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Markov Process 

 Stochastic Process (Ransom Process) 
− Collection of random variables, Xt , which represents the system state at 

time t: {Xt, t = 0, 1, …} 
− Describes the evolution through time of physical precess 

 Makovian Property 
Pr(Xt+1 = sk | X0 = s0 , X1 = s1, …, Xt = si) 
= Pr(Xt+1 = sk | Xt = si) = pik 

 Markov process 
− Stochastic process having Markovian property 
− defined as a tuple (S, P) 

■ S : Set of feasible states 

■ P : State transition matrix [pik] 
− is used to evaluate the system performance 
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Markov processes with rewards 

 A MP with rewards is a tuple (S, P, R) 
− State space: S = {s1, s2, …, sN} 
− Transition probability matrix: P 

     Pij = Pr(Xt+1 = sj | Xt = si) 
− Reward: R = (r1, r2, …, rN) 

■ Each state si has a reward ri 

γ
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Discounted Rewards 

 A reward in the future is not worth as much as 
a reward now. 

 Discounting factor: 
 Expected discounted sum of future rewards 

 
 
− Rt: reward in time t 
− R0: immediate (now) reward 
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Expected Reward Sum: J*(si) 
 J*(si): the expected discounted sum of future rewards, starting 

in state si 

 
 

 Matrix Inversion for solving J*(si)  
− Using the vector (matrix) notation 

 
 
 
 
 
 
 

                       J* = R +   PJ* 
 Then, solve J* using the matrix inversion 
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Value Iteration for solving J*(si)    (1) 

 Jk(si): the expected discounted sum of rewards 
during next k steps, starting at si 
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Value Iteration for solving J*(si)    (2) 

 Example                 

k Jk(A) Jk(B) Jk(C) 

0 4 0 -8 
1 5 -1 -10 
2 5 -1.25 -10.75 
3 4.94 -1.44 -11 

B
(0)

C
(-8)

0.5

0.5 0.5

0.50.5 0.5

A
(+4) = 0.5 γ



Markov Decision Process 
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Markov Decision Process (1) 

 MDPs provide a mathematical framework for 
modeling decision-making  
− in situation where outcomes are partly random 

and partly under the control of the decision maker 
 MDPs are useful for studying a wide range of 

optimization problems via dynamic programming 
 A variety of areas including robotics, automated 

control, economics, etc. 
 



10 

Markov Decision Process (2) 
 A discrete time stochastic control process 
 Markov chain with rewards and actions 
 defined as a tuple (S, A, P, R) 
− State space: S = {s1, s2, …, sN} 
− Action space: A 
− Transition probability matrix: P 

     Pa(i,j)= Pr(Xt+1 =sj | Xt = si, at =a) 
− Reward: R = (R(s1), R(s2),  …, R(sN)) 

 A policy is a mapping from states to actions 
 What’s an optimal policy? 
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Finding the optimal policy: Value Iteration (1) 

 Computing the optimal value function using value iteration. 
 Optimal policy is the actions for the optimal value function 
 Optimal Value function:  J*(si) 

− the expected discounted sum of future rewards, starting 
at state si, when the optimal policy is assumed to be 
used. 

  Computing the optimal value function 
− Jk(si): the maximum possible expected discounted sum 

of rewards we can get, after k time steps starting at si 
 − . 
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Value Iteration (2) 

 Bellman’s Equation 
 

 
 Using the dynamic programming 
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Value Iteration (3) 

 Finding the optimal policy 
− Compute J*(si) for all si  
− Then, we can obtain the best action in state si     

                     Optimal policy 

∑
=

+
N

j
jai

a
sJjipr

1
])(*),([maxarg γ



14 

Value Iteration (4) 

k Jk(A) Jk(B) Jk(C) Jk(D) 
1 0 0 10 10 
2 0.9 1.8 11.8 19 
3 2.439 
4 
5 
6 

γ

 Example                 

Action set = {X, Y} = 0.9 

A
(0)

B
(0)

C
(10)

D
(10)

pY(A,A)=0.9

pX(A,B)=0.5

pX(B,A)=0.6

pX(C,A)=0.5

pY(C,C)=0.2

pY(D,C)=0.5

pY(D,D)=0.5

pX(D,B)=0.7 pY(B,D)=0.2

pX(B,B)=0.4

pX(C
,B)=0.5

pX(D,C)=0.3

pY(C,A)=0.8

pX(A,A)=0.5 pY(B,B)=0.8

p
Y (A,D)=0.1



Partially Observable MDP 
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POMDP (1) 

 defined as a six-tuple (S, A, P, O, Q, R) 
 Core process  

− A finite state Markov chain 
■ State space: 
■ Transition probability matrix:  

− cannot be directly observable 
 Observation process:  

− By observing     at time t, information regarding the true 
value of      is obtained   

 The probabilistic relationship between the core 
process and observation process when action a is 
chosen:  
 

} , ...  ,2 ,1{ NS =
...}. ,1 ,0{   where},,{ =∈ IItX t

}|Pr{ 1 iXjXp ttij === +

...}. ,1 ,0{   where},,{ =∈ IItYt

tY
tX

},|Pr{)( 1 aaiXjYaq tttij ==== −
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POMDP (2) 
 Random variables 

−     

 
 

 Information vector:  
−   

 Transformation of information vector 
−   
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POMDP (3) 

 Immediate reward:  
−   

 
■                  : immediate reward when action a is taken, 

the core process is in state i, moves to state j, and 
observation is k  

 Value function 
−   

 
■    
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An Example of POMDP 

A POMDP-based  
Cognitive Radio Senor Networks 
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System Description 

 Channel pool 
− each channel is licensed to a primary user (PU) 

 CR sensor network 
− Cluster with star topology 

■ One cluster header (CH) and (N-1) cluster members (CMs) 
− The sensor nodes (CM) opportunistically access to a vacant channel 

under the control of CH 
■ CRSN control of CH: POMDP-based Decision 

− One operating channel and one backup channel 
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Operation Modes of CRSN 

 DATA mode 
− The sensor nodes transmit data to CH  

■ according to the transmission schedule given by CH 
 SO mode 

− Sense the operating channel and report the sensing result to CH 
 SB mode 

− Sense the backup channel and report the sensing result to CH 
 CO mode 

− Switch to the backup channel (new operating channel) 
− Sense the new operating channel and the randomly selected backup 

channel 
− Report the sensing result and send new association message 

 CB mode 
− CH randomly chooses new backup channel 
− All sensor nodes sense the backup channel and report their results 
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An Example Scenario 

: channel sensing

: sensing outcome reporting and association request : association response

:  sensing outcome reporting: beacon

Operating 
channel

Backup 
channel

changing
 operating channel

 

...

New backup
 channel

...

... data datadata

LSO

the channel 
is idle

LDATA

changing 
backup channel

LCO

LCBLSB

time

... ...

sensing  
operating channel

...

PU is activated PU is detected

...

data transmission
sensing 

backup channel

Old backup
 channel

New operating 
channel
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Sensing Model  

 PU activation model on a channel: 
 

 Operating channel: channel 1 
       Backup channel: channel 2 
 Sensing model: Energy detection 

− Each cluster member reports the received energy to CH 
− st

(m) : Sum of the sensing results on the channel m at decision 
epoch t 
■ Chi-square distribution 
■ Quantize st

(m) into K levels with thresholds  
− Probability that the quantized value (observation value) is k 

■ H0: Channel m is empty 
−   

■ H1: A PU exists on channel m 
−   
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POMDP Model (1) 

 A six-tuple (X, A, O, P, Q, R)  
− X: State space of the core process 

■    
−   

− A: Action space 
■ {DATA, SO, SB, CO, CB}  

− O: State space of the observation process 
■   

− If the channel m is sensed, 
− Otherwise, 

− P: Transition probability matrix  

),( )2()1(
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POMDP Model (2) 

 Transition probability of core process 
− DATA, SO, SB 

■   
 
 
 
 
 
 
■ ui,i’(a): prob. that a channel transits from state i to i’ 
■ wi(a): prob. that a randomly selected channel is in state i 

)()()( ',',)',')(,( auauap jjiijiji ×=
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POMDP Model (3) 
 P: Transition probability of core process 

− CO:          
 
 
 
 
 

− CB: 

Backup 
channel

Operating 
channel

LCO

j

i

time

j’
New backup 

channel

i’
New operating 

channel

Backup 
channel

Operating 
channel

LCB

time

time

j

i i’

j’
New backup 

channel
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POMDP Model (4) 
 Q: Probabilistic relation between X and O 

−   
  

 
  

 
 
 
 
 
■ vi(k): Prob. that                   when the channel m is sensed 
■ n(k): Prob. that                   when the channel m is not sensed 
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POMDP Model (5) 
 R: Rewards 

− Control parameter for getting the required performance 
■ Penalty on unnecessary energy consumption 
− ex) CO/CB by false alarm 

■ Positive reward on protecting PU 
−                    : reward by taking the action a in state (i,j) which 

results in the transition (i’,j’)  
■ Example 
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Decision Making (1) 

 Information vector:  
−          : Prob. that the core process is in state (i,j) at decision 

epoch t. 
− summarizes all information required for the decision-making 
− Update of information vector  

■   
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Decision Making (2) 

 Optimal value function 
−   

 

 Optimal policy 
−   
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Conclusion  

 The solution to a MDP is an optimal policy, 
which gives the action to take for a given state 

 When the action is fixed to each state, the 
resulting MDP behaves like a Markov process 

 A POMDP is a generation of a MDP which 
permits uncertainty 
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