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Definition 

 Game theory provides a mathematical tool for the 
analysis of interactive decision-making process 

 Distinction between a game and an optimization 
problem 
− A game should involve multiple decision makers that 

can be influenced by others’ behavior. 
− An optimization problem involves only a single 

decision maker. 
 Game theory can be a design tool  to find 

solutions of decentralized problems 
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Classification (1) 

 Non-cooperative  vs.  Cooperative 
− Non-cooperative: players make decisions independently 
− Cooperative: groups of players ("coalitions") may enforce 

cooperative behavior 
■ a competition between coalitions of players, rather than 

between individual players 

 Static  vs. Dynamic  
− Static: all players make decisions simultaneously, without 

knowledge of  other players’ strategies (one stage) 
− Dynamic: when players interact by playing a similar stage 

game numerous times, (multiple stages) 
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Classification (2) 

 Complete information vs. Incomplete information 
− Complete information: Every player knows the payoffs 

and strategies available to other players but the players 
may not see all of the moves made by other players 

 Perfect information vs. Imperfect information 
− An example of perfect information game: chess      

each player can see all of the pieces on the board at all 
times 

− An example of imperfect information game: card game 
each player’s cards are hidden from other players 
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Static Games 

1. The players simultaneously 
choose their actions; and then 
 

2. The players receive their own 
payoff that depends on the 
combination of actions just 
chosen by all players 
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  One stage 



Example: Prisoner’s dilemma 

 Two men, charged with a joint violation of law, are held 
separately by the police. Each is told that 

 
1) If one confesses and the other does not, the former will be 

given a reward of $100 and the latter will be fined by $200. 
 

2) If both confesses, each will be fined by $100. 
 

3) If neither confesses, both will go clear. 
 

How can we describe the prisoner’s dilemma mathematically 
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Strategic-form Representation 

 A static game can be mathematically described 
by the strategic-form representation 
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Example: Prisoner’s dilemma 

 Strategic-form representation for prisoner’s dilemma 
 
 
 
 
 

 
 
 

− A finite game because the Ak’s are countable 
− A complete information game because the uk(a)’s are 

common knowledge among the players 
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Dominated Strategy & Its Iterative Deletion 

 Prisoner’s Dilemma 
 
 
 
 
 
 
 
 
− The outcome: (confess, confess) 
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Iterative Deletion of Dominated Strategies  

 Left/Middle/Right Game 
 
 
 
 
 
 
 

 
− The outcome: (M, R) 
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Nash Equilibrium 

 Non-cooperative game where the players 
compete through self-optimization 

 A joint strategy which no player can increase its 
utility by unilaterally deviating from. 
 
 
 

 Prisoner’s Dilemma: (confess, confess) 
 Left/Middle/Right: (Middle, Right) 

 
11 

kkkkkk Aakauuif ∈∀∀≥∈ − ˆ,  ),ˆ()*(  NE a is *Strategy *aaAa



Multiple NEs 

 Battle of Roses Game 
 
 
 
 
 
 
− Two NEs: (football, football), (ballet, ballet) 
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Mixed Strategy (1) 

 Matching pennies game 
      Each of two players has a penny and must choose  either 

head or tail facing up. If two pennies match, the player 1 
wins; otherwise, the player 2 wins 

 
 
 
 
 
 

 
− There is no Nash equilibrium 
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Mixed Strategy (2) 

 Matching Pennies Game 
− A probability distribution over the strategy set 
− The maxed strategy  

■ Player1: 
■ Player2: 
      where 

−   
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Mixed Strategy (3) 

 Matching Pennies Game 
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Pareto Optimality (1) 

 Prisoner’s Dilemma 
 
 
 
 
− Neither prisoner 1 nor prisoner 2 gets any incentive to 

deviate from (C,C) unilaterally. 
− But, if both prisoners could jointly change their 

strategies, they can be willing to play (NC, NC) 
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Pareto Optimality (2) 

 A strategy profile is Pareto-optimal if we cannot 
increase the payoff without decreasing that of at least 
one other player 

 A strategy profile is Pareto dominated if some other 
strategy would make at least one player better off 
without hurting any other player 

 A NE can be Pareto-dominated by a Pareto-optimal 
strategy 

 Any Pareto-optimal strategy does not Pareto-dominate 
another Pareto-optimal strategy 
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Pareto Optimality (3) 

 Prisoner’s Dilemma 
 
 
 
 
 
 

− (C, C) : a NE, but not Pareto-optimal 
− (NC,C), (C, NC), (NC,NC) : Pareto-optimal but not NE 
− (C, C) is Pareto-dominated by (NC,NC) 
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Sequential Game 

 A class of a dynamic game 
 a game where one player chooses his action 

before the others choose theirs. Importantly, the 
later players must have some information of the 
first's choice. 

 Extensive-form representation 
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Extensive-form Representation 

 Static Game 
 All players act simultaneously  

 
 
 
 

       
    
 NE: (top,left), (bottom, right) 

 

 Sequential Game 
 Extensive–form  representation 
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Sequential Game Representation 

 Strategic-form 
 
 
 
 
 
 

    NE: (top, LL) 
            (bottom, LR),  
            (bottom, RR) 
 

 
 
 

 
       

 Extensive–form   
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Sequential game: Backward Induction 

 Would Player A ever choose Top? 
− Only if he believes that Player B 

will play Left after he plays Bottom. 
 Player B could threaten to play Left 

if  Player A goes for Bottom. 
− However, this is not a credible 

threat 
− When A has chosen Bottom, Player 

B will prefer to play Right. 
 So, “ I'll play Left if you go Bottom” 

is an empty threat from B. 
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 (Top, Left) is not credible because it is based on an empty threat. 
 (Bottom, Right) is the only credible outcome (subgame-perfect NE) 



Example: Resource Allocation in OFDMA Systems 

 M subchannels, K users in N Cells 
 Power: 
 Subchannel Allocation of BS n: 
 SINR of user k in cell n for given P: 

 
 

 Achievable date rate  of user k 
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Downlink Resource Allocation Game (1) 

 Noncooperative RA game 
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Downlink Resource Allocation Game (2) 

 Problem of optimizing the subchannel allocation for a given 
network power vector, Po 

 
 
 
 

 Optimal subchannel allocation for given Po 
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Downlink Resource Allocation Game (3) 
 Optimal subchannel assignment matrix A*(P) can be 

determined once P is determined.         
 

                                                       
 
 Our RA game becomes Power Allocation game 
 Noncooperative Power Allocation game 
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