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HMM Basics

B A hidden Markov model is a doubly stochastic process

— an underling Markov process
= not observable
= can only be observed through another observation process

— An observation process that produces a sequence of observations

" A hidden Markov model is usually defined as five-tuple (S,
Q, P, ®, 1)

S {s1, 5,5, =", Sy} 18 a state space of the underlying process
— Q={04,0, ", 0y} 1s a set of possible observations
— P = [ p; ] where p, is the state transition probability from state s,
to state s,
— O®=[¢(0,)] where ¢(o,)is the probability that o, is produced in state s;
— [I = [x;] are the initial state distribution

®  Parameter of an HMM: A =(P,®,I1)




HMM Assumptions

= g,V :the hidden state and the observation at time t
= Markov assumption

— PQu=119=00,=l-0 =n)=P(q.,=Jlq =1)
= Stationary assumption

— Py =PQ:=110=1)=P(Q, = ][0, =1)
= (Observation independence assumption

— ID(Vl’Vz""VT |q1’qZ""QT’/1) :Hthlp(Vt |qt’/1)

4

= Joint Probability distribution
P(Q,0) =TT, P |6 )P(v | a,)




Fundamental Problems in HMM

= Evaluation problem
— Given 2=(P,®,IT) and an observation sequence O = (v,,v,,---,V;)
how do we efficiently compute P(O] 1) ?

= Decoding problem

— Given A =(P,®,I1), what is the most likely sequence of hidden
states that could have generated a given observation sequence?

Q" =argmax, P(Q,0| 1)

= | earning problem

— Given an observation sequence, find the parameters of the HMM that
maximize the probability of a given observation sequence

— 1 =argmaxP(O|A)
A




Solution Methods

= Evaluation problem
— Forward algorithm
— Backward algorithm

= Decoding problem
— Viterbi algorithm

= | earning problem
— Baum-Welch algorithm




Evaluation Problem (1)

" P(O]4)=), POI|Q)PQIA)

Q
where P(O]Q,2) =TT, P(0, 16, 2) =, ()¢, (0,) ¢, (0r)
P(Q | ﬂ') = 7[% p%Qz pQ2Q3 — qu—qu

P(O[4) = Z i ¢q1 (o)) leQ2¢Q2 (0,) Pa,q, *** Poy o ¢qT (r)
Oy Gy

=  Forward Algorithm
a, (1) =P(0,,0,,--,0,,0, =1[4)
= P(Ot |01’02’°”’0t—1’qt = i’/I)P(Oliozi""ot—liqt =i M,)
=P(o [q, =1,4)P(0,,0,,---,0,4,0, =1]4)

=9 (Ot)ZjeS P(Qt =1] q. = j,ﬂ,)P(Ol,OZ,"',Ot_l,qt_l =]|4)
=¢ (Ot)zlj\l:l pjiat—l(j)




Evaluation Problem (2)

=  Forward Algorithm

1. Initialization

a (1) =7; ¢.(0,) 1<i<N

2. Induction
a.()=(X", pja()gl0.)  1st<T-1L1<i<N

3. Sett=t+1. If t<T, go to step 2; otherwise go to step 4

4. Termination

POIA)=>" o ()=>" P(O,q =i|l)




Evaluation Problem (3)

= Backward Algorithm

—  B()=P(0,,,0,,,---,0; |G, =i, )
= ¢ P00+, 0r Gy = 10, =1, 2)
=Y P18 = D)P(O,0p, Gy = 10 =1, 4)
=" s $1(0)P©5,0p [ Gy = DP(Gyy = j1 0 =i, 4)

- Z’;‘:l ¢j (Ot+l)ﬁt+1( J) pij

Initialization: g (i))=1 1<i<N

Induction: A=, pi#(0.)B.(j) 1<t<T-1 1<i<N
Set t=t+1. If t>0, go to step 2; otherwise, go to step 4
Termination: P©|4)=>" A ()7 (o)

g | A o b




Example: Forward Algorithm (1)

= P0O=(G,G,SS,B,B)| 1)
- T=5 7ns=n.=mgx=1/3




Example: Forward Algorithm (2)

m o(S)=7.4.(G)=1/3x0.6=0.2
a,(C)=7.¢.(G)=1/3x0.3=0.1
a,(R) = 7,0, (G) =1/3x0.1=0.033

s a,)=(2", pja(d)d,) 1stsT-11<i<N

a,(S) = (pssa1(8) + Pes; (C) + pRSal(R))¢S (G)
=(0.5x0.2+0.4x0.1+0.2x0.033) x0.6 = 0.088

0,(C) = (Pee 0, (S) + Pec @, (C) + Preat; (R) )b (G) = 0.034
0, (R) = (Per@; (S) + Per@ (C) + Pret;(R) )ps (G) = 0.007

5(S) = (Pss @, (S) + Pes, (C) + Prsz, (R) s (SS) = 0.018
a,(C)=0.021 «,(R)=0.008
a,(S)=0.002 ¢,(C)=0.003 «,(R)=0.007

05(S)=00004 @ (C)=00009 o (R)=00023

B P(O=(G,G,SS,B,B)| 1) = (S)+a(C) +a(R) =0.0036




earning Problem

® 7 =argmax, P(O]A4)

= There Is no known method to analytically obtain 2 that
maximizes pP(O|A)

= Baum-Welch algorithm

— Iterative algorithm for choosing the model parameters in such a
way that P(O|A) is locally maximized.

— A special case of the Expectation Maximization method
— Forward-backward algorithm

- o()=7 ¢(0) 1<i<N
z N z z
v an®=2", pa()d,)  1stsT-11s<isN
= B ()=1 1<i<N
= A=, Pt 0.)B.a(]) 1<t<T-1 1<i<N




Baum-Welch algorithm(1)

7 (1)=P(q,=1]/0,1)
— P(qt :i’ol""’otiotﬂ"'"OT | 1)

P(O]4)

= P(Ol""’otlotﬂ"“’OT |qt :i,ﬂ)P(qt :ilﬂ)

P(O[4)
= P(Ol"”’ot |Ot+1""’OT1qt :i’/l)P(OHl’”"oT Iqt :ilﬁ’)P(qt :i|/1)

P(O]4)
_ P(o,,---,0,|q, =1,4)P(0,,,"-+,0; | 0, =1,A)P(q, =1| 4)
P(O|4)

_P(o,---,0,,G =1 A)P(0y,"-~, 07 |G, =1,4)

P(O4)

_aMB) _ a()A0)

POIA) > a)A()




Baum-Welch algorithm (2)

" &G,0)=P(q=1,0..=J]0,2)

= P(qt :i’qt+l: 1,0[4)
P(O|4)

= at (I) pij¢j (t +1)18t+1(j) = at (I) pij¢j (t +1),Bt+1(j)
>La®a®) XL X a®pd ) Aa0)

= Z: (i) : the expected number of transitions made from state |
. Z: £ (i, j) : the expected number of transitions from state i to state |

. mzzgfan
thl Vi (i)




Baum-Welch algorithm (3)

The algorithm starts by setting the parameters ,_p ¢ 7y t0 some initial
values that can be chosen from some prior knowledge or from some
uniform distribution

Detailed Procedure

1. Obtain the estimate of the initial state distribution for state i as the
expected frequency with which state 1 s visited at time t=1: 7. =y, (i)

2. Obtain the estimates p, and g, (k)

3. Let the current model be 4= (P,®,1) that is used to compute p, and g, (k)

Let the re-estimated model be 1 = (P, ®,11). Using the updated model,
we perform a new iteration.

4. If PO|7)-P(O|1)<s ,Stop, where 5 is a predefined threshold value.
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