞ (1)
	M/G/∞ (2)
	M/G/∞ (3)
	M/G/∞ (4)
	M/G/∞ (5)
	M/G/∞ (6)

