Queuing Networks

Wha Sook Jeon
Mobile Computing & Communications Lab.
Seoul National University

Time Reversibility (1)

Time reversibility

- Statistical characteristic of forward process is the same as that of backward process
- The arrival process of the forward process is the arrival process of the backward process, which is the departure process of the forward process

arrival process $_F$ = arrival process $_B$ = departure process $_B$ = departure process $_F$

Time Reversibility (2)

- Forward process
 - Transition probability from state i to state j: P_{ij}
- Backward process
 - Transition probability from state i to state j: q_{ij}
- Time reversible: $q_{ij} = P_{ij}$

$$- q_{ij} = \Pr\{X_n = j | X_{n+1} = i\}$$

$$= \frac{\Pr\{X_n = j, X_{n+1} = i\}}{\Pr\{X_{n+1} = i\}} = \frac{\Pr\{X_{n+1} = i | X_n = j\} \Pr\{X_n = j\}}{\Pr\{X_{n+1} = i\}}$$

$$= \frac{\pi_j P_{ji}}{\pi_i}$$

$$- \pi_i q_{ij} = \pi_j P_{ji}$$

• When time reversibility is hold, $\pi_i q_{ij} = \pi_j P_{ji}$

Time Reversibility (3)

- Time reversible DTMC : $\pi_i q_{ij} = \pi_j P_{ji}$
- Time reversible CTMC : $\pi_i r_{ij} = \pi_j r_{ji}$
- Birth & death process is time reversible
 - Since M/M/c queueing system is a special case of birth & death process, M/M/c is time reversible
 - Arrival process of M/M/c queuing system is the same as its departure process. Thus, departure process of M/M/c is a Poisson process

Open Queueing Networks (1)

- Open Queueing networks with product form solution
 - <Assumption>
 - Poisson arrivals from outside source
 - All servers have exponentially distributed service time
 - A job from device i joins device j with (routing) probability q_{ij}

Open Queueing Networks (2)

- System state: $(n_1, n_2, n_3, n_4, n_5)$
 - n_i : number of jobs in server i
- Jackson's decomposition theorem

$$P(n_1, n_2, n_3, n_4, n_5) = P_1(n_1) P_2(n_2) P_3(n_3) P_4(n_4) P_5(n_5)$$

- $P(n_1, n_2, n_3, n_4, n_5)$: System state probability
- $P_i(n_i)$: Probability of n_i jobs in server i

<example>

When all devices are M/M/1

$$P_{i}(n_{i}) = \rho_{i}^{n_{i}}(1 - \rho_{i})$$

$$P(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}) = \prod_{i=1}^{5} \rho_{i}^{n_{i}}(1 - \rho_{i})$$

$$- \rho_{i} = \frac{\lambda_{i}}{\mu_{i}}$$

$$- \lambda_{1} = \lambda q_{s1}, \quad \lambda_{2} = \lambda q_{s2}, \quad \lambda_{3} = \lambda q_{s3},$$

$$- \lambda_{4} = \lambda_{3} + \lambda_{2} q_{24}, \quad \lambda_{5} = \lambda_{1} + \lambda_{2} q_{25} + \lambda_{4}$$

Open Queueing Networks (3)

• Performance measure

- < Device i >
- Utilization of device *i*: $\rho_i = \frac{\lambda_i}{\mu_i}$
- Mean number of jobs in device i: $\overline{N}_i = \frac{\rho_i}{1-\rho_i}$
- < System >
- Mean number of jobs: $\overline{N} = \sum_{i=1}^{M} \overline{N}_i$
 - *M*: the number of devices in the network
- Mean sojourn time of a job in the network: $\bar{T} = \frac{\bar{N}}{\lambda}$

Closed Queueing Networks (1)

- M: the number of devices in the network
- N: the total number of jobs in the network
 - N is fixed in the closed queueing networks

- System state: $(n_1, n_2, n_3, n_4, n_5)$
 - n_i : number of jobs in server i

Closed Queueing Networks (2)

- Assumptions for product form solution
 - The system is in steady state
 - All servers have exponentially distributed service time
 - Jobs are stochastically independent of each other
 - A job from device i joins device j with the (routing) probability q_{ij}
- Gordon and Newell's decomposition theorem

$$P(n_1, n_2, ..., n_M) = \frac{1}{G} F_1(n_1) F_2(n_2) ... F_M(n_M)$$

- $\sum_{N \in S(M,N)} P(n_1, n_2, ..., n_M) = 1$
 - \checkmark $\mathbb{N} = (n_1, n_2, \dots, n_M)$
 - \checkmark $S(M,N) = \{(n_1,n_2,...,n_M)|n_1 + n_1 + \cdots + n_M = N\}$
- Normalization factor $G = \sum_{N \in S(M,N)} \prod_{i=1}^{M} F_i(n_i)$

Closed Queueing Network (3)

•
$$F_i(n_i) = \begin{cases} 1 & , & n_i = 0 \\ V_i S(n_i) F_i(n_i - 1) & , & n_i \ge 1 \end{cases}$$

- $-V_i$: Visit ratio of device i
- $-S(n_i)$: the service time of device i when there are n_i jobs in device i
- Derivation of V_i ,
 - For any appropriate link, $V_0 = 1$.
 - Then, calculate other V_i values : $V_i = \sum_{j=0}^{M} V_j q_{ji}$

< Example >

$$V_0 = 1, V_0 = V_2 + V_3,$$

$$V_1 = \frac{1}{4}V_1 + V_0, V_2 = \frac{2}{4}V_1, V_3 = \frac{1}{4}V_1$$

$$\Rightarrow V_1 = \frac{4}{3}, V_2 = \frac{2}{3}, V_3 = \frac{1}{3}$$

Closed Queueing Network (4)

• Buzen's Algorithm for calculating G

- Let
$$g_m(n) \coloneqq \sum_{\mathbf{n} \in S(m,n)} \prod_{i=1}^m F_i(n_i)$$

where $\mathbf{n} = (n_1, n_2, ..., n_m)$, $S(M, N) = \{(n_1, n_2, ..., n_m) | n_1 + n_1 + \cdots + n_m = n\}$
- $G = g_M(N)$
- $g_1(n) = F_1(n)$
- $g_m(0) = \prod_{i=1}^m F_i(0) = 1$
- $g_m(n) = \sum_{k=0}^n F_m(k) \sum_{(n_1 ... n_{m-1}) \in S(m-1, n-k)} \prod_{i=1}^{m-1} F_i(n_i)$, $(n > 0, m > 1)$
= $\sum_{k=0}^n F_m(k) g_{m-1}(n-k)$

 $g_m(n)$ can be calculated in a recursive fashion

Closed Queueing Network (5)

Calculation of $g_m(n)$

	1	2		<i>m</i> -1	m		M	-
0	1	1	•••	$1 \times F_m(n)$	1	•••	1	
1	$F_1(1)$	$g_2(1)$	• • •	$g_{m-1}^+(1)_{\times F_m(n)}$				
•	:	:		i i				
<i>n</i> -1	$F_1(n-1)$	$g_2(n-1)$	• • •	$g_{m-1}(n-1) \times F_m(n-1)$	1)			
n	$F_1(n)$	$g_2(n)$	•••	$g_{m-1}(n) \times F_m(0)$	$=g_m(n)$			
•	:	:					$g_M(N-1)$	
N	$F_1(N)$	$g_2(N)$				-	$g_M(N)$	= G

Closed Queueing Network (6)

- When the service rate of each device is constant (a single server)

•
$$S(n_i) = S_i$$
, $\forall n_i \ge 1$ \Rightarrow $F_m(k) = V_m S_m F_m(k-1)$

$$- g_m(n) = F_m(0)g_{m-1}(n) + \sum_{k=1}^n F_m(k)g_{m-1}(n-k)$$

$$= g_{m-1}(n) + V_m S_m \sum_{k=1}^n F_m(k-1)g_{m-1}(n-k)$$

$$= g_{m-1}(n) + V_m S_m g_{m-1}(n-1)$$

	1	2		<i>m</i> -1	m		M
0	1	1	• • •	1	1	• • •	1
1	$F_1(1)$	$g_2(1)$	•	$g_{m-1}(1)$	$g_m(1)$		
:	•	•		•			
<i>n</i> -1	$F_1(n-1)$	$g_2(n-1)$	•••	$g_{m-1}(n-1)$	$g_m(n-1)_{\times V_m S_n}$	n	
n	$F_1(n)$	$g_2(n)$	•••	$g_{m-1}(n)$	$^+$ $g_m(n)$		
:	•••	•					
N	$F_1(N)$	$g_2(N)$					

Closed Queueing Network (7)

Performance measure

- Throughput of device $M: X_M$
 - $X_M = \sum_{k=1}^N P_M(k) \frac{1}{S_M(k)}$
 - $\checkmark P_M(k)$: Probability that there are k jobs in the device M

$$P_{M}(k) = \sum_{(n_{1}, n_{2}, \dots, n_{M-1}) \in S(M-1, N-k)} \frac{1}{G} F_{1}(n_{1}) \dots F_{M-1}(n_{M-1}) F_{M}(k)$$

$$= \frac{1}{G} F_{M}(k) g_{M-1}(N-k)$$

$$\Rightarrow X_{M} = \sum_{k=1}^{N} \frac{1}{G} F_{M}(k) g_{M-1}(N-k) \frac{1}{S_{M}(k)}$$

$$= \sum_{k=1}^{N} \frac{1}{G} V_{M} S_{M}(k) F_{M}(k-1) g_{M-1}(N-k) \frac{1}{S_{M}(k)}$$

$$= \frac{1}{G} V_{M} g_{M}(N-1)$$

Closed Queueing Network (8)

Since
$$\frac{X_i}{X_j} = \frac{V_i}{V_j}$$
 for any device i, j

- System Throughput : X_0

$$X_0 = \frac{X_M}{V_M} = \frac{g_M(N-1)}{G}$$

Throughput of arbitrary device i

$$X_i = V_i X_0$$

System response time: T

By Little's Law,
$$T = \frac{N}{X_0}$$