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Definition

= Game theory provides a mathematical tool for the
analysis of interactive decision-making process

= Distinction between a game and an optimization
problem

— A game should involve multiple decision makers that
can be influenced by others’ behavior.

— An optimization problem involves only a single
decision maker.
= Game theory can be a design tool to find
solutions of decentralized problems




Classification (1)

®  Non-cooperative vs. Cooperative
— Non-cooperative: players make decisions independently

— Cooperative: groups of players (*coalitions") may enforce
cooperative behavior

= acompetition between coalitions of players, rather than
between individual players

= Static vs. Dynamic

— Static: all players make decisions simultaneously, without
knowledge of other players’ strategies (one stage)

— Dynamic: when players interact by playing a similar stage
game numerous times, (multiple stages)




Classification (2)

= Complete information vs. Incomplete information

— Complete information: Every player knows the payoffs
and strategies available to other players but the players
may not see all of the moves made by other players

= Perfect information vs. Imperfect information

— An example of perfect information game: chess
each player can see all of the pieces on the board at all
times

— An example of imperfect information game: card game
each player’s cards are hidden from other players




Static Games

1. The players simultaneously
choose their actions; and then

N

2. The players receive their own — One stage
payoff that depends on the
combination of actions just
chosen by all players =




Example: Prisoner’s dilemma

= Two men, charged with a joint violation of law, are held
separately by the police. Each is told that

1) If one confesses and the other does not, the former will be
given a reward of $100 and the latter will be fined by $200.

2) If both confesses, each will be fined by $100.

3) If neither confesses, both will go clear.

How can we describe the prisoner’s dilemma mathematically




Strategic-form Representation

= A static game can be mathematically described
by the strategic-form representation

G =[K,{AJ.{u(a)}], where

- K =41, 2,---, N}is the finite set of players.
- A Is the set of strategies (actions) available to the player k.
- U, (@) is the utility (payoff) for the player k.




Example: Prisoner’s dilemma

= Strategic-form representation for prisoner’s dilemma

/G :[Ki{Ak}’{uk(a)}] \

- K ={prisonerl, prisoner 2}, A ={confess, not confess}

- U (a): prisoner2
confess not confess

confess (-1,-1) 1,-2)
not confess | (-2 1) (0,0)

prisonerl

-

— A finite game because the A«’s are countable

— A complete information game because the u«(a)’s are
common knowledge among the players




Dominated Strategy & Its Iterative Deletion

= Prisoner’s Dilemma

%2 1 1
S | not confess !

dominated strategy

prisonerl
confess

— The outcome: (confess, confess)

prisoner2
confess  not confess
(_1 ) '1) (1 , _2)
(-2,1) (0,0)
prisoner2
confess  not confess
(_1 , '1) (1 , _2)

= U, (C,X)>u,(NC,X)

= U,(C,C)>u,(C,NC)




Iterative Deletion of Dominated Strategies

= |eft/Middle/Right Game

dominatéd

playerl
M

. player 2 .
(1,1) | (05,15)
(2,0) (1,0.5)
(0, 3) 0.2)

player 2

L R

(2, 0) (1,0.5)

— The outcome: (M, R)

u, (M, X) > u, (L, X)
u, (M, X) > u, (R, X)

= U,(M,R)>u,(M,L)




Nash Equilibrium

= Non-cooperative game where the players
compete through self-optimization

= A joint strategy which no player can increase its
utility by unilaterally deviating from.

[Strategya*eAisa NEif u (@*)>u, (4.,a ) Vk,V4 e A ]

® Prisoner’s Dilemma: (confess, confess)
= | eft/Middle/Right: (Middle, Right)




Multiple NES

= Battle of Roses Game

/ husband \

football ballet
footballl (1, 2) (0,0)
ballet | (0, 0) (2,1)

- /

— Two NEs: (football, football), (ballet, ballet)

wife




Mixed Strategy (1)

Matching pennies game

Each of two players has a penny and must choose either
head or tail facing up. If two pennies match, the player 1

wins; otherwise, the player 2 wins

/ player2 \
head tail
< head | (1,-1) (-1,1)
g tail (-1, 1) (1,-1)

NS /

— There is no Nash equilibrium

pure
strategy




Mixed Strategy (2)

= Matching Pennies Game
— A probability distribution over the strategy set

— The maxed strategy
« Playerl: 0, =(p,,1-py)
= Player2: o, =(p,,1-p,)
where p. is the probability that playeri chooses head.

— Uf(oy,0,)=pp,—p(d-p,)-A=p)p,+ (1= p)A-p,)
= (1_2p1)(1_2p2)
Uy(01,05) ==PiP, + P (L= Py) + (1= py) P, = (1= )L~ Py)
:_(1_2p1)(1_2p2)




Mixed Strategy (3)

= Matching Pennies Game

P2, U1(51’02)2(1_2p1)(1_2p2)

1

0.5 ®

u,(o;,0,)=(2p,-1)1-2p,)

05 1 P,




Pareto Optimality (1)

Prisoner’s Dilemma

prisoner2
C NC
—
: C <-1,-1) (1,-2)
2 NC N2, | 0,0

— Neither prisoner 1 nor prisoner 2 gets any incentive to
deviate from (C,C) unilaterally.

— But, if both prisoners could jointly change their
strategies, they can be willing to play (NC, NC)




Pareto Optimality (2)

A strategy profile is Pareto-optimal if we cannot
Increase the payoff without decreasing that of at least
one other player

A strategy profile is Pareto dominated if some other
strategy would make at least one player better off
without hurting any other player

A NE can be Pareto-dominated by a Pareto-optimal
strategy

Any Pareto-optimal strategy does not Pareto-dominate
another Pareto-optimal strategy




Pareto Optimality (3)

= Prisoner’s Dilemma

prisoner2
C NC

-1,-1)| 1,-2)

O

prisonerl

Z
O

(-2,1) | (0,0

— (C, C) : a NE, but not Pareto-optimal
— (NC,0), (C, NC), (NC,NC) : Pareto-optimal but not NE
— (C, C) i1s Pareto-dominated by (NC,NC)




Sequential Game

= A class of a dynamic game

a game where one player chooses his action
before the others choose theirs. Importantly, the

later players must have some information of the
first's choice.

Extensive-form representation




Player A

Extensive-form Representation

= Static Game = Sequential Game
All players act simultaneously Extensive—form representation
(1,9)
Player B
left right

top 1,9 | (1.5

bottom | (0,0) | (2,1)

NE: (top,left), (bottom, right)
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Sequential Game Representation

= Extensive—form = Strategic-form

(1,9) 5

LL LR RL RR

(2, 5) ©p (190 (19 (25) (25)

<
(0. 0) bottom | (0.0) | (2.1) | (0.0) | (2,1)

2, 1) NE: (top, LL)
(bottom, LR),
(bottom, RR)
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Sequential game: Backward Induction

= Would Player A ever choose Top?
— Only if he believes that Player B
will play Left after he plays Bottom.
= Player B could threaten to play Left
If Player A goes for Bottom.

— However, this is not a credible A
threat

— When A has chosen Bottom, Player
B will prefer to play Right.
= So, “I'll play Left if you go Bottom”
IS an empty threat from B.

= (Top, Left) is not credible because it is based on an empty threat.
= (Bottom, Right) is the only credible outcome (subgame-perfect NE)
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Example: Resource Allocation in OFDMA Systems

= M subchannels, K users in N Cells
= Power: p"=(p;, py) P=[p'p*-p"]
= Subchannel Allocation of BS n: A" =[a],],,.«
= SINR of user k in cell n for given P:
G,.D,
> Goy Py +0°
= Achievable date rate of user k

1.5
R (P)=Wlog,| 1- -

n M _n n
Rk(Pl A ) = Zm:l a‘m,k Rm,k (P)

n —
7/m,k_
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Downlink Resource Allocation Game (1)

= Noncooperative RA game

G=[NA{P" xA"}{u.}]
- N ={2,---,N}

= Fn :{pn |OS Z::I:l prr; < Pmax}
-A"={A"|a}, e{03Vmk and>’ a’ =1}

n n M n
-u,(P.A ):Zkeun'ukRk(P’A )_CZmzl Prm

[ NRAG: max u (p",P",A") }

Phep” AleA"
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Downlink Resource Allocation Game (2)

= Problem of optimizing the subchannel allocation for a given
network power vector, P,

[ max Zkeun R (Ps, An)J

AleA"

= max > > an uRP,)

AleA"

= Optimal subchannel allocation for given P,

d mk = keU,

= 1 if k=argmax R, , (P,)
0 otherwise
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Downlink Resource Allocation Game (3)

= Optimal subchannel assignment matrix A*(P) can be
determined once P Is determined.

M
max Zkeun mzlarrT]],lelk Rr?x,k (P)

AleA”
M

= Z q;gx(ﬂk Rk (P))
m=1 n

=  Qur RA game becomes Power Allocation game
= Noncooperative Power Allocation game

r . A
NPAG: max u (p",P ™", A" (P))

Pnan

:gpgng::l (rkggf(ﬂerﬂ,k(P))—cpa) vneN

N J
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