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Time Reversibility (1)

o Time reversibility
— Statistical characteristic of forward process is the same as that of
backward process

— The arrival process of the forward process is the arrival process of
the backward process, which is the departure process of the
forward process

Arrival Process Departure Process

Arrival Process Departure Process
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arrival process g = arrival process , = departure process g = departure process g



Time Reversibility (2)

Forward process
— Transition probability from state i to state J: P;;

Backward process
— Transition probability from state i to state J: q;;

Time reversible: q;; = P;;

- qij = Pr{X, = jlXn41 = 1}

— PriXn=Jj, Xn+1=1} — Pri{Xn+1=1|Xn=7}Pr{Xn=j}
Pr{Xn+1=1} Pr{Xny,1=1}
_ EiPji

Ty
— Tqij = TP

When time reversibility is hold, m;q;; = m;P;;



Time Reversibility (3)

* Time reversible DTMC : m;q;; = m;P;;

* Time reversible CTMC : m;r;; = m;1j;
» Birth & death process is time reversible

— Since M/M/c queueing system is a special case of birth & death
process, M/M/c is time reversible

— Arrival process of M/M/c queuing system is the same as its
departure process. Thus, departure process of M/M/c is a Poisson

process
Poisson process ") Poisson process
withrate A with rate A

M/M/c




Open Queueing Networks (1)

e Open Queueing networks with product form solution

<Assumption>

— Poisson arrivals from outside source
— All servers have exponentially distributed service time
— A job from device I joins device j with (routing) probability q;;
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Open Queueing Networks (2)

« Jackson’s decomposition theorem
P(ny,ny,n3,ny,ns) = P1(ny) P,(ny)P3(n3) Py(ny)Ps(ns)

«  P(nq,n,, ng, ny, ng): System state probability

System state: (nq, n,, n3, Ny, Ns)
— n;: number of jobs in server i

« P;(n;): Probability of n; jobs in server i

<example>

When all devices are M/M/1
P;(n;) = p;"i(1 — p;)

P(n11n2'n31n4rn5) = i5=1 pini(l - pl)
_ A
- pPi= m

M =M1, Ay =MNgsz2, A3 = Ags3,
Ay =A3 + 2G4, As = A1 + Azq05 + Ay
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Open Queueing Networks (3)

e Performance measure

< Device | >
-g = - . - }\'.
— Utilization of device i: p; = u_l
l
— Mean number of jobs in device i: N; = 1p;
—Pi

< System >
— Mean number of jobs: N = Y| N;
« M: the number of devices in the network

> | =

— Mean sojourn time of a job in the network:T =



Closed Queueing Networks (1)

— M: the number of devices in the network
— N: the total number of jobs in the network
« N is fixed in the closed queueing networks

qz
SR 2
—— 1
qs 3
. W
q1

o System state: (1, ny, n3, Ny, Ns)
— n;: number of jobs in server i



Closed Queueing Networks (2)

« Assumptions for product form solution
— The system is in steady state
— All servers have exponentially distributed service time
— Jobs are stochastically independent of each other
— A job from device i joins device ] with the (routing) probability q;;

e Gordon and Newell’s decomposition theorem

1
P(ny,ny, ..., ny) = C Fi(ny) F,(ny) ... Fyy(ny)

ZNES(M,N) P(nl, nz, ""nM) — 1

v N =(ng,n,, ..,ny)

v S(M,N) ={(nq,ny,..,ny)ny +ny +--+ny = N}

« Normalization factor G = ZNES(M,N) [T, Fi(ny)



Closed Queueing Network (3)

1 ) n; = 0
Filng) = {ViS(ni)Fi(ni -, m=1

— V; : Visit ratio of device |
— S(n;) : the service time of device i when there are n; jobs in device |

o Derivation of V/;,
— For any appropriate link, V, =1.

— Then, calculate other V; values : V; = 94:0 Viq;i

< Example > Vo =1
ST P N
V0:1,V0:V2+V3, : 4_> 2 :
1 2 1 1 :
V1:ZV1+V0,V2:ZV1,V3:ZV1 : 1 .—i—b
| :
_t oy 2yt | ——111] 3 |
= h=3.02=3,V3=3 l\ 1, E ::

—————————————————————————————————



Closed Queueing Network (4)

Buzen’s Algorithm for calculating G

- Letgnm(n) = ZnES(m,n) Hﬁl Fi(n;)

where n = (nq,n,, ...,Ny) , S(IM,N) = {(ny,n,, ...,ny)In; +ny + -+ n,,, = n}

- G = gu(N)

- g1(n) = Fi(n)
— gm(0) = ?;1 F;(0)=1
= Im(M) = Y=o Fn(k) Xn, .n.,_esm-1.n-k) [T F(n), (m>0m>1)

— 7I}=O Fm(k)gm—l(n - k)#

Jm (n) can be calculated in a recursive fashion
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Closed Queueing Network (5)

Calculation of g,,,(n)

1 2 m-1 m M
0| 1 1 1 xF(n) 1 1
1| B | g2 | o gn1(ur )
n1 | Fa(0-1) (g2 (1) ... | gm-a(0-Dx F )
n | Fu) | g2(n) | ... | 9mA(0)x F () Gm (1)
: : : gu(N-1)
N | Fi(N) | g2(N) gu(N) =6
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Closed Queueing Network (6)

— When the service rate of each device is constant (a single server)
« S =S,V =21 = E,(k) =V,S,En(k—1)
- gm() = B, (0)gm-1(n) + Z;cl=1 Fn(k)gm-1(n — k)

= gm-1(n) + VS 27?:1 Fn(k—1)gm-1(n — k)
= Im-1(n) + VuSgm-1(n — 1)

1 2 m-1 m M
0 1 1 1 1 1
1| Fi(1) | g2(D) | ... |91 (D) | gm(D)
n-1 Fl(n'l) 1)) (ﬂ-l) oo | Im-1 (ﬂ-l) gm(n'l)x V.S,
n | Fi) | g2(0) | ... gma® T2 g
N | Fi(N) | g2(N)




Closed Queueing Network (7)

Performance measure
— Throughput of device M: X,

« Xy = Zk 1PM(k)S (k)
v Py (k) : Probability that there are k jobs in the device M

1
v Py (k) :Z(nl,nz,...,nM_l)ES(M—l,N—k)EFl(nl) e Fpg—1 (ny—1) Fag ()
=~ Fy (K)gy-1(N — k)

= Xy = k 1 GFM(k)gM 1(N — k)s )

:legﬂévM%(k)FM(k — 1) gu-1(N - k)Wl(T)

1
:EVM gu(N — 1)
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Closed Queueing Network (8)

. X Vi . . .
Since —=— forany devicel, j
Xj Vj

— System Throughput : X,
Vm G
— Throughput of arbitrary device |

X; = Vi X

— System response time: T

T

X X
> N jobs °

By Little’s Law, 7 = Kl

Xo
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