# Hidden Markov Models

# Wha Sook Jeon Mobile Computing & Communications Lab. Seoul National University

## **HMM Basics**

- A hidden Markov model is a doubly stochastic process
  - an underling Markov process
    - not observable
    - can only be observed through another observation process
  - An observation process that produces a sequence of observations
- A hidden Markov model is usually defined as five-tuple (S, Ω, P, Φ, Π)
  - $S = \{s_1, s_2, \dots, s_N\}$  is a state space of the underlying process
  - $-\Omega = \{o_1, o_2, \dots, o_M\}$  is a set of possible observations
  - $P = [p_{ij}]$  where  $p_{ij}$  is the state transition probability from state  $s_i$  to state  $s_j$
  - $\Phi = [\phi_j(o_k)]$  where  $\phi_j(o_k)$  is the probability that  $o_k$  is produced in state  $s_j$
  - $-\Pi = [\pi_i]$  are the initial state distribution
- Parameter of an HMM:  $\lambda = (P, \Phi, \Pi)$

## **HMM Assumptions**

- $q_t, v_t$ : the hidden state and the observation at time t
- Markov assumption

- 
$$P(q_{t+1} = j | q_t = i, q_{t-1} = l, \dots, q_0 = n) = P(q_{t+1} = j | q_t = i)$$

Stationary assumption

- 
$$p_{ij} = P(q_{t+1} = j | q_t = i) = P(q_{a+1} = j | q_a = i)$$

Observation independence assumption

$$P(v_1, v_2, \dots v_T \mid q_1, q_2, \dots q_T, \lambda) = \prod_{t=1}^{T} P(v_t \mid q_t, \lambda)$$



Joint Probability distribution

$$P(Q, O) = \prod_{t=1}^{T} P(q_t | q_{t-1}) P(v_t | q_t)$$

## Fundamental Problems in HMM

#### Evaluation problem

- Given  $\lambda = (P, \Phi, \Pi)$  and an observation sequence  $O = (v_1, v_2, \dots, v_T)$  how do we efficiently compute  $P(O | \lambda)$ ?

### Decoding problem

- Given  $\lambda = (P, \Phi, \Pi)$ , what is the most likely sequence of hidden states that could have generated a given observation sequence?

#### Learning problem

- Given an observation sequence, find the parameters of the HMM that maximize the probability of a given observation sequence
- $\lambda^* = \arg\max_{\lambda} P(O \mid \lambda)$

## **Solution Methods**

- Evaluation problem
  - Forward algorithm
  - Backward algorithm
- Decoding problem
  - Viterbi algorithm
- Learning problem
  - Baum-Welch algorithm

## Evaluation Problem (1)

 $P(O \mid \lambda) = \sum_{Q} P(O \mid Q, \lambda) P(Q \mid \lambda)$ where  $P(O \mid Q, \lambda) = \prod_{t=1}^{T} P(o_t \mid q_t, \lambda) = \phi_{q_1}(o_1) \phi_{q_2}(o_2) \cdots \phi_{q_T}(o_T)$   $P(Q \mid \lambda) = \pi_{q_1} p_{q_1 q_2} p_{q_2 q_3} \cdots p_{q_{T-1} q_T}$ 

$$P(O \mid \lambda) = \sum_{q_1 \cdots q_T} \pi_{q_1} \phi_{q_1}(o_1) p_{q_1 q_2} \phi_{q_2}(o_2) p_{q_2 q_3} \cdots p_{q_{T-1} q_T} \phi_{q_T}(o_T)$$

#### Forward Algorithm

$$\begin{split} \alpha_{t}(i) &= P(o_{1}, o_{2}, \cdots, o_{t}, q_{t} = i \mid \lambda) \\ &= P(o_{t} \mid o_{1}, o_{2}, \cdots, o_{t-1}, q_{t} = i, \lambda) P(o_{1}, o_{2}, \cdots, o_{t-1}, q_{t} = i \mid \lambda) \\ &= P(o_{t} \mid q_{t} = i, \lambda) P(o_{1}, o_{2}, \cdots, o_{t-1}, q_{t} = i \mid \lambda) \\ &= \phi_{i}(o_{t}) \sum_{j \in S} P(q_{t} = i \mid q_{t-1} = j, \lambda) P(o_{1}, o_{2}, \cdots, o_{t-1}, q_{t-1} = j \mid \lambda) \\ &= \phi_{i}(o_{t}) \sum_{j \in S} P(q_{t} = i \mid q_{t-1} = j, \lambda) P(o_{1}, o_{2}, \cdots, o_{t-1}, q_{t-1} = j \mid \lambda) \end{split}$$

## Evaluation Problem (2)

- Forward Algorithm
  - 1. Initialization

$$\alpha_1(i) = \pi_i \ \phi_i(o_1) \qquad 1 \le i \le N$$

2. Induction

$$\alpha_{t+1}(i) = \left(\sum_{j=1}^{N} p_{ji} \alpha_{t}(j)\right) \phi_{i}(o_{t+1}) \qquad 1 \le t \le T - 1, \ 1 \le i \le N$$

- 3. Set t=t+1. If t<T, go to step 2; otherwise go to step 4
- 4. Termination

$$P(O | \lambda) = \sum_{i=1}^{N} \alpha_{T}(i) = \sum_{i=1}^{N} P(O, q_{T} = i | \lambda)$$

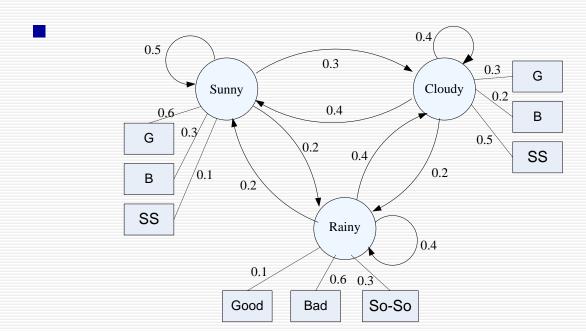
## Evaluation Problem (3)

#### Backward Algorithm

$$\begin{split} & - \beta_{t}(i) = P(o_{t+1}, o_{t+2}, \cdots, o_{T} \mid q_{t} = i, \lambda) \\ & = \sum_{j \in S} P(o_{t+1}, o_{t+2}, \cdots, o_{T}, q_{t+1} = j \mid q_{t} = i, \lambda) \\ & = \sum_{j \in S} P(o_{t+1} \mid q_{t+1} = j) P(o_{t+2}, \cdots, o_{T}, q_{t+1} = j \mid q_{t} = i, \lambda) \\ & = \sum_{j \in S} \phi_{j}(o_{t+1}) P(o_{t+2}, \cdots, o_{T} \mid q_{t+1} = j) P(q_{t+1} = j \mid q_{t} = i, \lambda) \\ & = \sum_{j \in S} \phi_{j}(o_{t+1}) \beta_{t+1}(j) p_{ij} \end{split}$$

- 1. Initialization:  $\beta_{\tau}(i) = 1$   $1 \le i \le N$
- 2. Induction:  $\beta_t(i) = \sum_{j=1}^{N} p_{ij} \phi_j(o_{t+1}) \beta_{t+1}(j)$   $1 \le t \le T 1$ ,  $1 \le i \le N$
- 3. Set t=t+1. If t>0, go to step 2; otherwise, go to step 4
- 4. Termination:  $P(O \mid \lambda) = \sum_{i=1}^{N} \beta_1(i) \pi_i \phi_i(o_1)$

## Example: Forward Algorithm (1)



$$P(O = (G, G, SS, B, B) | \lambda)$$

$$- T = 5, \quad \pi_S = \pi_C = \pi_R = 1/3$$

## Example: Forward Algorithm (2)

$$\alpha_1(S) = \pi_S \phi_S(G) = 1/3 \times 0.6 = 0.2$$

$$\alpha_1(C) = \pi_C \phi_C(G) = 1/3 \times 0.3 = 0.1$$

$$\alpha_1(R) = \pi_R \phi_R(G) = 1/3 \times 0.1 = 0.033$$

$$\alpha_{2}(S) = (p_{SS}\alpha_{1}(S) + p_{CS}\alpha_{1}(C) + p_{RS}\alpha_{1}(R))\phi_{S}(G)$$

$$= (0.5 \times 0.2 + 0.4 \times 0.1 + 0.2 \times 0.033) \times 0.6 = 0.088$$

$$\alpha_{2}(C) = (p_{SC}\alpha_{1}(S) + p_{CC}\alpha_{1}(C) + p_{RC}\alpha_{1}(R))\phi_{C}(G) = 0.034$$

$$\alpha_{2}(R) = (p_{SR}\alpha_{1}(S) + p_{CR}\alpha_{1}(C) + p_{RR}\alpha_{1}(R))\phi_{R}(G) = 0.007$$

$$\alpha_3(S) = (p_{SS}\alpha_2(S) + p_{CS}\alpha_2(C) + p_{RS}\alpha_2(R))\phi_S(SS) = 0.018$$
  
$$\alpha_3(C) = 0.021 \quad \alpha_3(R) = 0.008$$

$$\alpha_4(S) = 0.002$$
  $\alpha_4(C) = 0.003$   $\alpha_4(R) = 0.007$ 

- 
$$\alpha_5(S) = 0.0004$$
  $\alpha_5(C) = 0.0009$   $\alpha_5(R) = 0.0023$ 

$$P(O = (G, G, SS, B, B) | \lambda) = \alpha_5(S) + \alpha_5(C) + \alpha_5(R) = 0.0036$$

## Learning Problem

- $\lambda^* = \arg\max_{\lambda} P(O \mid \lambda)$
- There is no known method to analytically obtain  $\lambda$  that maximizes  $P(O|\lambda)$
- Baum-Welch algorithm
  - Iterative algorithm for choosing the model parameters in such a way that  $P(O | \lambda)$  is locally maximized.
  - A special case of the Expectation Maximization method
  - Forward-backward algorithm
    - $\alpha_1(i) = \pi_i \, \phi_i(o_1) \qquad 1 \le i \le N$
    - $\alpha_{t+1}(i) = \left(\sum_{i=1}^{N} p_{ji}\alpha_{t}(j)\right)\phi_{i}(o_{t+1})$   $1 \le t \le T-1, \ 1 \le i \le N$
    - $\beta_T(i) = 1 \qquad 1 \le i \le N$
    - $\beta_t(i) = \sum_{j=1}^N p_{ij} \phi_j(o_{t+1}) \beta_{t+1}(j)$   $1 \le t \le T 1$ ,  $1 \le i \le N$

## Baum-Welch algorithm(1)

$$\begin{split} & \gamma_{t}(i) = P(q_{t} = i \mid O, \lambda) \\ & = \frac{P(q_{t} = i, o_{1}, \cdots, o_{t}, o_{t+1}, \cdots, o_{T} \mid \lambda)}{P(O \mid \lambda)} \\ & = \frac{P(o_{1}, \cdots, o_{t}, o_{t+1}, \cdots, o_{T} \mid q_{t} = i, \lambda) P(q_{t} = i \mid \lambda)}{P(O \mid \lambda)} \\ & = \frac{P(o_{1}, \cdots, o_{t} \mid o_{t+1}, \cdots, o_{T}, q_{t} = i, \lambda) P(o_{t+1}, \cdots, o_{T} \mid q_{t} = i, \lambda) P(q_{t} = i \mid \lambda)}{P(O \mid \lambda)} \\ & = \frac{P(o_{1}, \cdots, o_{t} \mid q_{t} = i, \lambda) P(o_{t+1}, \cdots, o_{T} \mid q_{t} = i, \lambda) P(q_{t} = i \mid \lambda)}{P(O \mid \lambda)} \\ & = \frac{P(o_{1}, \cdots, o_{t}, q_{t} = i \mid \lambda) P(o_{t+1}, \cdots, o_{T} \mid q_{t} = i, \lambda)}{P(O \mid \lambda)} \\ & = \frac{\alpha_{t}(i) \beta_{t}(i)}{P(O \mid \lambda)} = \frac{\alpha_{t}(i) \beta_{t}(i)}{\sum_{i=1}^{N} \alpha_{t}(i) \beta_{t}(i)} \end{split}$$

## Baum-Welch algorithm (2)

$$\begin{split} \xi_{t}(i,j) &= P(q_{t} = i, q_{t+1} = j \mid O, \lambda) \\ &= \frac{P(q_{t} = i, q_{t+1} = j, O \mid \lambda)}{P(O \mid \lambda)} \\ &= \frac{\alpha_{t}(i) p_{ij} \phi_{j}(t+1) \beta_{t+1}(j)}{\sum_{i=1}^{N} \alpha_{t}(i) \beta_{t}(i)} = \frac{\alpha_{t}(i) p_{ij} \phi_{j}(t+1) \beta_{t+1}(j)}{\sum_{i=1}^{N} \alpha_{t}(i) p_{ij} \phi_{j}(t+1) \beta_{t+1}(j)} \end{split}$$

- $\sum_{t=1}^{T-1} \gamma_t(i)$ : the expected number of transitions made from state i
- $\sum_{t=1}^{T-1} \xi_t(i,j)$ : the expected number of transitions from state i to state j

$$\overline{p}_{ij} = \frac{\sum_{t=1}^{T-1} \xi_t(i, j)}{\sum_{t=1}^{T-1} \gamma_t(i)}$$

$$\overline{\phi}_{j}(k) = \frac{\sum_{t=1,o_{t}=k}^{T-1} \gamma_{t}(j)}{\sum_{t=1}^{T-1} \gamma_{t}(j)}$$

## Baum-Welch algorithm (3)

- The algorithm starts by setting the parameters  $\lambda = (P, \Phi, \Pi)$  to some initial values that can be chosen from some prior knowledge or from some uniform distribution
- Detailed Procedure
  - 1. Obtain the estimate of the initial state distribution for state i as the expected frequency with which state i is visited at time t=1:  $\overline{\pi}_i = \gamma_1(i)$
  - 2. Obtain the estimates  $\overline{p}_{ij}$  and  $\overline{\phi}_{j}(k)$
  - 3. Let the current model be  $\lambda = (P, \Phi, \Pi)$  that is used to compute  $\overline{p}_{ij}$  and  $\overline{\phi}_{j}(k)$  Let the re-estimated model be  $\overline{\lambda} = (\overline{P}, \overline{\Phi}, \overline{\Pi})$ . Using the updated model, we perform a new iteration.
  - 4. If  $P(O|\overline{\lambda}) P(O|\lambda) < \delta$ , stop, where  $\delta$  is a predefined threshold value.