Markov Decision Processes

Wha Sook Jeon
Mobile Computing & Communications Lab.

Seoul National University




Contents

" Markov Process with Rewards

— Discounted rewards
— EXpected discounted sum of rewards

= Markov Decision Process
— Optimal policy
— Value Iteration

= Partially Observable MDP

— Observation Process
— Example




Markov Process

m  Stochastic Process (Ransom Process)

— Collection of random variables, X, which represents the system state at
timet: {X,t=0,1, ...}
— Describes the evolution through time of physical precess
= Makovian Property

PriXes =Sk | Xg=Sg: Xy =Sq, -y X, =S;)
= Pr(Xu1 =S¢ | X = 8) = Pix
= Markov process
— Stochastic process having Markovian property

— defined as a tuple (S, P)
= S Set of feasible states
= P ! State transition matrix [;]
— 1S used to evaluate the system performance




Markov processes with rewards

= A MP with rewards is a tuple (S, P, R)
— State space: S={s;, S,, ..., Sy}
— Transition probability matrix: P
Pij = Pr(Xis1 = ;[ X; = 5)
— Reward:R=(r;, 1y, ..., 1)
« Each state s; has a reward r;




Discounted Rewards

= A reward In the future 1s not worth as much as
a reward now.

= Discounting factor: »
= EXxpected discounted sum of future rewards

C t
27/ R,
t=0
— R;: reward In time t
— R,: Immediate (now) reward




Expected Reward Sum: J*(s;)

= J*(s;): the expected discounted sum of future rewards, starting
In state s;

N
J*(s;)=r, +72Pij‘]*(sj)
i1

= Matrix Inversion for solving J*(s;)
— Using the vector (matrix) notation

_J *(51)_ f P11 P, - Py
J* = J *:(32) R = r:z P — p:21 p:22 p?N
_J *(SN)_ _I‘3_ _le Pnz o pNN_
J*=R+VPJ*

=  Then, solve J* using the matrix inversion




Value lteration for solving J*(s;) (1)

= J¥(s)): the expected discounted sum of rewards
during next k steps, starting at s;

J°(s) «r
P(s) oy pa%(s) limJ*(s;) = J*(s,)

N
J(s) < r+y> p;d N (s)) until Max|J **(s;) = 3%(s,)| < ¢
j=1 |




Value Iteration for solving J*(s;) (2)

= Example
o.SO 05 0.5 /)o.s
0.5 0.5
K JK(A) J¥(B) J¥(C)
0 4 0 -8
1 5 -1 -10
2 5 -1.25 -10.75
3 4.94 -1.44 -11




Markov Decision Process




Markov Decision Process (1)

= MDPs provide a mathematical framework for
modeling decision-making

— In situation where outcomes are partly random
and partly under the control of the decision maker
= MDPs are useful for studying a wide range of
optimization problems via dynamic programming

= A variety of areas including robotics, automated
control, economics, etc.




Markov Decision Process (2)

= A discrete time stochastic control process

Markov chain with rewards and actions
defined as a tuple (S, A, P, R)
— State space: S={S;, S, ..., S\ }
— Action space: A
— Transition probability matrix: P
Pa(L))= Pr(Xy, =8; | X; = s;, &, =a)
— Reward: R = (R(sy), R(S,), ..., R(Sy))
A policy Is a mapping from states to actions

What’s an optimal policy?




Finding the optimal policy: VValue lteration (1)

= Computing the optimal value function using value iteration.
= Optimal policy is the actions for the optimal value function

= Optimal Value function: J*(s))

— the expected discounted sum of future rewards, starting
at state s;, when the optimal policy is assumed to be

used.
= Computing the optimal value function

— J¥(s;): the maximum possible expected discounted sum
of rewards we can get, after k time steps starting at s;

= ll(i_m\]k(si):J *(Si)




Value Iteration (2)

® Bellman’s Equation

3(s) =max[r +73. Py, )I*(s))

= Using the dynamic programming

k=0
J°(s,)«r foralls
repeat
K<« k+1
N
J¥(s;) < max[r, +»> p,(i, j)I(s;)] foralls,
2 1

j=

until (miax‘J “(s,)—J k‘1(si)‘ <¢)




Value lteration (3)

" Finding the optimal policy
— Compute J*(s;) for all s;
— Then, we can obtain the best action in state s;
—> Optimal policy

N
argmax[r, +y Q> p,(,])J *(s;)]
a -1

j




Value lteration (4)
= Example

px(A,A)=0.5

C px(B,A)=0.6 a

py(A,A)=0.9
Q.
7
9
N7,
2
pv(C,A)=0.8 px(C,A)=0.5 px(D,B)=0.7
&
\0?’
Q+
C,0)=0.2
pyv(C,C) 5O
py(D,C)=0.5

Action set = {X, Y} y

py(B,B)=0.8

px(B,B)=0.4

py(B,D)=0.2

py(D,D)=0.5

= 0.9

J{A) | JB) | C) | D)
0 0 10 10
09 | 1.8 | 11.8 | 19
2.439




Partially Observable MDP




POMDP (1)

defined as a six-tuple (S, A, P, O, Q, R)
Core process
— A finite state Markov chain {x,  te1}, wherel ={0,1,..}.
« State space:s={12, ..,N}
= Transition probability matrix: p; =Pr{X.,=j| X, =i}
— cannot be directly observable
Observation process: {Y,.te 1}, wherel ={0,1...}.

— By observingy, at time t, information regarding the true
value of x, Is obtained

The probabilistic relationship between the core
process and observation process when action a Is
chosen: g, (a) =Pr{Y, = j| X, =i, a, =a}




POMDP (2)

Random variables
— m, :the observable value of Y,

a, : the action taken at time t
d, : the data available for decision making at timet
d, = (7(0), m, &, m,, 8,8, m)
Information vector: () = (z, @), z, ), 7, (t))
— ;(t) =Pr{X,=1|d}
Transformation of information vector
— mi(t+) = Pr{X, =1|d, =(d;,a,m = |)}
= T[z(®).2, ]
J; (at)zﬂ-k (t) P (&)

keS

" g,@)3 m 0P @)

1S keS




POMDP (3)

Immediate reward:
= rl(at):z Z R(iyjikla)pij(a)qjk(a)

jeS ke®

« R(, ], k,a) : immediate reward when action a is taken,

the core process is In state I, moves to state |, and
observation is k

Value function
V) (7) = max{n r(@)+p> vV, (Tx, j,aln(ilr, a)}

jes

= 70|z 8)=Pr{Y,,, = ]| 7(t),a =a}




An Example of POMDP

A POMDP-based
Cognitive Radio Senor Networks



System Description

= Channel pool

each channel is licensed to a primary user (PU)

" CR sensor network

Cluster with star topology
= One cluster header (CH) and (N-1) cluster members (CMs)

The sensor nodes (CM) opportunistically access to a vacant channel
under the control of CH

= CRSN control of CH: POMDP-based Decision
One operating channel and one backup channel

20



Operation Modes of CRSN

= DATA mode

— The sensor nodes transmit data to CH
= according to the transmission schedule given by CH

= SO mode

— Sense the operating channel and report the sensing result to CH
= SB mode

— Sense the backup channel and report the sensing result to CH
= CO mode

— Switch to the backup channel (new operating channel)

— Sense the new operating channel and the randomly selected backup
channel

— Report the sensing result and send new association message

"= CB mode

— CH randomly chooses new backup channel
— All sensor nodes sense the backup channel and report their results

21



An Example Scenario

sensing changing sgnsing
backup channel backup channel data transmission operating channel
k— Leg——F—Leg—¢ Loata > k— Lso—f
i []
]
Operating |0 data | data | | data thei;:ri]glr;nel 4 )
channel % Y _
changin
PU is activated g hg I
Old backup F PU is detected operating channe
channel

\/

Backup H New operating F %_I I
channel e time

New backup W
channel

\ 4

%
g : beacon D : channel sensing H: sensing outcome reporting

A

H : sensing outcome reporting and association request I : association response
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Sensing Model

= PU activation model on a channel: @ @

= Qperating channel: channel 1
Backup channel: channel 2
= Sensing model: Energy detection
— Each cluster member reports the received energy to CH
— s{M : Sum of the sensing results on the channel m at decision

epoch t
= Chi-square distribution
= Quantize s into K levels with thresholds 7o, 71 - 7k

— Probability that the quantized value (observation value) is k
= H,: Channel m is empty

— Vo(k) =Pr{y, , <s{™ <7, [He}
= H;: APU exists on channel m

— Vy(k)=Pr{y,, < St(m) <7 | H}
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POMDP Model (1)

A six-tuple (X, A, O, P, Q, R)

X: State space of the core process
= Xt = (Xt(l)’ Xt(Z))
— x =0 (vacant)or1(occupied)
A: Action space
= 1DATA, SO, SB, CO, CB}
O: State space of the observation process
= Ot = (Ot(l)’ot(Z))
— If the channel m is sensed, o™ e{l
— Otherwise, Ot(m) =0

P: Transition probability matrix
Pa, iy i (a) = Pr{xt+1 =(1' ") A= (i, ), A = a}

24



POMDP Model (2)

" Transition probability of core process
— DATA, SO, SB
P iy jp (@) = U (@) xu; ;. (a)

HLaﬂ
Backup
channel ﬂ @
J ) time
Operating
channel @

i r time

= U;;(a): prob. that a channel transits from state I to I’
= W;(a): prob. that a randomly selected channel is in state i




POMDP Model (3)

= P: Transition probability of core process

— CO: p iy (@) = (a) xw;.(a)

—Lco—
J; New backup
Back ) channel
ackup
channel 37 j7 New operating
] " time channel
Operating
channel ﬂ
1
— CB: py i@ = (a)xw;.(a)
—Les—
ﬂr New backup
Backup ﬂ I tme  Channel
channel . 2
i
Operating
channel ﬂ ﬂ

i i’ time
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POMDP Model (4)

= Q: Probabilistic relation between X and O
q(i,j)(k,l)(a) = Pr{ot =(k, 1) | Xy = (1, )), A= a}

Actiona | O (@)
DATA | n(k)xn(l)
SO V. (k) xn(l)
SB n(k)xv;(l)
CO v, (K)xv. (I)
CB n(k)xv, ()

= Vi(k): Prob. that ot(m) =k when the channel m is sensed
= n(k): Prob. that 5 _ . when the channel m is not sensed
t




POMDP Model (5)

= R: Rewards

— Control parameter for getting the required performance
= Penalty on unnecessary energy consumption
— eX) CO/CB by false alarm
= Positive reward on protecting PU

—  TIiaapn(@) :reward by taking the action a in state (i,j) which
results in the transition (i’,j’)
« Example
ry . (DATA)=-10,  rg, ,(DATA)=10
F0.90,)(SO) =T )., (SB) =1

Ri.j(@) = IZ:;Z a1 (@) Py (@)

0
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Decision Making (1)

" Information vVector: Ti(t) = (x4 (1), 75, 7ue (), Zan(®)
— ., : Prob. that the core process Is in state (i,]) at decision

epoch t.
— summarizes all information required for the decision-making

— Update of information vector

7.5 (E+1) =T 5, (TI(D), &, (k, 1)
=Pr{X,, = (@, DIII{), A =a,0,, = (k,1)}

Qi @D 2 P v i (@7 jy (1)

=0 j=0
—71 1 J1 1
) Oz;)q(?,?)(k,l)(a)z;z; Pei.in 77 (@77 ()
1=0 )= 1'= J‘:

29



Decision Making (2)

= Optimal value function

1

V(D) = TEEIAX(ZZﬂ(i,j)RM)(a) + B V(T (I, a, (k, 1) x Pr{(k, 1) T, a})

i—0 j=0 k=0 1=0

= Optimal policy

_5*(1‘1):argmax(1 _1 ﬂ(i,j)R(i'j)(a)+,BZK:ZK:V*(T(H,a,(k,I))><Pr{(k,l)|H,a}]

acA k=0 1=0

30



Conclusion

® The solution to a MDP is an optimal policy,
which gives the action to take for a given state

® \When the action is fixed to each state, the
resulting MDP behaves like a Markov process

= A POMDRP is a generation of a MDP which
permits uncertainty

31
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